Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98028
標題: 以檸檬酸修飾綠香蕉澱粉的製備方法與理化性質之探討
Evaluation of the preparations and physicochemical properties of citric acid-modified green banana starch
作者: 余柏宣
Po-Hsuan Yu
關鍵字: 綠香蕉澱粉
抗性澱粉
檸檬酸
修飾澱粉
green banana starch
resistant starch
citric acid
modified starch
引用: Abdul Wahab, M. K., Ismail, H., & Othman, N. (2011). Characterization of citric acid-modified tapioca starch and its influence on thermal behavior and water absorption of high density polyethylene/natural rubber/thermoplastic tapioca starch blends. Polymer-Plastics Technology and Engineering, 50(7), 748-753. Aurore, G., Parfait, B., & Fahrasmane, L. (2009). Bananas, raw materials for making processed food products. Trends in Food Science & Technology, 20(2), 78-91. Avaro, M. R. A., Pan, Z., Yoshida, T., & Wada, Y. (2011). Two Alternative Methods to Predict Amylose Content of Rice Grain by Using Tristimulus CIE Lab Values and Developing a Specific Color Board of Starch-iodine Complex Solution. Plant Production Science, 14(2), 164-168. Bello‐Pérez, L. A., Pano de Léon, Y., Agama‐Acevedo, E., & Paredes‐López, O. (1998). Isolation and partial characterization of amaranth and banana starches. Starch‐Stärke, 50(10), 409-413. Bemiller, J. N. (1997). Starch modification: challenges and prospects. Starch‐Stärke, 49(4), 127-131. Bertoft, E. (2017). Understanding starch structure: Recent progress. Agronomy, 7(3), 56. Birt, D. F., Boylston, T., Hendrich, S., Jane, J. L., Hollis, J., Li, L., ... & Schalinske, K. (2013). Resistant starch: promise for improving human health. Advances in Nutrition, 4(6), 587-601. Björck, I., Gunnarsson, A., & Østergård, K. (1989). A study of native and chemically modified potato starch. Part II: Digestibility in the rat intestinal tract. Starch‐Stärke, 41(4), 128-134. Blakendy, A. B., Welsh, L. A., & Bannon, D. R. (1991). Rapid viscometric analysis of rice flour. Int. Rice Newsl, 16(5), 11-12. Bornet, F. R., Fontvieille, A. M., Rizkalla, S., Colonna, P., Blayo, A., Mercier, C., & Slama, G. (1989). Insulin and glycemic responses in healthy humans to native starches processed in different ways: correlation with in vitro alpha-amylase hydrolysis. The American journal of clinical nutrition, 50(2), 315-323. Bourtoom, T., & Chinnan, M. S. (2008). Preparation and properties of rice starch–chitosan blend biodegradable film. LWT-Food Science and Technology, 41(9), 1633-1641. British Nutrition Foundation. (1990). Complex Carbohydrates in Food: The Report of the British Nutrition Foundation's Task Force. Chapman and Hall. Brumovsky, J. O., & Thompson, D. B. (2001). Production of boiling-stable granular resistant starch by partial acid hydrolysis and hydrothermal treatments of high-amylose maize starch. Cereal chemistry, 78(6), 680-689. Buléon, A., Colonna, P., Planchot, V., & Ball, S. (1998). Starch granules: structure and biosynthesis. International journal of biological macromolecules, 23(2), 85-112. Carlos-Amaya, F., Osorio-Diaz, P., Agama-Acevedo, E., Yee-Madeira, H., & Bello-Pérez, L. A. (2011). Physicochemical and digestibility properties of double-modified banana (Musa paradisiaca L.) starches. Journal of agricultural and food chemistry, 59(4), 1376-1382. Carmona-Garcia, R., Sanchez-Rivera, M. M., Méndez-Montealvo, G., Garza-Montoya, B., & Bello-Pérez, L. A. (2009). Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca). Carbohydrate Polymers, 76(1), 117-122. Chau, C. F., Cheung, P. C., & Wong, Y. S. (1997). Functional properties of protein concentrates from three Chinese indigenous legume seeds. Journal of Agricultural and Food Chemistry, 45(7), 2500-2503. Chung, H. J., Jeong, H. Y., & Lim, S. T. (2003). Effects of acid hydrolysis and defatting on crystallinity and pasting properties of freeze-thawed high amylose corn starch. Carbohydrate Polymers, 54(4), 449-455. Chung, H. J., Liu, Q., & Hoover, R. (2009). