Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98013
標題: 牛樟芝與香杉芝菌絲體乙醇萃取物對骨質疏鬆症之影響及胚芽乳酸桿菌發酵藥用菇類菌絲體多醣產物之抗發炎活性
Effect of ethanolic extracts from Antrodia cinnamomea and Antrodia salmonea mycelia on osteoporosis and anti-inflammatory activity of Lactobacillus plantarum fermented-medicinal mushroom mycelial polysaccharide products
作者: 林宜儒
I-Ju Lin
關鍵字: 香杉芝
樟芝
菌絲體
骨質疏鬆症
靈芝
虎乳靈芝
多醣
胚芽乳酸桿菌
抗發炎
Antrodia camphorata
Antrodia salmonea
mycelia
osteoporosis
Ganoderma lucidum
Lignosus rhinocerus
polysaccharide
Lactobacillus plantarum
anti-inflammation
引用: 壹、樟芝與香杉芝菌絲體乙醇萃取物對骨質疏鬆症之影響 行政院衛生福利部國民健康署。2011。骨質疏鬆症臨床治療指引。台北,台灣。 吳宣慧。2018。香杉芝菌絲體乙醇萃取物對癌細胞侵襲與轉移之影響。國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。 許晉瑋。2007。奈米化之鈣劑預防骨質疏鬆症之保健功效與安全性評估。中原大學生物醫學工程學系。桃園,台灣。 張曉莉、薛文明、李恩慈、張瓊妃。2002。樟芝子實體、菌絲體及相關產品三萜類差異之探討。國科會專題研究計劃案結果報告 (編號: NSC 91-2316-B-244-001)。 陳欣郁。2014。脈衝光照射之杏香菇對卵巢切除鼠之生理影響。國立中興大學食品暨應用生物科技學系博士論文。台中,台灣。 陳永昌。2007。香杉芝抗氧化及抗癌功效之探討。朝陽科技大學應用化學系碩士碩士論文。台中,台灣。 陳勁初、林文鑫、陳清農、許勝傑、黃仕政、陳炎鍊。2001。台灣特有真菌-樟芝菌絲體之開發。Fungal Science。16(1&2), 7-22。 莊家輝。2013。利用卵巢摘除大鼠為骨質疏鬆症動物模式評估克弗爾延緩骨質流失之功效。國立中興大學生命科學系碩士論文。台中,台灣。 彭文煌、李宜璇、蔡金川、張淑貞、賴銘淙、謝明村。2008。中草藥一般 毒性評估模式探討。中華醫誌。19, 93-107。 游蕙慈。2014。補充脈衝光照射之杏香菇對衰老中雌鼠骨質密度與生理活性之影響。國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。 黃雅芳。2006。利用D2 LSU、ITS rDNA 序列分析樟芝與薄孔菌屬的親緣關係及簡易快速之鑑定技術開發。輔英科技大學生物技術系碩士論文。高雄,台灣。 黃婉莉。2007。香杉芝之培養及其生理活性與抗氧化性質。國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。 楊榮森。2008。骨質疏鬆症(修訂版)-病因與症狀.診斷.跌倒預防。健康文化事業股份有限公司。台北,台灣。 謝昀蓉。2011。香杉芝菌絲體萃取物單獨及合併抗癌藥物對人類肝癌細胞豬凋亡之影響。國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。 簡嬈祺。2017。經脈衝照射之舞菇固態發酵黃豆對肥胖、老化與骨質疏鬆症之影響。國立中興大學食品暨應用生物科技學系博士論文。台中,台灣。 Badea, C. T., Drangova, M., Holdsworth, D. W., & Johnson, G. A. (2008). In vivo small-animal imaging using micro-CT and digital subtraction angiography. Physics in Medicine and Biology, 53(19), R319. Baron, R. (2008). Anatomy and ultrastructure of bone-histogenesis, growth and remodeling. Retrieved from http://www.endotext.org. Beck, T. J., Oreskovic, T. L., Stone, K. L., Ruff, C. B., Ensrud, K., Nevitt, M. C., Genant, H. K. & Cummings, S. R. (2001). Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. Journal of bone and mineral research, 16(6), 1108-1119. Bhattacharya, A., Rahman, M., Sun, D. & Fernandes, G. (2007). Effect of fish oil on bone mineral density in aging C57BL/6N female mice. The Journal of Nutritional Biochemistry, 18(6), 372-379. Čepelak, I., & Čvorišćec, D. (2009). Biochemical markers of bone remodeling-review. Biochemia Medica, 19(1), 17-35. Chang, T. T., & Chou, W. N. (1995). Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycological Research, 99(6), 756-758. Chang, T. T., & Chou, W. N. (2004). Antrodia cinnamomea reconsidered and A. salmonea sp. nov. on Cunninghamia konishii in Taiwan. Botanical Bulletin of Academia Sinica, 45, 347-352. Chang, C. Y., Huang, Z. N., Yu, H. H., Chang, L. H., Li, S. L., Chen, Y. P., Lee, K. Y. & Chuu, J. J. (2008). The adjuvant effects of Antrodia Camphorata extracts combined with anti-tumor agents on multidrug resistant human hepatoma cells. Journal of Ethnopharmacology, 118(3), 387-395. Chen, C. J., Su, C. H., & Lan, M. H. (2001). Study on solid cultivation and bioactivity of Antrodia camphorate. Fungal Sciences, 16, 65–72. Chiang, S. S., Liao, J. W. & Pan, T. M. (2012). Effect of bioactive compounds in lactobacilli‐fermented soy skim milk on femoral bone microstructure of aging mice. Journal of the Science of Food and Agriculture, 92(2), 328-335. Chiu, H. H. (2007). Phylogenetic analysis of Antrodia species and Antrodia camphorata inferred from internal transcribed spacer region. Antonie van Leeuwenhoek, 91(3), 267-276. Christgau, S., Bitsch-Jensen, O., Bjarnason, N. H., Gamwell Henriksen, E., Qvist, P., Alexandersen, P., & Bang Henriksen, D. (2000). Serum CrossLaps for monitoring the response in individuals undergoing antiresorptive therapy. Bone, 26, 505-511. Conn, P. M. (2017). Animal models for the study of human disease. United states: Academic Press. Cummings, S. R., Browner, W., Black, D. M., Nevitt, M. C., Genant, H. K., Cauley, J Ensrud, K., Genant, H. K., Palermo, L., Scott, J. & Vogt, T. M. (1993). Bone density at various sites for prediction of hip fractures. The Lancet, 341(8837), 72-75. Dai, Y. Y., Chuang, C. H., Tsai, C. C., Sio, H. M., Huang, S. C., Chen, J. C., & Hu, M. L. (2003). The protection of Anthrodia camphorata against acute hepatotoxicity of alcohol in rats. Journal of Food and Drug Analysis, 11(3), 177-185. Davison, K. S., Siminoski, K., Adachi, J. D., Hanley, D. A., Goltzman, D., Hodsman, A. B., Josse, R., Kaiser, S., Olszynski, W. P., Papaioannou, A., Ste-Marie, L. G., Kendler, D. L., Tenenhouse, A., & Brown, J. P. (2006). Bone strength: the whole is greater than the sum of its parts. Seminars in Arthritis and Rheumatism, 36(1), 22-31. Emerton, K. B., Hu, B., Woo, A. A., Sinofsky, A., Hernandez, C., Majeska, R. J., Jepsen, K. J. & Schaffler, M. B. (2010) Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. Bone, 46(3): 577-83. Faulkner, K. G., Cummings, S. R., Black, D., Palermo, L., Gluer, C. C. & Genant, H. K. (1993). Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. Journal of bone and mineral research, 8(10), 1211-1217. Garnero, P. (2012). The contribution of collagen crosslinks to bone strength. BoneKEy Reports, 1, 182. Geethangili, M., & Tzeng, Y. M. (2011). Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evidence-Based Complementary and Alternative Medicine, 2011, Article ID 212641. Glorieux, F. H., Pettifor, J. M. & Juppner, H. (2012). Pediatric Bone: Biology & Diseases. United states: Elsevier. Hahn, M., Vogel, M., Pompesius-Kempa, M. & Delling, G. (1992). Trabecular bone pattern factor-a new parameter for simple quantification of bone microarchitecture. Bone, 13, 327-330. Holdsworth, D. W., & Thornton, M. M. (2002). Micro-CT in small animal and specimen imaging. Trends in Biotechnology, 20 (8), S34-S39. Hsiao, G., Shen, M. Y., Lin, K. H., Lan, M. H., Wu, L. Y., Chou, D. S., Lin, C. H., Su, C. H. & Sheu, J. R. (2003). Antioxidative and hepatoprotective effects of Antrodia camphorata extract. Journal of Agricultural and Food Chemistry, 51(11), 3302-3308. Hseu, Y. C., Lee, C. C., Chen, Y. C., Kumar, K. S., Chen, C. S., Huang, Y. C., Hsu, L. S., Huang, H. C. & Yang, H. L. (2014). The anti-tumor activity of Antrodia salmonea in human promyelocytic leukemia (HL-60) cells is mediated via the induction of G1 cell-cycle arrest and apoptosis in vitro or in vivo. Journal of ethnopharmacology, 153(2), 499-510. Hseu, Y. C., Wu, F. Y., Wu, J. J., Chen, J. Y., Chang, W. H., Lu, F. J., Lai., Y. C., & Yang, H. L. (2005). Anti-inflammatory potential of Antrodia camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-κB pathway. International immunopharmacology, 5(13-14), 1914-1925. Huang, G. J., Pan, C. H., Liu, F. C., Wu, T. S. & Wu, C. H. (2012). Anti-inflammatory effects of ethanolic extract of Antrodia salmonea in the lipopolysaccharide-stimulated RAW246.7 macrophages and the lambda-carrageenan-induced paw edema model. Food and chemical toxicology, 50(5), 1485-1493. Huang, C. C., Hsu, M. C., Huang, W. C., Yang, H. R., & Hou, C. C. (2012). Triterpenoid-rich extract from Antrodia camphorata improves physical fatigue and exercise performance in mice. Evidence-Based Complementary and Alternative Medicine, 2012. Article ID 364741. Isken, F., Pfeiffer, A. F., Nogueiras, R., Osterhoff, M. A., Ristow, M., Thorens, B., Tschöp, M. H.,& Weickert, M. O. (2008). Deficiency of glucose-dependent insulinotropic polypeptide receptor prevents ovariectomy-induced obesity in mice. American Journal of Physiology-Endocrinology and Metabolism, 295(2), E350-E355. Jiang, Y., Zhao, J., White, D. L., & Genant, H. K. (2000). Micro CT and Micro MR imaging of 3D architecture of animal skeleton. Journal of Musculoskeletal and Neuronal Interactions, 1(1), 45-51. Jobke, B., Burghardt, A. J., Muche, B., Hahn, M., Semler, J., Amling, M., Majumdar, S., & Busse, B. (2011). Trabecular reorganization in consecutive iliac crest biopsies when switching from bisphosphonate to strontium ranelate treatment. PloS One, 6(8), e23638. Kang, K. Y., Kang, Y., Kim, M., Kim, Y., Yi, H., Kim, J., Jung, H. R., Park, S. H., Kim, H. Y., Ju, J. H., & Hong, Y. S. (2013). The effects of antihypertensive drugs on bone mineral density in ovariectomized mice. Journal of Korean Medical Science, 28(8), 1139-1144. Kumbar, S. G., Toti, U. S., Deng, M., James, R., Laurencin, C. T., Aravamudhan, A., Harmon, M., & Ramos, D. M. (2011). Novel mechanically competent polysaccharide scaffolds for bone tissue engineering. Biomedical Materials, 6(6), 065005. Li, J. X., Liu, J., He, C. C., Yu, Z. Y., Du, Y., Kadota, S., & Seto, H. (2007). Triterpenoids from Cimicifugae rhizoma, a novel class of inhibitors on bone resorption and ovariectomy-induced bone loss. Maturitas, 58(1), 59-69. Lindsay, R.. (1987). The menopause: sex steroids and osteoporosis. Clinical Obstetrics and Gynecology, 30(4), 847-859. Link, T. M., Doren, M., Lewing, G., Meier, N., Heinecke, A., & Rummeny, E. (2000). Cross-sectional area of lumbar vertebrae in peri- and postmenopausal patients with and without osteoporosis. Osteoporosis International, 11(4), 304-309. Liu, H. Y., Huang, C. F., Li, C. H., Tsai, C. Y., Chen, W. H., Wei, H. J., Wang, M. F., Kuo, Y. H., Cheong, M. L., & Deng, W. P. (2016). Osteoporosis recovery by antrodia camphorata alcohol extracts through bone regeneration in SAMP8 Mice. Evidence-Based Complementary and Alternative Medicine, 2016, Article ID 2617868. Liu, D. Z., Liang, Y. C., Lin, S. Y., Lin, Y. S., Wu, W. C., Hou, W. C., & Su, C. H. (2007). Antihypertensive activities of a solid-state culture of Taiwanofungus camphoratus (Chang-Chih) in spontaneously hypertensive rats. Bioscience, biotechnology, and biochemistry, 71(1), 23-30. Liu, F. S., Yang, P. Y., Hu, D. N., Huang, Y. W., & Chen, M. J. (2011). Antrodia camphorata induces apoptosis and enhances the cytotoxic effect of paclitaxel in human ovarian cancer cells. International Journal of Gynecological Cancer, 21(7), 1172-1179. Neustadt, J. & Pieczenik, S. (2012). Osteoporosis: beyond bone mineral density. A special report on the state of osteoporosis research. Retrieved from http://www.nbihealth.com/supporting/osteoporosisreport.pdf. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. (2001). Osteoporosis prevention, diagnosis, and therapy. Journal of the American Medical Association, 285(6). 785-795. Odvina, C.V., Zerwekh, J.E., Rao, D.S., Maalouf, N., Gottschalk, F.A. & Pak, C.Y. (2005). Severely suppressed bone turnover: a potential complication of alendronate therapy. The Journal of Clinical Endocrinology & Metabolism, 90(3), 1294-1301. Owen T. A., Aronow M., Shalhoub V., Barone L. M., Wilming L., Tassinari M. S., Kennedy M. B., Pockwinse S., Lian J. B. & Stein G.S. (1990). Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. Journal of cellular physiology, 143(3), 420-430. Parkinson, I., & Fazzalari, N. (2003). Interrelationships between structural parameters of cancellous bone reveal accelerated structural change at low bone volume. Journal of Bone and Mineral Research, 18(12), 2200-2205. Rao, Y. K., Fang, S. H., & Tzeng, Y. M. (2007). Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. Journal of ethnopharmacology, 114(1), 78-85. Riggs, B. L. & Melton, L. J., III. (1983). Evidence for two distinct syndromes of involutional osteoporosis. The American journal of medicine, 75(6), 899-901. Rendina, E., Hembree, K. D., Davis, M. R., Marlow, D., Clarke, S. L., Halloran, B. P., Lucas, E. A., & Smith, B. J. (2013). Dried plum's unique capacity to reverse bone loss and alter bone metabolism in postmenopausal osteoporosis model. PloS one, 8(3), e60569. Rogers, N. H., Perfield, J. W., Strissel, K. J., Obin, M. S., & Greenberg, A. S. (2009). Reduced energy expenditure and increased inflammation are early events in the development of ovariectomy-induced obesity. Endocrinology, 150(5), 2161-2168. Rosen, H. N., Dresner-Pollak, R., Moses, A. C., Rosenblatt, M., Zeind, A. J., Clemens, J. D., & Greenspan, S. L. (1994). Specificity of urinary excretion of cross-linked N-telopeptides of type I collagen as a marker of bone turnover. Calcified tissue international, 54(1), 26-29. Schambach, S. J., Bag, S., Schilling, L., Groden, C., & Brockmann, M. A. (2010). Application of micro-CT in small animal imaging. Methods, 50(1), 2-13. Seibel, M. J. (2005). Biochemical markers of bone turnover: part I: biochemistry and variability. The Clinical biochemist. Reviews/Australian Association of Clinical Biochemists., 26(4), 97. Şener, G., Kapucu, C., Cetinel, S., Cikler, E., & Ayanoğlu-Dülger, G. (2005). Gastroprotective effect of leukotriene receptor blocker montelukast in alendronat-induced lesions of the rat gastric mucosa. Prostaglandins, Leukotrienes and Essential Fatty Acids, 72(1), 1-11. Senthil, K. K., Gokila, V. M., Mau, J. L., Lin, C. C., Chu, F. H., Wei, C. C., Liao, V. H. C. & Wang, S. Y. (2016). A steroid like phytochemical Antcin M is an anti-aging reagent that eliminates hyperglycemia-accelerated premature senescence in dermal fibroblasts by direct activation of Nrf2 and SIRT-1. Oncotarget, 7(39), 62836. Siris, E. S., Brenneman, S. K., Barrett-Connor, E., Miller, P. D., Sajjan, S., Berger, M. L., & Chen, Y. T. (2006). The effect of age and bone mineral density on the absolute, excess, and relative risk of fracture in postmenopausal women aged 50-99: results from the National Osteoporosis Risk Assessment (NORA). Osteoporosis international, 17(4), 565-574. Shen, C. C., Shen, Y. C., Wang, Y. H., Lin, L. C., Don, M. J., Liou, K. T., Wang, W. Y., Hou, Y. C. & Chang, T. T. (2006). New lanostanes and naphthoquinones isolated from Antrodia salmonea and their antioxidative burst activity in human leukocytes. Planta medica, 72(03), 199-203. Shui, C., & Scutt, A. M. (2002). Mouse embryo-derived NIH3T3 fibroblasts adopt an osteoblast-like phenotype when treated with 1α,25-dihydroxyvitamin D3 and dexamethasone in vitro. Journal of Cellular Physiology, 193(2), 164–172. Su, C. H. (2002). Health Guardian Angel: Antrodia camphorata. Taipei, Taiwan: EKS Book Publishing. Travlos, G. S., Morris, R. W., Elwell, M. R., Duke, A., Rosenblum, S., & Thompson, M. B. (1996). Frequency and relationships of clinical chemistry and liver and kidney histopathology findings in 13-week toxicity studies in rats. Toxicology, 107(1), 17-29. Viguet-Carrin, S., Garnero, P., & Delmas, P. D. (2006). The role of collagen in bone strength. Osteoporosis International, 17(3), 319-336. Watts, N. B., & Diab, D. L. (2010). Long-term use of bisphosphonates in osteoporosis. The Journal of Clinical Endocrinology & Metabolism, 95(4), 1555-1565. World Health Organization (WHO). (1994) Assessment of fracture risk and application to screening for postmenopausal osteoporosis. WHO Technical Report Series, Geneva, Switzerland. Wu, H., Pan, C. L., Yao, Y. C., Chang, S. S., Li, S. L., & Wu, T. F. (2006). Proteomic analysis of the effect of Antrodia camphorata extract on human lung cancer A549 cell. Proteomics, 6(3), 826-835. Wu, S. H., Ryvarden, L., & Chang, T. T. (1997). Antrodia camphorata (' niu-chang-chih'), new combination of a medicinal fungus in Taiwan. Botanical Bulletin-Academia Sinica Taipei, 38, 273-276. Zhao, X., Wu, Z. X., Zhang, Y., Yan, Y. B., He, Q., Cao, P. C., & Lei, W. (2011). Anti-osteoporosis activity of Cibotium barometz extract on ovariectomy-induced bone loss in rats. Journal of ethnopharmacology, 137(3), 1083-1088. 貳、胚芽乳酸桿菌發酵菇類多醣產物之抗發炎活性 王姿惠。2001。益生菌於含果寡糖之培養環境中生長情形之探討。國立中興大學食品暨應用生物科技學系。台中,台灣。 林心雅。2004。益生菌於含抗性澱粉培養液中生長情形之探討。天主教輔仁大學食品營養學系碩士論文。台北,台灣。 林秀卿。1999。食藥用菇類之呈味品質和抗氧化性質之評估。國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。 邱雪惠,2004。乳酸菌之抗癌機制。食品工業。36(3):27-33。 周韋廷。2011。菇柄多醣對乳酸菌之助生性及應用在益生菌發酵乳之研究。國立中興大學食品暨應用生物科技學系。台中,台灣。 梁志弘。2009。桑黃之液態培養及其生理活性。國立中興大學食品暨應用生物科技學系博士論文。台中,台灣。 張曉莉。2004。食藥用真菌中多醣體鑑別之研究。高苑科技大學化學工程系碩士論文。高雄,台灣。 陳泳全。2008。麻竹筍膳食纖維對於益生菌生長之助生性功效研究。中臺科技大學食品科技研究所學位論文。台中,台灣。 劉心愉。2017。以胚芽乳酸桿菌發酵杏鮑菇多醣及其生理活性。國立中興大學食品暨應用生物科技學系碩士論文。台中,台灣。 蔡淑瑤。2006。雞腿菇和花松茸之液態培養及其生理活性。國立中興大學食品暨應用生物科技學系博士論文。台中,台灣。 Abramson, S. B., Amin, A. R., Clancy, C. M., Attur, M. (2001). The role of nitric oxide in tissue destruction. Best Practice & Research Clinical Rheumatology, 15(5). 831-845. Agerholm-Larsen, L., Raben, A., Haulrik, N., Hansen, A. S., Manders, M., Astrup, A. (2000). Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. European Journal of Clinical Nutrition, 54(4), 288-297. Akaike, T., Fujii, S., Kato, A., Yoshitake, J., Miyamoto, Y., Sawa, T., Okamoto, S., Suga, M., Asakawa, M., Nagai, Y.and Maeda, H. (2000). Viral mutation accelerated by nitric oxide production during infection in vivo. The FASEB Journal, 14(10), 1447-1454. Andrei, E. M., Jorge C.G., Blanco, N.Q. and Stefanie N.V. (1999). Limited role of ceramide in lipopolysaccharide-mediated mitogen-activated protein kinase activation, transcription factor induction, and cytokine release. The Journal of Biological Chemistry, 274(14), 9343-9350. Arasu, M. V., Al-Dhabi, N. A., Ilavenil, S., Choi, K. C., Srigopalram, S. (2016). In vitro importance of probiotic Lactobacillus plantarum related to medical field. Saudi Journal of Biological Sciences, 23(1), S6-S10. Bali, V., Panesar, P. S., Bera, M. B., Panesar, R. (2015). Fructo-oligosaccharides: production, purification and potential applications. Critical reviews in food science and nutrition, 55(11), 1475-1490. Bao, X. F., Wang, X. S., Dong, Q., Fang, J. N., & Li, X. Y. (2002). Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry, 59(2), 175-181. Ben-Sasson, S. Z., Hu-Li, J., Quiel, J., Cauchetaux, S., Ratner, M., Shapira, I., Dinarello, C. A., & Paul, W. E. (2009). IL-1 acts directly on CD4 T cells to enhance their antigen-driven expan-sion and differentiation. Proceedings of the National Academy of Sciences, 106(17), 7119-7124. Berrada, N., Lemeland, J. F., Laroche, G., Thouvenot, P., & Piaia, M. (1991). Bifidobacterium from fermented milks: survival during gastric transit. Journal of Dairy Science, 74(2), 409-413. Bessler, H., Djaldetti, R., Salman, H., Bergman, M. & Djaldetti, M. (1999). IL-1β, IL-2, IL-6 and TNF-α production by peripheral blood mononuclear cells from patients with Parkinson's disease. Biomedicine & Pharmacotherapy, 53(3), 141-145. Beutler, B. A. (1999). The role of tumor necrosis factor in health and disease. The journal of rheumatology. Supplement, 57, 16-21. Borchers, A. T., Krishnamurthy, A., Keen, C. L., Meyers, F. J., and Gershwin, M. E. (2008). The immunobiology of mushrooms. Experimental Biology and Medicine, 233(3), 259-276. Brandtzaeg, P., Osnes, L., Ovstebø, R., Joø, G. B., Westvik, A. B., & Kierulf, P. (1996). Net inflammatory capacity of human septic shock plasma evaluated by a monocyte-based target cell assay: identification of interleukin-10 as a major functional deactivator of human monocytes. Journal of Experimental Medicine, 184(1), 51-60. Caroff, M. & Karibian, D. (2003). Structure of bacterial lipopolysaccharides. Carbohydrate Research, 338(23), 2431-2447. Cenci, E., Roman, L., Vencchiarelli, A., Puccetti, P. and Bistoni, F. (1989). Role of L3T4+lymphocytes in protective immunity to systemic Candida albican infection in mice. Infection and Immunity, 57(11), 3581-3587. Chang, C. K., Wang, S. C., Chiu, C. K., Chen, S. Y., Chen, Z. T., Duh, P. D. (2015). Effect of lactic acid bacteria isolated from fermented mustard on immunopotentiating activity. Asian Pacific Journal of Tropical Biomedicine, 5(4): 281-286. Chen, N. H., Liu, J. W., & Zhong, J. J. (2010). Ganoderic acid T inhibits tumor invasion in vitro and in vivo through inhibition of MMP expression. Pharmacological Reports, 62(1), 150-163. Chon, H., Choi, B., Lee, E., Lee, S., & Jeong, G. (2009). Immunomodulatory effects of specific bacterial components of Lactobacillus plantarum KFCC11389P on the murine macrophage cell line RAW 264.7. Journal of applied microbiology, 107(5), 1588-1597. Chu W. M. (2013). Tumor necrosis factor. Cancer Letters, 328(2), 222-225. Clarke, C. J. P., Hales, A., Hunt, A., Foxwell, B. M. (1998). IL-10 mediated suppression of TNF-α production is independent of its ability to inhibit NF-κB activity. European Journal of Immunology, 28(5), 1719-1726. Coimbra, M. A., Barros, A., Barros, M., Rutledge, D. N., & Delgadillo, I. (1998). Multivariate analysis of uronic acid and neutral sugars in whole pectic samples by FT-IR spectroscopy. Carbohydrate Polymers, 37(3), 241-248. Collins, M. D., & Gibson, G. R. (1999). Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. The American journal of clinical nutrition, 69(5), 1052s-1057s. Cui, B. K., Tang, L. P., & Dai, Y. C. (2011). Morphological and molecular evidences for a new species of Lignosus (Polyporales, Basidiomycota) from tropical China. Mycological Progress, 10(3), 267-271. da Silva, M. P., Cedraz-Mercez, P. L. and Varanda, W. A. (2014). Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms. Brazilian Journal of Medical and Biological Research, 47(2), 90-100. de Heredia, F. P., Garaulet, M., Gómez-Martínez, S., Díaz, L. E., Wärnberg, J., Androutsos, O., Michels, N., Breidenassel, C., Cuenca-García, M., Huybrechts, I., Gottrand, F., Ferrari, M., Santaliestra-Pasías, A. M., Kafatos, A., Molnár, D., Sjöstrom, M., Widhalm, K., Moreno, L. A., Marcos, A., & Gottrand, F. (2014). Self-reported sleep duration, white blood cell counts and cytokine profiles in European adolescents: the HELENA study. Sleep medicine, 15(10), 1251-1258. Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of immunological methods, 89(2), 271-277. Dinarello, C. A. (2000). Proinflammatory cytokines. Chest, 118(2), 503-508. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. Dudhgaonkar, S., Thyagarajan, A., & Sliva, D. (2009). Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. International immunopharmacology, 9(11), 1272-1280. Elmadfa, I., Klein, P., & Meyer, A. L. (2010). Immune-stimulating effects of lactic acid bacteria in vivo and in vitro. Proceedings of the Nutrition Society, 69(3), 416-420. Fiorentino, D. F., Zlotnik, A., Mosmann, T. R., Howard, M. & O'Garra, A. (1991). IL-10 inhibits cytokine production by activated macrophages. The Journal of Immunology, 147(11), 3815-3822. Fuller, R. (1989), Probiotic in man and animals. Journal of Applied Bacteriology, 66(5), 365-378. Ferreira, I. C., Barros, L., and Abreu, R. M. (2009). Antioxidants in wild mushrooms. Current Medicinal Chemistry, 16(12), 1543-1560. Gao, S., Lai, C. K., & Cheung, P. C. K. (2009). Nondigestible carbohydrates isolated from medicinal mushroom sclerotia as novel prebiotics. International Journal of Medicinal Mushrooms, 11(1). Gibson, G. R., Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition, 125(6). 1401-1412. Gilliland, S., & Walker, D. (1990). Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. Journal of Dairy Science, 73(4), 905-911. Glauser, M. P., Heumann, D., Baumgartner, J. D., & Cohen, J. (1994). Pathogenesis and potential strategies for prevention and treatment of septic shock: an update. Clinical Infectious Diseases, 18(Supplement_2), S205-S216. Goldsby, R. A., T. J. Kindt, & B. A. Osborne. (2000). Kuby Immubology. 5th ed. W. H. Freeman: New York, USA. Gómez-Ordóñez, E., & Rupérez, P. (2011). FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids, 25(6), 1514-1520. Guha, M., & Mackman, N. (2001). LPS induction of gene expression in human monocytes. Cellular signalling, 13(2), 85-94. Hikino, H., Ishiyama, M., Suzuki, Y., & Konno, C. (1989). Mechanisms of Hypoglycemic Activity of Ganoderan B: A Glycan of Ganoderma lucidum Fruit Bodies1. Planta medica, 55(05), 423-428. Howard, M., O'Garra, A., Ishida, H., de Waal Malefyt, R., & De Vries, J. (1992). Biological properties of interleukin-10. Journal of clinical immunology, 12(4), 239-247. Hseu, Y. C., Wu, F. Y., Wu, J. J., Chen, J. Y., Chang, W. H., Lu, F. J., Lai., Y. C., & Yang, H. L. (2005). Anti-inflammatory potential of Antrodia camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-κB pathway. International immunopharmacology, 5(13-14), 1914-1925. Huang, G., Shu, S., Cai, T., Liu, Y., Xiao, F. (2012). Preparation and deproteinization of garlic polysaccharide. International Journal of Food Science and Nutrition, 63(6), 739-741. Huis in't Veld, J. H. J., & Havenaar, R. (1991). Probiotics and health in man and animal. Journal of Chemical Technology and Biotechnology, 51(4), 562-567. Hyronimus, B., Le Marrec, C., Hadj Sassi, A., & Deschamps, A. (2000). Acid and bile tolerance of spore-forming lactic acid bacteria. International Journal of Food Microbiology, 61(2-3), 193-197. Ji, Y. S., Kim, H. N., Park, H. J., Lee, J. E., Yeo, S. Y., Yang, J. S., Park, S. Y., Yoon, H. S., Cho, G. S., Franz, C. M. A. P., Bomba, A., Shin, H. K., Holzapfel, W. H. (2012). Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Beneficial Microbes, 3(1). 13-22. Kao, C., Jesuthasan, A. C., Bishop, K. S., Glucina, M. P., & Ferguson, L. R. (2013). Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways. Functional Foods in Health and Disease, 3(2), 48-65. Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., Fakiri, E. M. (2013). Health benefits of probiotics: a review. International Scholarly Research Notices: Nutrition, 2013, Article ID 481651. König, H., Fröhlich, J., Unden, G. (2009). Biology of microorganisms on grapes, in must and wine. Heidelberg, Germany: Springer. Kuhn, R. C., & Maugeri Filho, F. (2010). Purification of fructooligosaccharides in an activated charcoal fixed bed column. New biotechnology, 27(6), 862-869. Lai, C. K., Wong, K. H., & Cheung, P. C. K. (2008). Antiproliferative effects of sclerotial polysaccharides from Polyporus rhinocerus Cooke (Aphyllophoromycetideae) on different kinds of leukemic cells. International Journal of Medicinal Mushrooms, 10(3), 255-264. Laugerette, F., Vors, C., Peretti, N. & Michalski, M. C. (2011). Complex links between dietary lipids, endogenous endotoxins and metabolic inflammation. Biochimie, 93(1), 39-45. Li, J. J., Guo, Y. L., & Yang, Y. J. (2005). Enhancing anti-inflammatory cytokine IL-10 may be beneficial for acute coronary syndrome. Medical hypotheses, 65(1), 103-106. Liao, Y. R., & Lin, J. Y. (2014). Quercetin, but not its metabolite quercetin-3-glucuronide, exerts prophylactic immunostimulatory activity and therapeutic antiinflammatory effects on lipopolysaccharide-treated mouse peritoneal macrophages ex vivo. Journal of agricultural and food chemistry, 62(13), 2872-2880. Lin, J. Y., & Tang, C. Y. (2007). Interleukin-10 Administration Inhibits TNF-α and IL-1β but Not IL-6 Secretion of LPS-Stimulated Peritoneal Macrophages. Journal of Food and Drug Analysis, 15(1), 48-54. Liu, C. J., & Lin, J. Y. (2012). Anti-inflammatory and anti-apoptotic effects of strawberry and mulberry fruit polysaccharides on lipopolysaccharide-stimulated macrophages through modulating pro-/anti-inflammatory cytokines secretion and Bcl-2/Bak protein ratio. Food and chemical toxicology, 50(9), 3032-3039. Liu, C. J., & Lin, J. Y. (2013). Anti-inflammatory effects of phenolic extracts from strawberry and mulberry fruits on cytokine secretion profiles using mouse primary splenocytes and peritoneal macrophages. International immunopharmacology, 16(2), 165-170. Lee, H. S., Han, S. Y., Bae, E. A., Huh, C. S., Ahn, Y. T., Lee, J. H., & Kim, D. H. (2008). Lactic acid bacteria inhibit proinflammatory cytokine expression and bacterial glycosaminoglycan