Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorYu-Ju Changen_US
dc.identifier.citationAlcázar-Alay, S. C., & Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology (Campinas), 35(2), 215-236. Avaro, M. R. A., Pan, Z., Yoshida, T., & Wada, Y. (2011). Two Alternative Methods to Predict Amylose Content of Rice Grain by Using Tristimulus CIE Lab Values and Developing a Specific Color Board of Starch-iodine Complex Solution. Plant Production Science, 14(2), 164-168. Baker, L. A., & Rayas-Duarte, P. (1998). Freeze-thaw stability of amaranth starch and the effects of salt and sugars. Cereal Chemistry, 75(3), 301-307. Barbosa‐Canovas, G. V., Zhang, Q. H., Pierson, M. D., & Schaffner, D. W. (2000). High voltage arc discharge. Journal of food science, 65, 80-81. Bogaerts, A., Neyts, E., Gijbels, R., & van der Mullen, J. (2002). Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 609-658. Chaiwat, W., Wongsagonsup, R., Tangpanichyanon, N., Jariyaporn, T., Deeyai, P., Suphantharika, M., ... & Dangtip, S. (2016). Argon plasma treatment of tapioca starch using a semi-continuous downer reactor. Food and Bioprocess Technology, 9(7), 1125-1134. Cheetham, N. W., & Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate polymers, 36(4), 277-284. Colussi, R., Pinto, V. Z., El Halal, S. L. M., Vanier, N. L., Villanova, F. A., e Silva, R. M., ... & Dias, A. R. G. (2014). Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches. Carbohydrate polymers, 103, 405-413. Cooke, D., & Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydrate research, 227, 103-112. Craig, S. A., Maningat, C. C., Seib, P. A., & Hoseney, R. C. (1989). Starch paste clarity. Cereal chemistry (USA). Deeyai, P., Suphantharika, M., Wongsagonsup, R., & Dangtip, S. (2013). Characterization of modified tapioca starch in atmospheric argon plasma under diverse humidity by FTIR spectroscopy. Chinese Physics Letters, 30(1), 018103. Donovan, J. W. (1979). Phase transitions of the starch–water system. Biopolymers, 18(2), 263-275. Eliasson, A. C. (Ed.). (2004). Starch in food: Structure, function and applications. CRC Press. Evans, I. D., & Haisman, D. R. (1982). The effect of solutes on the gelatinization temperature range of potato starch. Starch‐Stärke, 34(7), 224-231. Fan, D., Ma, W., Wang, L., Huang, J., Zhang, F., Zhao, J., ... & Chen, W. (2013). Determining the effects of microwave heating on the ordered structures of rice starch by NMR. Carbohydrate polymers, 92(2), 1395-1401. Flores‐Silva, P. C., Roldan‐Cruz, C. A., Chavez‐Esquivel, G., Vernon-Carter, E. J., Bello‐Perez, L. A., & Alvarez‐Ramirez, J. (2017). In vitro digestibility of ultrasound‐treated corn starch. Starch‐Stärke. Fu, Z., Chen, J., Luo, S. J., Liu, C. M., & Liu, W. (2015). Effect of food additives on starch retrogradation: A review. Starch‐Stärke, 67(1-2), 69-78. Glicksman, M. (1969). Gum technology in the food industry. Goesaert, H., Brijs, K., Veraverbeke, W. S., Courtin, C. M., Gebruers, K., & Delcour, J. A. (2005). Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in food science & technology, 16(1-3), 12-30. Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate polymers, 45(3), 253-267. Hoover, R., Hughes, T., Chung, H. J., & Liu, Q. (2010). Composition, molecular structure, properties, and modification of pulse starches: A review. Food research international, 43(2), 399-413. Katsumata, I., & Okazaki, M. (1967). Ion sensitive probe-a new diagnostic method for plasma in magnetic fields. Japanese Journal of Applied Physics, 6(1), 123. Kearsley, M. W., & Sicard, P. J. (1989). The chemistry of starches and sugars present in food. In Dietary starches and sugars in man: A comparison (pp. 1-34). Springer, London. Li, J. Y., & Yeh, A. I. (2001). Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering, 50(3), 141-148. Li, W., Shu, C., Zhang, P., & Shen, Q. (2011). Properties of starch separated from ten mung bean varieties and seeds processing characteristics. Food and Bioprocess Technology, 4(5), 814-821. Lii, C. Y., Liao, C. D., Stobinski, L., & Tomasik, P. (2002a). Effects of hydrogen, oxygen, and ammonia low-pressure glow plasma on granular starches. Carbohydrate polymers, 49(4), 449-456. Lii, C. Y., Liao, C. D., Stobinski, L., & Tomasik, P. (2002b). Behaviour of granular starches in low-pressure glow plasma. Carbohydrate polymers, 49(4), 499-507. Liu, T. Y., Ma, Y., Yu, S. F., Shi, J., & Xue, S. (2011). The effect of ball milling treatment on structure and porosity of maize starch granule. Innovative food science & emerging technologies, 12(4), 586-593. Massaux, C., Sindic, M., Lenartz, J., Sinnaeve, G., Bodson, B., Falisse, A., ... & Deroanne, C. (2008). Variations in physicochemical and functional properties of starches extracted from European soft wheat (Triticum aestivum L.): The importance to preserve the varietal identity. Carbohydrate Polymers, 71(1), 32-41. Merca, F. E., & Juliano, B. O. (1981). Physicochemical properties of starch of intermediate‐amylose and waxy rices differing in grain quality. Starch‐Stärke, 33(8), 253-260. Mishra, S., & Rai, T. (2006). Morphology and functional properties of corn, potato and tapioca starches. Food hydrocolloids, 20(5), 557-566. Moreau, M., Orange, N., & Feuilloley, M. G. J. (2008). Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnology advances, 26(6), 610-617. Morent, R., De Geyter, N., Desmet, T., Dubruel, P., & Leys, C. (2011). Plasma surface modification of biodegradable polymers: a review. Plasma Processes and Polymers, 8(3), 171-190. Nara, S., & Komiya, T. (1983). Studies on the relationship between water‐satured state and crystallinity by the diffraction method for moistened potato starch. Starch‐Stärke, 35(12), 407-410. Nemtanu, M. R., & Minea, R. (2006, December). Functional properties of corn starch treated with corona electrical discharges. In Macromolecular Symposia (Vol. 245, No. 1, pp. 525-528). Weinheim: WILEY‐VCH Verlag. Nemtanu, M., & Brasoveanu, M. (2010). Functional properties of some non-conventional treated starches. In Biopolymers. InTech. Ogungbenle, H. N. (2007). Effect of chemical modification on starch of some legume flours. Pakistan Journal of Nutrition, 6(2), 167-171. Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7(1), 4. Park, D. J., & Han, J. A. (2016). Quality controlling of brown rice by ultrasound treatment and its effect on isolated starch. Carbohydrate polymers, 137, 30-38. Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch‐Stärke, 62(8), 389-420. Roller, S. (1996). Starch-derived fat mimetics: maltodextrins. Handbook of fat replacers, 99. Sachs, J. (1887). Lectures on the Physiology of Plants. Clarendon Press. 304-325 Sandhu, K. S., & Singh, N. (2007). Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101(4), 1499-1507. Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. (2015). Nonthermal plasma—A tool for decontamination and disinfection. Biotechnology advances, 33(6), 1108-1119. Sevenou, O., Hill, S. E., Farhat, I. A., & Mitchell, J. R. (2002). Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules, 31(1-3), 79-85. Shujun, W., Jinglin, Y., Jiugao, Y., Haixia, C., & Jiping, P. (2007). The effect of acid hydrolysis on morphological and crystalline properties of Rhizoma Dioscorea starch. Food Hydrocolloids, 21(7), 1217-1222. Siow, K. S., Britcher, L., Kumar, S., & Griesser, H. J. (2006). Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization‐a review. Plasma processes and polymers, 3(6‐7), 392-418. Srichuwong, S., Isono, N., Jiang, H., Mishima, T., & Hisamatsu, M. (2012). Freeze–thaw stability of starches from different botanical sources: Correlation with structural features. Carbohydrate polymers, 87(2), 1275-1279. Swinkels, J. J. M. (1985). Composition and properties of commercial native starches. Starch‐Stärke, 37(1), 1-5. Swinkels, J. J. M. (1990). Industrial starch chemistry: Properties, modifications and applications of starches. AVEBE. Takeda, Y., & Hizukuri, S. (1982). Location of phosphate groups in potato amylopectin. Carbohydrate Research, 102(1), 321-327. Tester, R. F., & Debon, S. J. (2000). Annealing of starch—a review. International journal of biological macromolecules, 27(1), 1-12. Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151-165. Thirumdas, R., Kadam, D., & Annapure, U. S. (2017). Cold plasma: an alternative technology for the starch modification. Food Biophysics, 12(1), 129-139. Thirumdas, R., Trimukhe, A., Deshmukh, R. R., & Annapure, U. S. (2017). Functional and rheological properties of cold plasma treated rice starch. Carbohydrate polymers, 157, 1723-1731. Tran, N. A., Daygon, V. D., Resurreccion, A. P., Cuevas, R. P., Corpuz, H. M., & Fitzgerald, M. A. (2011). A single nucleotide polymorphism in the Waxy gene explains a significant component of gel consistency. Theoretical and Applied Genetics, 123(4), 519-525. Wang, S., & Copeland, L. (2013). Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review. Food & Function, 4(11), 1564-1580. Wang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568-585. Wang, Y. J., & Jane, J. (1994). Correlation between glass transition temperature and starch retrogradation in the presence of sugars and maltodextrins. Cereal chemistry (USA). Wongsagonsup, R., Deeyai, P., Chaiwat, W., Horrungsiwat, S., Leejariensuk, K., Suphantharika, M., ... & Dangtip, S. (2014). Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma. Carbohydrate polymers, 102, 790-798. Wu, T. Y., Sun, N. N., & Chau, C. F. (2018). Application of corona electrical discharge plasma on modifying the physicochemical properties of banana starch indigenous to Taiwan. Journal of food and drug analysis, 26(1), 244-251. Yamin, F. F., Lee, M., Pollak, L. M., & White, P. J. (1999). Thermal properties of starch in corn variants isolated after chemical mutagenesis of inbred line B73. Cereal Chemistry, 76(2), 175-181. Zaidul, I. S. M., Norulaini, N. N., Omar, A. M., Yamauchi, H., & Noda, T. (2007). RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches. Carbohydrate polymers, 69(4), 784-791. Zhang, B., Chen, L., Li, X., Li, L., & Zhang, H. (2015). Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: A structure-functionality relationship. Food Hydrocolloids, 50, 228-236. Zhang, B., Xiong, S., Li, X., Li, L., Xie, F., & Chen, L. (2014). Effect of oxygen glow plasma on supramolecular and molecular structures of starch and related mechanism. Food Hydrocolloids, 37, 69-76. Zhu, F. (2016). Impact of γ-irradiation on structure, physicochemical properties, and applications of starch. Food Hydrocolloids, 52, 201-212.zh_TW