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75(3), 436-447. Colonna, P., Leloup, V., & Buleon, A. (1992). Limiting factors of starch hydrolysis. European Journal of Clinical Nutrition, 46, S17-32. Cooke, D., & Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydrate research, 227, 103-112. da Rosa Zavareze, E., & Dias, A. R. G. (2011). Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers, 83(2), 317-328. De Schrijver, R., Berghofer, E., & Wepner, B. (1999). Feeding trials with citrate starch using hypercholesteraemic rats. unpublished work. Eerlingen R. C., Crombez M. & Delcour J. A .(1993). Enzyme-resistant starch. I. Quantitative and qualitative influence of incubation time and temperature of autoclaved starch on resistant starch formation. Cereal Chemistry, 70(3), 339-344. Eerlingen, R. C., & Delcour, J. A. (1995). Formation, analysis, structure and properties of type III enzyme resistant starch. Journal of Cereal Science, 22(2), 129-138. Eliasson A. C., & Gudmundsson M. (1996). Starch: physicochemical and functional aspects. In Eliasson A. C. (Ed.), Carbohydrates in Food. Marcel Dekker Inc., New York, Basel, Hong Kong, pp. 431–503. Elmståhl, H. L. (2002). Resistant starch content in a selection of starchy foods on the Swedish market. European journal of clinical nutrition, 56(6), 500-505. Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European journal of clinical nutrition, 46, S33-50. Faisant, N., Buleon, A., Colonna, P., Molis, C., Lartigue, S., Galmiche, J. P., & Champ, M. (1995). Digestion of raw banana starch in the small intestine of healthy humans: structural features of resistant starch. British Journal of Nutrition, 73(1), 111-123. Fajd, E., & Marton, G. (2004). Starch Citrate as an Ion Exchange Material–Preparation and Investigation. Hungarian Journal of Industry and Chemistry, 32(1), 33-39 Fuentes-Zaragoza, E., Riquelme-Navarrete, M. J., Sánchez-Zapata, E., & Pérez-Álvarez, J. A. (2010). Resistant starch as functional ingredient: A review. Food Research International, 43(4), 931-942. Gallant, D. J., Bouchet, B., & Baldwin, P. M. (1997). Microscopy of starch: evidence of a new level of granule organization. Carbohydrate polymers, 32(3-4), 177-191. Gao, H., Huang, S., Dong, T., Yang, Q., & Yi, G. (2016). Analysis of resistant starch degradation in postharvest ripening of two banana cultivars: Focus on starch structure and amylases. Postharvest Biology and Technology, 119, 1-8. Garcia, E., & Lajolo, F. M. (1988). Starch transformation during banana ripening: the amylase and glucosidase behavior. Journal of food science, 53(4), 1181-1186. Garna, H., Mabon, N., Robert, C., Cornet, C., Nott, K., Legros, H., ... & Paquot, M. (2007). Effect of extraction conditions on the yield and purity of apple pomace pectin precipitated but not washed by alcohol. Journal of Food Science, 72(1). Gernat, C., Radosta, S., Damaschun, G., & Schierbaum, F. (1990). Supramolecular structure of legume starches revealed by X‐ray scattering. Starch‐Stärke, 42(5), 175-178. Gramera, R. E., Heerema, J. A. C. O. B., & Parrish, F. W. (1966). Distribution and structural form of phosphate ester groups in commercial starch phosphates. Cereal Chemistry, 43, 104-111. Gunaratne, A., & Hoover, R. (2002). Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydrate polymers, 49(4), 425-437. Hernández, O., Emaldi, U., & Tovar, J. (2008). In vitro digestibility of edible films from various starch sources. Carbohydrate Polymers, 71(4), 648-655. Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate polymers, 45(3), 253-267. Hsien-Chih, H. W., & Sarko, A. (1978a). The double-helical molecular structure of crystalline B-amylose. Carbohydrate Research, 61(1), 7-25. Hsien-Chih, H. W., & Sarko, A. (1978b). The double-helical molecular structure of crystalline A-amylose. Carbohydrate Research, 61(1), 27-40. Ibarz, A., Pagán, A., Tribaldo, F., & Pagán, J. (2006). Improvement in the measurement of spectrophotometric data in the m-hydroxydiphenyl pectin determination methods. Food control, 17(11), 890-893. Jane, J. L., & Robyt, J. F. (1984). Structure studies of amylose-V complexes and retro-graded amylose by action of alpha amylases, and a new method for preparing amylodextrins. Carbohydrate research, 132(1), 105-118. Joshi, G., & Sarangi, M. K. (2014). A Review on Banana Starch. Inventi Rapid: Planta Activa, 3, 1-8. Junejo, I. (2014). A Technical Book of Banana. 1-66. Jyothi, A. N., Sajeev, M. S., & Sreekumar, J. N. (2010). Hydrothermal modifications of tropical tuber starches. 1. Effect of heat‐moisture treatment on the physicochemical, rheological and gelatinization characteristics. Starch‐Stärke, 62(1), 28-40. Kapelko‐Żeberska, M., Zięba, T., Pietrzak, W., & Gryszkin, A. (2016). Effect of citric acid esterification conditions on the properties of the obtained resistant starch. International Journal of Food Science & Technology, 51(7), 1647-1654. Kartha, K. P. R., & Srivastava, H. C. (1985). Reaction of Epichlorhydrin with Carbohydrate Polymers. Part I. Starch Reaction Kinetics. Starch‐Stärke, 37(8), 270-276. Kavlani, N., Sharma, V., & Singh, L. (2012). Various techniques for the modification of starch and the applications of its derivatives. International Research Journal of Pharmacy, 3(5), 25-31. Kayisu, K., & Hood, L. F. (1981). Molecular structure of banana starch. Journal of Food Science, 46(6), 1894-1897. Kim, J. Y., & Huber, K. C. (2013). Heat–moisture treatment under mildly acidic conditions alters potato starch physicochemical properties and digestibility. Carbohydrate polymers, 98(2), 1245-1255. Kim, J. Y., Lee, Y. K., & Chang, Y. H. (2017). Structure and digestibility properties of resistant rice starch cross-linked with citric acid. International Journal of Food Properties, 1-12. Kim, M. J., Choi, S. J., Shin, S. I., Sohn, M. R., Lee, C. J., Kim, Y., ... & Moon, T. W. (2008). Resistant glutarate starch from adlay: Preparation and properties. Carbohydrate Polymers, 74(4), 787-796. Kishida, T., Nogami, H., Himeno, S., & Ebihara, K. (2001). Heat moisture treatment of high amylose cornstarch increases its resistant starch content but not its physiologic effects in rats. The Journal of nutrition, 131(10), 2716-2721. Klaushofer, H., & Bleier, J. (1982). Versuche zur Aufklärung der Struktur von Citratstärken. 1. Mitteilung. Spaltung der Esterbindung unter milden Reaktionsbedingungen. Starch‐Stärke, 34(8), 271-273. Klaushofer, H., Berghofer, E., & Steyrer, W. (1978). Die Neuentwicklung modifizierter stärken am beispiel von citratstärke. Ernahrung/Nutrition, 2, 51-55. Klein, B., Pinto, V. Z., Vanier, N. L., da Rosa Zavareze, E., Colussi, R., do Evangelho, J. A., ... & Dias, A. R. G. (2013). Effect of single and dual heat–moisture treatments on properties of rice, cassava, and pinhao starches. Carbohydrate polymers, 98(2), 1578-1584. Komiya, T., & Nara, S. (1986). Changes in crystallinity and gelatinization phenomena of potato starch by acid treatment. Starch‐Stärke, 38(1), 9-13. Komiya, T., Yamada, T., & Nara, S. (1987). Crystallinity of acid treated corn starch. Starch‐Stärke, 39(9), 308-311. Korma, S. A., Kamal-Alahmad, Niazi, S., Ammar, A. -F., Zaaboul, F., & Zhang, T. (2016). International Journal of Nutrition and Food Sciences, 5(4), 264-272. Kossmann, J., & Lloyd, J. (2000). Understanding and influencing starch biochemistry. Critical Reviews in Plant Sciences, 19(3), 171-226. Lehmann, U., Jacobasch, G., & Schmiedl, D. (2002). Characterization of resistant starch type III from banana (Musa acuminata). Journal of Agricultural and Food Chemistry, 50(18), 