Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98031
標題: 培養基組成及條件對Aspergillus oryzae NCH-42固態培養生產葡萄糖胺之影響
Effect of medium composition and culture condition on production of glucosamine from Aspergillus oryzae NCH-42 using solid state fermentation
作者: 陳意雯
Yi-Wen Chen
關鍵字: 葡萄糖胺
Aspergillus oryzae
固態培養
碎米
FE-SEM
Aspergillus oryzae
broken rice
FE-SEM
glucosamine
solid-state fermentation
引用: 王升,李丕武,劉佃磊,李以明,林晶晶。2014。利用發酵法生產氨基葡萄 糖的研究進展。生物技術通報,1(1): 68-74。 王雲陽,李元瑞,張麗,侯新虎,宿國。2003。魯氏毛黴發酵法製備甲殼素 和殼聚醣的研究。西北農林科技大學學報(自然科學版),31(5): 106-110。 李林輝。2004。固態培養(發酵)裝置的類型、應用及問題。西華師範大學學 報。 李昱慧。2013。利用高溫水萃酵素輔助減脂處理提升米糠儲藏安定性及米糠 半纖維素製備之研究。國立中興大學食品暨應用生物科技學系。碩士學 位論文。 林孟琪。2017。利用食品發酵用黴菌菌絲體生產葡萄糖胺。國立中興大學食 品應用生物科技學系。碩士學士論文。 岡崎直人,深谷伊和男,菅間誠之助,田中利雄。1981。發酵工學。日本發 酵工學會,大阪。 林讚峯。1983。紅麴菌的鑑定及實用分類法。製酒科技專論彙編,5: 104-113。 邱健人。1983。食品工業微生物學(新修訂版)。食品科學文摘叢書。 施韋慈,江伯源。2014。以玉米澱粉與海藻酸鈉混合模式評估糊化及品質特 性。農林學報,63(3): 163-173。 侯毓欣。2016。利用麥麩液態培養Aureobasidium pullulans NCH-218生產 β-葡萄糖苷酶條件及其特性分析。國立中興大學食品暨應用生物科技學 系。碩士學士論文。 俞蘭苓,黃小平。2011。碾米工業副產品的綜合利用。糧食與飼料工業, 5: 54-58。 野白喜久雄,小崎道雄,妤井久雄。1982。釀造學,31-34。日本講談社, 東京,日本。 陳珮琪。2005。糯米酒釀造暨規模放大試驗。國立中興大學食品應用生物科 技學系。碩士學士論文。 陳凱祥,田仲源,張春生。2011。以固態培養Aspergillus屬真菌生產酸性蛋 白酶之研究。南台學報,36(3): 91-103。 麥揚竣。2007。Aspergillus oryzae NCH-42單寧酶之生產、純化及其特性分 析。國立中興大學食品暨應用生物科技學系。碩士學位論文。 黃千芸。2010。以根酶菌發酵不同米基質對其抗氧化性質及機能性成分之影 響。國立中興大學食品暨應用生物科技學系。碩士學士論文。 黃正財。1983。釀酒用米之性質與變化。製酒科技專論彙編,5: 132-144。 黃欣佩。2013。利用麥麩液態培養Aureobasidium pullulans NCH-218生產 β-葡萄糖苷酶條件及其特性分析。國立中興大學食品暨應用生物科技學 系。碩士學士論文。 詹子瑢。2014。醬油耐鹽性酵母菌Zygosaccharomyces rouxii BCRC22499之 工業化最適化培養基探討。國立中興大學應用生物科技系。碩士學位論 文。 鄭文振。2013。利用麥麩為主要基質培養Aureobasidium pullulans NCH-218 生產普魯蘭多糖條件與多糖特性之探討。國立中興大學應用生物科技 系。碩士學位論文。 劉宜鋒,翁聿穎,何丹華。2007。碎米應用開發。福建輕紡,1: 30-33。 劉祖君。2002。製酒用麴及其相關酵素的介紹。財團法人食品工業展研究所, 34: 14-19。 遲明梅,方偉森。2006。碎米資源的綜合應用。糧食加工,4: 39-41。 蘇遠志,黃世佑。1971。微生物化學工程學。天然書社。 魏玉嬌。2008。以紅麴菌生產葡萄糖胺之培養基組成最佳化研究。元智大學 化學工程與材料科學系。碩士學位論文。 羅國仁、余立文。2004。固態發酵製程的開發與應用。食品工業。36(10): 2-10 Agiba, A. M. 2017. Nutraceutical formulations containing glucosamine and chondroitin sulphate in the treatment of osteoarthritis: emphasis on clinical efficacy and formulation challenges. International Journal of Current Pharmaceutical Review and Research, 9(2), 1-7. Ayerst, G. 1969. The effects of moisture and temperature on growth and spore germination in some fungi. Journal of Stored Products Research, 5, 127-141. Block, S. S. 1953. Humidity requirements for mold growth. Applied Microbiology, 1(6), 287-293. Chancharoonpong, C., Hsieh, P-C., & Sheu, S-C. 2012. Production of enzyme and growth of Aspergillus oryzae S. on soybean koji. International Journal of Bioscience, Biochemistry and Bioinformatics, 2(4), 228-231. Cochrane, V. W. 1958. Physiology of fungi. John Wiley and Sons. Inc., New York. Corado, A., Baiochi, M., Silva, E. P., Caliari, M., & Damiani. C. 2017. Physical and chemical characteristics of cheese bread, using fermented broken rice. Food Science and Technology, Campinas, 37(Suppl. 