dc.description.abstract在食品的加工應用上,天然澱粉常受限於熱處理、剪切力、pH值和低溫等條件,通常會藉由酵素性、化學性和物理性之修飾以克服天然澱粉的缺點。一般而言,化學性修飾方法具有高效率,但在食品安全性、化學藥劑成本、耗時及廢水管理等方面皆需多加考量。物理性的冷電漿技術由於不含化學劑、無毒以及環保等優點,在近年受到極大關注。 本研究旨在以常壓噴射式電漿修飾玉米澱粉,探討經不同強度的電漿處理(400、600和800W)以及五次水洗處理後,澱粉樣品的理化性質變化。經電漿處理與水洗處理後,玉米澱粉樣品的尖峰黏度、最終黏度與黏度回升值皆顯著下降,且隨著電漿強度提高而下降,又以800W處理組的黏度值最低;黏度裂解值則依據電漿強度不同而顯著增加或下降。pH值與相對結晶度的數值亦下降;直鏈澱粉含量與熱焓性質方面則無顯著改變;澱粉溶解度與澱粉糊透明度皆顯著增加。另外,電漿處理過程中會發生蝕刻作用,造成澱粉顆粒表面的非穿透性的物理性損傷。綜合以上結果,以常壓噴射式電漿修飾玉米澱粉後會改變其理化特性,顯示其在澱粉修飾方面具有潛力。zh_TW
dc.description.abstractNative starch is limited by some conditions, such as heating, shear forces, pH and low temperature in food system. Therefore, native starch is subjected to physical, enzymatic and chemical modifications, in order to resolve its shortcomings. Chemical methods typically would result in high efficiency in starch modification, but the drawbacks are food safety concerns, high chemicals cost, time consuming, and troublesome waste water management. On the other hand, physical modification, which includes cold plasma technology, has drawn more attention in recent times due to its chemical-free, non-toxic, and environmental friendly properties. The objectives of this study were to develop the modification methods for corn starch using atmospheric pressure plasma jet at different levels (400, 600 and 800W), followed by washing treatment for 5 times, and to evaluate the influences of plasma on corn starch physicochemical properties. After both plasma and washing treatments, peak viscosity, final viscosity and setback of corn starch samples decreased significantly with an increase in plasma intensity. The result showed that 800W treated corn starch sample had the lowest viscosity. Consequently, breakdown of corn starch sample would increase or decrease according to plasma treatment intensities. Besides that, the corn starch pH value and relative crystallinity decreased, but there were no apparent changes in its amylose contents as well as thermal properties, and the plasma treatments were also proven to be capable of increasing solubility and starch paste clarity. Furthermore, there were some non-penetrative and physical damages caused by plasma etching on the starch granules surfaces. The results indicated that the physical and chemical properties of corn starch could be modified by using atmospheric pressure plasma jet treatment.en_US
dc.description.tableofcontents摘要 i Abstract ii 目錄 iii 表次 vi 圖次 vii 1. 前言 1 1.1. 澱粉介紹 1 1.1.1. 澱粉的結構 1 1.1.2. 澱粉的糊化作用 2 1.1.3. 澱粉的老化作用 3 1.1.4. 澱粉的特性 5 澱粉糊的黏度 5 澱粉糊的透明度 5 澱粉的凝膠性 6 澱粉的老化傾向 7 1.1.5. 澱粉的修飾方法 7 1.2. 電漿技術 8 1.2.1. 電漿的種類 8 1.2.2. 冷電漿於澱粉上的應用 10 2. 研究目的 13 3. 材料與方法 14 3.1. 常壓電漿處理 14 3.2. 成糊特性分析 14 3.3. 穩定性試驗 14 3.4. 直鏈澱粉含量測定 17 3.5. 熱焓性質分析 17 3.6. 膨潤力與溶解度測定 17 3.7. 澱粉糊透明度測定 18 3.8. 膠體軟硬度測定 18 3.9. 澱粉破損率測定 18 3.10. 澱粉顆粒型態觀察 19 3.11. 掃描式電子顯微鏡觀察 19 3.12. 統計分析 20 4. 結果與討論 21 4.1. 常壓電漿處理對玉米澱粉成糊特性之影響 21 4.1.1. 導電處理(conductive treatment; CT) 26 4.1.2. 真空抽氣處理(vacuum pumping treatment; VPT) 26 4.1.3. 水洗處理(washing treatment; WT) 27 黏度變化 27 酸鹼值變化 27 4.1.4. 穩定性試驗 30 成糊特性 30 儲存穩定性 32 4.2. 直鏈澱粉含量 32 4.3. 熱焓性質分析 35 4.4. 膨潤力與溶解度 35 4.5. 澱粉糊透明度 40 4.6. 膠體軟硬度 42 4.7. 澱粉破損率 42 4.8. 澱粉顆粒型態 44 4.9. 澱粉表面形態 44 5. 總結 50 6. 參考文獻 51zh_TW
dc.subjectcorn starchen_US
dc.subjectatmospheric pressure plasma jeten_US
dc.subjectcold plasmaen_US
dc.subjectstarch modificationen_US
dc.subjectstarch propertyen_US
dc.titleEvaluation of cold plasma technology on modifying the physicochemical properties of corn starchen_US
dc.typethesis and dissertationen_US
Appears in Collections:食品暨應用生物科技學系


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.