5236-5240. Leszczyñski, W. (2004). Resistant starch–classification, structure, production. Polish Journal of Food and Nutrition Sciences, 13(54), 37-50. Light, J. M. (1990). Modified food starches: why, what, where, and how. Cereal foods world (USA). Lii, C. Y., Chang, S. M., & Young, Y. L. (1982). Investigation of the physical and chemical properties of banana starches. Journal of Food Science, 47(5), 1493-1497. Ling, L. H., Osman, E. M., Fernandes, J. B., & Reilly, P. J. (1982). Physical properties of starch from Cavendish banana fruit. Starch‐Stärke, 34(6), 184-188. Maache-Rezzoug, Z., Zarguili, I., Loisel, C., Queveau, D., & Buleon, A. (2008). Structural modifications and thermal transitions of standard maize starch after DIC hydrothermal treatment. Carbohydrate Polymers, 74(4), 802-812. Mei, J. Q., Zhou, D. N., Jin, Z. Y., Xu, X. M., & Chen, H. Q. (2015). Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch. Food chemistry, 187, 378-384. Menzel, C. (2014). Starch structures and their usefulness in the production of packaging materials (Vol. 2014, No. 90). Menzel, C., Olsson, E., Plivelic, T. S., Andersson, R., Johansson, C., Kuktaite, R., ... & Koch, K. (2013). Molecular structure of citric acid cross-linked starch films. Carbohydrate polymers, 96(1), 270-276. Merca, F. E., & Juliano, B. O. (1981). Physicochemical Properties of Starch of Intermediate‐Amylose and Waxy Rices Differing in Grain Quality. Starch‐Stärke, 33(8), 253-260. Mohamed, H. (2016). Extraction and Characterization of Pectin from Grapefruit Peels. MOJ Food Processing & Technology, 2(1), 00029. Morris, V. J. (1990). Starch gelation and retrogradation. Trends in Food Science & Technology, 1(1), 2-6. Nara, S., & Komiya, T. (1983). Studies on the relationship between water‐satured state and crystallinity by the diffraction method for moistened potato starch. Starch‐Stärke, 35(12), 407-410. Nasrin, T. A. A., Noomhorm, A., & Anal, A. K. (2015). Physico-chemical characterization of culled plantain pulp starch, peel starch, and flour. International journal of food properties, 18(1), 165-177. Ngoc, T. T. B., Len, N. T., & Lindberg, J. E. (2012). Chemical characterization and water holding capacity of fibre-rich feedstuffs used for pigs in Vietnam. Asian-Australasian journal of animal sciences, 25(6), 861. Östergård, K., Björck, I., & Gunnarsson, A. (1988). A study of native and chemically modified potato starch. Part I: Analysis and enzymic availability in vitro. Starch‐Stärke, 40(2), 58-66. Raigond, P., Ezekiel, R., & Raigond, B. (2015). Resistant starch in food: a review. Journal of the Science of Food and Agriculture, 95(10), 1968-1978. Ratnayake, W. S., Hoover, R., & Warkentin, T. (2002). Pea starch: composition, structure and properties—a review. Starch‐Stärke, 54(6), 217-234. Regele, H., Chirikdjian, J., & Mittelbach, F. (1978). Chronische Toxizität (12 Wochen) von Distärkezitrat im Vergleich zu Maisstärke bzw. Wachsmaisstärke an Ratten. Interner Forschungsbericht Laevosan GmbH. Ridout, M. J., Gunning, A. P., Parker, M. L., Wilson, R. H., & Morris, V. J. (2002). Using AFM to image the internal structure of starch granules. Carbohydrate Polymers, 50(2), 123-132. Robertson, J. A., & Eastwood, M. A. (1981). An investigation of the experimental conditions which could affect water‐holding capacity of dietary fibre. Journal of the Science of Food and Agriculture, 32(8), 819-825. Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starch–a review. Comprehensive reviews in food science and food safety, 5(1), 1-17. Shin, S. I., Lee, C. J., Kim, D. I., Lee, H. A., Cheong, J. J., Chung, K. M., ... & Moon, T. W. (2007). Formation, characterization, and glucose response in mice to rice starch with low digestibility produced by citric acid treatment. Journal of Cereal Science, 45(1), 24-33. Shin, S. I., Lee, C. J., Kim, M. J., Choi, S. J., Choi, H. J., Kim, Y., & Moon, T. W. (2009). Structural characteristics of low-glycemic response rice starch produced by citric acid treatment. Carbohydrate polymers, 78(3), 588-595. Shin, S., Byun, J., Park, K. H., & Moon, T. W. (2004). Effect of partial acid hydrolysis and heat-moisture treatment on formation of resistant tuber starch. Cereal chemistry, 81(2), 194-198. Shujun, W., Jinglin, Y., Jiugao, Y., Haixia, C., & Jiping, P. (2007). The effect of acid hydrolysis on morphological and crystalline properties of Rhizoma Dioscorea starch. Food Hydrocolloids, 21(7), 1217-1222. Sievert, D., & Pomeranz, Y. (1989). Enzyme-resistant starch. I. Characterization and evaluation by enzymatic, thermoanalytical, and microscopic methods. Cereal Chemistry, 66(4), 342-347. Singh, G. D., Bawa, A. S., Riar, C. S., & Saxena, D. C. (2009). Influence of Heat‐Moisture Treatment and Acid Modifications on Physicochemical, Rheological, Thermal and Morphological Characteristics of Indian Water Chestnut (Trapa natans) Starch and its Application in Biodegradable Films. Starch‐Stärke, 61(9), 503-513. Singh, J., Kaur, L., & McCarthy, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food hydrocolloids, 21(1), 1-22. Tester, R. F., & Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal chemistry, 67(6), 551-557. Van Hung, P., Huong, N. T. M., Phi, N. T. L., & Tien, N. N. T. (2017). Physicochemical characteristics and in vitro digestibility of potato and cassava starches under organic acid and heat-moisture treatments. International journal of biological macromolecules, 95, 299-305. Van Hung, P., My, N. T. H., & Phi, N. T. L. (2014). Impact of acid and heat–moisture treatment combination on physicochemical characteristics and resistant starch contents of sweet potato and yam starches. Starch‐Stärke, 66(11-12), 1013-1021. Van Hung, P., Vien, N. L., & Phi, N. T. L. (2016). Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food chemistry, 191, 67-73. Waduge, R. N., Warkentin, T. D., Donner, E., Cao, R., Dan Ramdath, D., & Liu, Q. (2017). Structure, Physicochemical Properties, and In Vitro Starch Digestibility of Yellow Pea Flour Modified with Different Organic Acids. Cereal Chemistry, 94(1), 142-150. Waliszewski, K. N., Aparicio, M. A., Bello, L. A., & Monroy, J. A. (2003). Changes of banana starch by chemical and physical modification. Carbohydrate polymers, 52(3), 237-242. Wang, L., & Wang, Y. J. (2001). Structures and physicochemical properties of acid‐thinned corn, potato and rice starches. Starch‐Stärke, 53(11), 570-576. Wang, Y. C., Chuang, Y. C., & Hsu, H. W. (2008). The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food chemistry, 106(1), 277-284. Wang, Y. J., & Wang, L. (2002). Structures of four waxy rice starches in relation to thermal, pasting, and textural properties. Cereal Chemistry, 79(2), 252-256. Wing, R. E. (1996). Starch citrate: preparation and ion exchange properties. Starch‐Stärke, 48(7‐8), 275-279. Woo, K. S., & Seib, P. A. (2002). Cross-linked resistant starch: Preparation and properties. Cereal Chemistry, 79(6), 819-825. Wu, T. Y., Sun, N. N., & Chau, C. F. (2018). Application of corona electrical discharge plasma on modifying the physicochemical properties of banana starch indigenous to Taiwan. journal of food and drug analysis, 26(1), 244-251. Xia, H., Li, Y., & Gao, Q. (2016). Preparation and properties of RS4 citrate sweet potato starch by heat-moisture treatment. Food Hydrocolloids, 55, 172-178. Xie, X. S., & Liu, Q. (2004). Development and physicochemical characterization of new resistant citrate starch from different corn starches. Starch‐Stärke, 56(8), 364-370. Xie, X. S., Liu, Q., & Cui, S. W. (2006). Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates. Food Research International, 39(3), 332-341. Zhang, P., Whistler, R. L., BeMiller, J. N., & Hamaker, B. R. (2005). Banana starch: production, physicochemical properties, and digestibility—a review. Carbohydrate polymers, 59(4), 443-458. Zouambia, Y., Ettoumi, K. Y., Krea, M., & Moulai-Mostefa, N. (2017). A new approach for pectin extraction: Electromagnetic induction heating. Arabian Journal of Chemistry, 10(4), 480-487