degradation activity in dextran sulfate sodium-induced colitic mice. International immunopharmacology, 8(4), 574-580. Lee, M. L., Tan, N. H., Fung, S. Y., Tan, C. S., & Ng, S. T. (2012). The antiproliferative activity of sclerotia of Lignosus rhinocerus (Tiger Milk Mushroom). Evidence-based complementary and alternative medicine, 2012. Article ID 697603. Lee, S. S., Tan, N. H., Fung, S. Y., Sim, S. M., Tan, C. S., & Ng, S. T. (2014). Anti-inflammatory effect of the sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden, the Tiger Milk mushroom. BMC complementary and alternative medicine, 14(1), 359. López-Bojórquez, L. N., Dehesa, A. Z., & Reyes-Terán, G. (2004). Molecular mechanisms involved in the pathogenesis of septic shock. Archives of medical research, 35(6), 465-479. Lundberg, J. O., Weitzberg, E., Cole, J. A., & Benjamin, N. (2004). Nitrate, bacteria and human health. Nature Reviews Microbiology, 2(7). 593-602. Ma, G. C., Wu, P. F., Tseng, H. C., Chyau, C. C., Lu, H. C., & Chou, F. P. (2013). Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages. Food Chemistry, 141(4). 3703-3713. Macklaim, J. M., Gloor, G. B., Anukam, K. C., Cribby, S., & Reid, G. (2011). At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proceedings of the National Academy of Sciences, 108(Supplement 1), 4688-4695. Maeda, H., & Akaike, T. (1998). Nitric oxide and oxygen radicals in infection, inflammation, and cancer. BIOCHEMISTRY C/C OF BIOKHIMIIA, 63, 854-865. Miyoshi, M., Ogawa, A., Higurashi, S., Kadooka, Y. (2014). Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. European Journal of Nutrition, 53(2), 599-606. Mogensen, G., Salminen, S., O'Brien, J., Ouwenhand, A., Holzapfel, W., Shortt, C., Fonden, R., Miller, G. D., Donohue, D., Playne, M. J., Crittenden, R. G., Biannchi-salcadori, B., Zink, R. (2002). Food microorganisms-health benefits, safety evaluation and strains with documented history of use in foods. International Dairy Federation, (377), 4-9. Mohamed-Ali, V., Goodrick, S., Rawesh, A., Katz, D. R., Miles, J. M., Yudkin, J. S., Klein. S., & Coppack, S. W. (1997). Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo. The Journal of Clinical Endocrinology & Metabolism, 82(12), 4196-4200. Moncada, S. R. M. J., Palmer, R. M. L., & Higgs, E. A. (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacological reviews, 43(2), 109-142. Moore, K. W., Malefyt, R. D. W., Coffman, R. L., & O'Garra, A. O. (2001). Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology, 19 (1), 683-765. Moradali, M. F., Mostafavi, H., Ghods, S., & Hedjaroude, G. A. (2007). Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology, 7(6), 701-724. Morigiwa, A., Kitabatake, K., Fujimoto, Y., & Ikekawa, N. (1986). Angiotensin Converting Enzyme-Inhibitory Triterpenes from Ganoderma lucidim. Chemical and Pharmaceutical Bulletin, 34(7), 3025-3028. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55-63. Mosser, D. M. & Zhang, X. (2008). Interleukin-10: new perspectives on an old cytokine. Immunological reviews, 226(1), 205-218. Murphy K., Travers P., Walport M. (2008). Janeway's immunobiology, 7th ed. Garland Science: New York, USA. Nijsten, N. W. N., Hack, C. E., Helle, M., Ten Duis, H. J., Klassen, H. J. & Aarden, L. A. (1991). Interleukin-6 and its relation to the humoral immune response and clinical response in burnt patients. Surgery, 109(6) 761-767. Nishimoto, N. and Kishimoto, T. (2004). Inhibition of IL-6 for the treatment of inflammatory diseases. Current opinion in pharmacology, 4(4), 386-391. Opal, S. M., Wherry, J. C. and Grint, P. (1998). Interleukin-10: potential benefits and possible risks in clinical infectious diseases. Clinical Infectious Diseases, 27(6) 1497-1507. O'Toole, P. W., Cooney, J. C. (2008). Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdisciplinary Perspectives on Infections Diseases, 2008. Article ID 175285. Padilha, M. M., Avila, A. A., Sousa, P. J., Cardoso, L. G., Perazzo, F. F., & Carvalho, J. C. (2009). Anti-inflammatory activity of aqueous and alkaline extracts from mushrooms (Agaricus blazei Murill). Journal of Medicinal Food, 12(2), 359-364. Park, Y. S., Lee, J. Y., Kim, Y. S., & Shin, D. H. (2002). Isolation and characterization of lactic acid bacteria from feces of newborn baby and from dongchimi. Journal of Agricultural and Food Chemistry, 50(9), 2531-2536. Patel, H. M., Pandiella, S. S., Wang, R. H., & Webb, C. (2004). Influence of malt, wheat, and barley extracts on the bile tolerance of selected strains of Lactobacilli. Food microbiology, 21(1), 83-89. Pelto, L., Isolauri, E., Lilius, E. M., Nuutila, J., & Salminen, S. (1998). Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects. Clinical and Experimental Allergy, 28(12), 1474-1479. Pena, A. S. (2007). Intestinal flora, probiotics, prebiotics, sunbiotics and novel foods. Revista Espanola de Enfermedades Digestivas, 99(11). 653-658. Prasad, J., Gill, H., Smart, J., & Gopal, P. K. (1998). Selection and characterisation of Lactobacillus and Bifidobacterium strains for use as probiotics. International Dairy Journal, 8(12), 993-1002. Pupo, E., & Hardy, E. (2009). Complexity and solutions to the isolation problem of Gram negative lipopolysaccharides' bacteria molecular species. Biotecnol. Apl, 26(1), 9-15. Radomski, M. W., & Moncada, S. (1991). Clinical Relevance of Nitric Oxide in the Cardiovascular System. by Moncada S., Higgs EA, Berrazueta ER, Edicomplet, Madrid, 45-56. Ren, J., Sun, K., Wu, Z., Yao, J., Guo, B. (2011). All 4 bile salt hydrolase proteins are responsible for the hydrolysis activity in Lactobacillus plantarum ST-III. Journal of Food Science, 76(9). 