摘要: 香蕉富含多種生理活性物質,尤以綠香蕉中抗性澱粉頗受矚目,但抗性澱粉容易受熱加工而破壞,以致抗性澱粉含量下降,在產業中的應用性也受到限制。因此本研究主要目的為修飾香蕉澱粉,並評估其理化、結構與外觀等特性。 本實驗分為兩階段進行,第一階段為設計香蕉澱粉的製備程序,依據澱粉的基本特性,分析及篩選出較佳的分離條件;第二階段採用前階段生產之香蕉澱粉作為修飾澱粉原料,並探討澱粉經檸檬酸修飾前、後的物化特性變化。香蕉澱粉以四種溶液進行分離,包含蒸餾水(control)、X、Y以及Z,而澱粉的修飾方法分為乾熱修飾與濕熱修飾法。 實驗結果顯示,X、Y與Z三種溶液均可幫助香蕉澱粉的分離,其中以Z處理效果較佳,與control相比可顯著提升54%的產量與21%澱粉純度,並改善(p < 0.05)酵素性褐變所帶來的顏色問題(ΔE* = 23.24),且澱粉中含64.01%之高比例抗性澱粉,故選定Z所分離之香蕉澱粉作為第二階段實驗之試驗原料。 在檸檬酸-乾熱修飾上,以CAS為C並以140℃加熱至5 h (DHBSC-C/5),即能有效的修飾出含高抗性澱粉比例(98.57%)的修飾澱粉,相較於未修飾的澱粉(NBS),DHBSC-C/5於RVA和DSC中判定為不易糊化,並可顯著提升熱穩定性與改變澱粉的結晶型態、降低(p < 0.05)水溶性與膨潤度以減少熱加工後抗性澱粉損失。而在濕熱修飾中,以90C下加熱16 h (CHMBS-90/16)的條件最為合適,與NBS相比,結晶度升高13%,且糊化溫度區間從66.26-78.89℃顯著(p < 0.05)提升至81.48-92.11℃,並明顯降低了熱焓值(ΔH)。經100℃加熱30分鐘後,澱粉中仍保留25.98%的抗性澱粉,明顯(p < 0.05)高於加熱後的NBS組(5.99%)。整體而言,兩種修飾方法均改善香蕉澱粉的熱不穩定性。
Banana is rich in a variety of functional materials, especially resistant starch in green bananas. Resistant starch can be degraded during cooking, and thus the industrial applicability is limited by the reduction in the resistant starch levels. The objective of this work was to develop the procedures of starch production and modification, and the basic physicochemical, structural and morphological characteristics of different starch samples were evaluated. The study was carried out in two stages. In the first stage, banana starches were isolated from green bananas with four kinds of solutions, including RO water (control), X, Y, and Z. The processing method was developed using the most suitable solution. In the second stage, the starch from the first stage was treated with citric acid in two ways, dry-heat and heat-moisture treatments. Physicochemical properties of different modified starch samples were evaluated. The result showed that adding X, Y and Z solutions could improve the efficiency of banana starch isolation. Compared with the control (RO water), an addition of Z solution resulted in a significant (p < 0.05) increase in yield (54%), purity (21%) and resistant starch content in total starch (64.01%) of banana starch. An improvement in the sample color changes due to enzymatic browning (ΔE* = 23.24) was observed. For the dry-heat treatment, while conducting the reaction at 140℃ for 5 h with a C of CAS (DHBSC-C/5 starch), high resistant starch content in total starch (98.57%) was obtained. Compared with the native banana starch (NBS), DHBSC-C/5 starch had a significant (p < 0.05) increase in thermal stability and changes in crystalline, but reduction in solubility and swelling power. In addition, there was no gelatinization peak formed in RVA amylographic curve and DSC thermogram in DHBSC-C/5 group. On the other hand, the suitable condition for heat-moisture treated banana starch was heating at 90℃ for 16 h with a moisture content at 30% (CHMBS-90/16). CHMBS-90/16 group was found to have an increase in the relative crystallinity (2.7%) and had significantly (p < 0.05) higher gelatinization temperature (81.48-92.11℃) and enthalpy (ΔH) of endothermic peak than those of the NBS group (66.26-78.89℃). After the boiling process (100C for 30 min), CHMBS-90/16 group had a higher level of resistant starch in the total starch (25.98%) than that in the NBS (5.99%). In conclusion, our results have revealed that these two treatments as mentioned above could improve the thermal stability of native banana resistant starch.
URI: http://hdl.handle.net/11455/98028
文章公開時間: 10000-01-01
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.