622-628. Riedel, C. U., Foata, F., Philippe, D., Adolfsson, O., Eikmanns, B. J., & Blum, S. (2006). Anti-inflammatory effects of bifidobacteria by inhibition of LPS-induced NF-κB activation. World journal of gastroenterology: WJG, 12(23), 3729. Rodriguez-Vita, J., & Lawrence, T. (2010). The resolution of inflammation and cancer. Cytokine & growth factor reviews, 21(1), 61-65. Ryvarden, L., & Johansen, I. (1980). A preliminary polypore flora of East Africa. A preliminary polypore flora of East Africa. Oslo, Norway: Fungiflora. Sabater-Molina, M., Larque, E., Torrella, F., Zamora, S. (2009). Dietary fructooligosaccharides and potential benefits on health. Journal of Physiology and Biochemistry, 65(3), 315-328. Salminen, S., Isolauri, E., & Salminen, E. (1996). Probiotics and stabilisation of the gut mucosal barrier. Asia Pacific journal of clinical nutrition, 5(1), 53-56. Schumann, R. R., Flaggs, G. W., Gray, P. W., Wright, S. D., Mathison, J. C., Tobias, P. S., & Ulevitch, R. J. (1990). Structure and function of lipopolysaccharide binding protein. Science, 249(4975), 1429-1431. Seddik, H. K., Bendali, F., Gancel, F., Fliss, I., Spano, G., Drider, D. (2017). Lactobacillus plantarum and its probiotic and food potentialities. Probiotics and Antimicrobial proteins, 9(2). 111-122. Stockert, J. C., Blázquez-Castro, A., Cañete, M., Horobin, R. W., & Villanueva, Á. (2012). MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta histochemica, 114(8), 785-796. Synytsya, A., Kim, W. J., Kim, S. M., Pohl, R., Synytsya, A., Kvasnička, F., Čopíková, J. & Park, Y. I. (2010). Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydrate Polymers, 81(1), 41-48. Synytsya, A., Mickova, K., Synytsya, A., Jablonsky, I., Spevacek, J., Erban, V., Kovarikova, E., Copikova, J. (2009). Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: structure and potential prebiotic activity. Carbohydrate Polymers, 76(4), 548-556. Tan, C. S., Ng, S. T., Vikineswary, S., Lo, F. P., & Tee, C. S. (2009). Genetic markers for identification of a Malaysian medicinal mushroom, Lignosus rhinocerus (Cendawan Susu Rimau). International Symposium on Molecular Markers in Horticulture, 859, 161-167. Tanaka, H., Doesburg, K., Iwasaki, T., Mierau, I. (1999). Screening of lactic acid bacteria for bile salt hydrolase activity. Journal of Dairy Science, 82(12), 2530-2535. Tseng, Y. H., Yang, J. H., & Mau, J. L. (2008). Antioxidant properties of polysaccharides from Ganoderma tsugae. Food chemistry, 107(2), 732-738. Vassalli, P. (1992). The pathophysiology of tumor necrosis factors. Annual review of immunology, 10(1), 411-452. Wang, J. & Mazza, G. (2002). Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-γ-activated RAW 264.7 macrophages. Journal of Agricultural and Food Chemistry, 50(4), 850-857. Wasser SP. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 60 (3), 258-274. Wong, K. H., Lai, C. K., & Cheung, P. C. K. (2009). Stimulation of human innate immune cells by medicinal mushroom sclerotial polysaccharides. International Journal of Medicinal Mushrooms, 11(3), 215-223. Wright, S. D., Tobias, P. S., Ulevitch, R. J., & Ramos, R. A. (1989). Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. Journal of Experimental Medicine, 170(4), 1231-1241. Wu, C.C. & Thiemermann, C. (1996). Biological control and inhibition of induction of nitric oxide synthase. Methods in Enzymology, 268, 408-420. Yang, H., Young, D. W., Gusovsky, F., & Chow, J. C. (2000). Cellular events mediated by lipopolysaccharide-stimulated Toll-like receptor 4 MD-2 is required for activation of mitogen-activated protein kinases and Elk-1. Journal of Biological Chemistry, 275(27), 20861-20866. Yang, C. M., Zhou, Y. J., Wang, R. J., & Hu, M. L. (2009). Anti-angiogenic effects and mechanisms of polysaccharides from Antrodia cinnamomea with different molecular weights. Journal of ethnopharmacology, 123(3), 407-412. Yap, H. Y. Y., Aziz, A. A., Fung, S. Y., Ng, S. T., Tan, C. S., & Tan, N. H. (2014). Energy and nutritional composition of Tiger Milk Mushroom (Lignosus tigris Chon S. Tan) sclerotia and the antioxidant activity of its extracts. International journal of medical sciences, 11(6), 602. Yap, Y. H., Tan, N., Fung, S., Aziz, A. A., Tan, C., & Ng, S. (2013). Nutrient composition, antioxidant properties, and anti‐proliferative activity of Lignosus rhinocerus Cooke sclerotium. Journal of the Science of Food and Agriculture, 93(12), 2945-2952. Zeldin, D. C., Eggleston, P., Chapman, M., Piedimonte, G., Renz, H., Peden, D. (2006). How exposures to biologics influence the induction and incidence of asthma. Environmental Health Perspectives, 114(4). 620-626. Zhang, G. L., Wang, Y. H., Ni, W., Teng, H. L., & Lin, Z. B. (2002). Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice. World journal of gastroenterology, 8(4), 728. Zhang, L., Li, N., des Robert, C., Fang, M., Liboni, K., McMahon, R., Caicedo, R. A., & Neu, J. (2006). Lactobacillus rhamnosus GG decreases lipopolysaccharide-induced systemic inflammation in a gastrostomy-fed infant rat model. Journal of pediatric gastroenterology and nutrition, 42(5), 545-552. Zhu, J., Zhao, L., Guo, H., Jiang, L., Ren, F. (2011). Immunomodulatory effects of novel Bifidobacterium and Lactobacillus strains on murine macrophage cells. African Journal of microbiology Research, 5(1). 8-15.
摘要: 隨著人口漸漸老化,國民罹患骨質疏鬆症的比率將持續增高,尤其停經後婦女中常見,初期並不會引起任何症狀,因此常被人們忽略。有研究指出樟芝子實體可延緩骨質疏鬆症的發生,而香杉芝與樟芝為同屬真菌,且兩者生理活性成分相似,但目前並無研究探討香杉芝與樟芝菌絲體對於骨質疏鬆症的影響。本研究以卵巢切除小鼠作為體內試驗模式,評估香杉芝和樟芝菌絲體70%乙醇萃取物對停經後骨質疏鬆症之影響,藉由微電腦斷層影像測定股骨之骨質參數。結果顯示,動物經樣品處理17週後,經卵巢摘除手術的母鼠體重顯著提高,推測原因為雌激素缺乏,造成內分泌失調,體脂肪堆積。此外,子宮相對重量顯著較低,且於病理組織切片發現子宮腺體萎縮,亦與雌激素的缺乏有關。於骨質評估方面,綜合骨小樑參數結果顯示餵食卵巢切除母鼠高劑量 (400 mg/kgw/day) 之樟芝菌絲體乙醇萃取物有延緩骨質流失的能力。其骨小樑骨密度與皮質骨骨密度亦顯著高於卵巢切除母鼠之未餵食樣品組別,顯示樟芝菌絲體乙醇萃取物有延緩骨質疏鬆症發生的潛力。 研究指出益生菌具有調節腸道菌相、減緩乳糖不耐症、改善肥胖等功效。而益生質可促進腸道中益生菌的生長。發炎反應是宿主防禦外來病原菌的免疫作用,但促發炎細胞激素過度分泌將對組織器官造成損傷。菇類無法完全被腸道消化的碳水化合物能促進腸道中乳酸菌生長,具開發成益生質之潛力。研究發現多種藥用菇多醣具有調節免疫功效,降低促發炎細胞激素生成,達到抗發炎能力。因此本研究首先以胚芽乳酸桿菌發酵四種藥用菇菌絲體多醣,探討菇多醣是否具有作為益生質之潛力,並將發酵液投予小鼠巨噬細胞RAW264.7,探討發酵液對抗發炎之能力。實驗結果顯示,胚芽乳酸桿菌培養至第12小時後生長達到穩定,以添加1%菇類多醣至培養基能顯著提高乳酸菌菌數。耐酸性試驗中添加香杉芝菌絲體多醣組別之乳酸菌存活率雖顯著下降,但仍有94.47%,其餘組別隨著培養時間的增加存活率皆未明顯下降。耐膽鹽試驗中顯示隨著培養時間增加,添加菇類菌絲體多醣組別之乳酸菌存活率皆未下降。顯示乳酸菌培養基中添加菇類菌絲體多醣具有耐酸與耐膽鹽效果。在評估發炎反應中,未添加醣或添加菇類菌絲體多醣與寡糖之胚芽乳酸桿菌除菌與破菌發酵液對促發炎細胞激素在不同濃度下有不同影響,但皆可促使抗發炎細胞激素提高。在促發炎細胞激素/抗發炎細胞激素比值方面,所有實驗組之比值皆顯著降低,顯示以除菌及破菌發酵液共同培養發炎之巨噬細胞,細胞傾向抗發炎反應。
As the population ages, the proportion of people suffering from osteoporosis will continue to increase, especially among postmenopausal women. Studies have pointed out that Antrodia camphorata fruit body can slow down the occurrence of osteoporosis. Antrodia salmonea and Antrodia camphorata belong to the same genus, and their physiologically active components are similar, but no study has been conducted to investigate the relationship between them and osteoporosis. In this study, the ovariectomized mice were used as an in vivo test to evaluate the effects of 70% ethanol extracts of Antrodia camphorata and Antrodia salmonea on postmenopausal osteoporosis. The bone parameters of the femur were determined by micro-computed tomography (micro-CT). Ovariectomized mice had significantly higher body weight and histopathological alterations of the liver were found to have diffuse fatty infiltration vesicles due to lack of estrogen, resulting in endocrine disorders and body fat accumulation. In addition, the relative weight of the uterus is significantly lower and atrophy of the uterine glands was found in histopathological alterations, which is also related to the lack of estrogen. In terms of bone quality assessment, the results of trabecular bone parameters showed that feeding high-dose of Antrodia camphorata mycelia ethanol extract to ovariectomized mice had the ability to delay bone loss. The bone density of trabecular bone and cortical bone were also significantly higher than those of ovariectomized mice, indicating that the ethanol extract of Antrodia camphorata has the potential to slow down the occurrence of osteoporosis. Studies have shown that probiotics have the ability of regulating intestinal flora, improving lactose intolerance, and obesity. Probiotics can promote the growth of probiotics in the intestine. The inflammatory response is the host's immune defense against pathogens, but excessive secretion of pro-inflammatory cytokines can cause damage to tissues and organs. The mushroom's carbohydrates which can not be digested by the intestinal can promote the growth of lactic acid bacteria in the intestine, with the potential to develop as probiotics. Studies have found that a variety of medicinal mushroom polysaccharides have the ability to regulate immunity, reduce pro-inflammatory cytokine production, and achieve anti-inflammatory properties. Therefore, this study first fermented four medicinal mushroom polysaccharides with Lactobacillus plantarum to investigate whether the mushroom polysaccharides has the potential as a probiotics and the fermentation broth was administered to mice-macrophages to investigate the ability of the fermentation broth to anti-inflammation. The experimental results showed that the growth of Lactobacillus plantarum was stable after 12 hours culture, and the amount of Lactobacillus plantarum was significantly higher with the addition of 1% mushroom polysaccharide. Although the survival rate of Antrodia salmonea polysaccharides group was significantly decreased in acid tolerance test, it still had 94.47%. The survival rate of the other groups did not get down significantly during the culture. The bile tolerance test showed that the survival rate of mushroom polysaccharide group did not decrease as the culture time increased. It was shown that adding mushroom polysaccharides in Lactobacillus plantarum culture medium had good effects of acid tolerance and bile tolerance. In the inflammatory response, the fermentation broth without sugar or adding mushroom polysaccharides and fructooligosaccharides have different effects on the pro-inflammatory cytokines secretion, but they could promote the secretion of anti-inflammatory cytokines. In the ratio of pro-inflammatory cytokines/anti-inflammatory cytokines, the ratios of all the experimental groups were significantly reduced, showing that the co-culture of inflamed macrophage cells with fermentation broth tends to have the good ability of immune regulation. The cells were prone to anti-inflammatory reactions and had immune regulation ability.
URI: http://hdl.handle.net/11455/98013
文章公開時間: 2021-08-23
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.