1), 142-147. Couto, S. R. & Sanroman, M. A. 2006. Application of solid-state fermentation to food industry—A review. Journal of Food Engineering, 76(3), 291-302. Ellis, H. S., Ring, S. G., & Whittam, M. A. 1988. Time-dependent changes in the size and volume of gelatinized starch granules on storage. Food Hydrocolloids, 2, 231. Favaro L., Cagnin L., Basaglia, M., Pizzocchero, V., van Zyl, W.H., & Casella, S. 2017. Production of bioethanol from multiple waste streams of rice milling. Bioresource Technology, 244, 151-159. Gow, N. A. R., Latge, J-P., & Munro, C. A. 2017. The fungal cell wall: structure, biosynthesis, and function. Microbiology spectrum, 5(3), 1-25. Hansen, G. H., Lübeck, M., Frisvad, J. C., Lübeck, P. S., & Andersen B. 2015. Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochemistry, 50(9), 1327-1341. Heller, H. C., Sadava, D. E., Price, M. V., & Hillis, D. M. 2010. Principles of Life (1st Edition), Solutions for Chapter 2.3. Hsieh, J. W., Wu, H. S., & Wei, Y. H. 2007. Determination and kinetics of producing glucosamine using fungi. Biotechnology Progress, 23, 1009-1016. Ilic, M. Z., Martinac, B., & Handley, C. J. 2003. Effects of long-term exposure to glucosamine and mannosamine on aggrecan degradation in articular cartilage. Osteoarthritis Cartilage, 11(8), 613-622. Imanaka, H., Tanaka, S., Feng, B., Imamura, K., & Nakanishi, K. 2010. Cultivation characteristic and gene expression profiles of Aspergillus oryzae by membrane-surface liquid culture, shaking-flask culture, and agar-plate culture. Journal of Bioscience and Bioengineering, 109, 267-73. Kirkham, S. G. & Samarasinghe, R. K. 2009. Review article: Glucosamine. Journal of Orthopaedic Surgery, 17(1), 72-76. Krishna, C. 2005. Solid-state fermentation systems—an overview. Critical Reviews in Biotechnology, 25, 1–30. Liu, L., Liu, Y., Shin, H., Chen, R., Li, J., Du, G., & Chen, J. 2013. Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Applied Microbiology and Biotechnology, 97, 6149-6158. Michael, J. C. & Watkinson, S. C. 1997. Fungal cell and vegetative growth. In The Fungi, Academic Press: U. S. A. Miller G E. 1990. The assessment of clinical skills/competence/performance. Academic Medicine, 65(9 Suppl): S63-67. Mojarrad, J. S., Nemati, M., Valizadeh, H., Ansarin, M. & Bourbour, S. 2007. Preparation of glucosamine from exoskeleton of shrimp and predicting production yield by response surface methodology. Journal of Agricultural and Food Chemistry, 55(6), 2246-2250. Müller, C., McIntyre, M., Hansen, K., & Nielsen, J. 2002. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Applied and Environmental Microbiology, 68(4), 1827-36. Narahara, H., Koyama, Y., Yoshida, T., Pichanigkura, S., Ueda, R., & Taguchi, H. 1982. Growth and enzyme production in a solid-state culture of Aspergillus oryzae. Journal of Fermentation Technology, 60(4), 311-319. Nisticò, R. 2017. Aquatic-derived biomaterials for a sustainable future: a European opportunity. Review. Resources, 6(4), 65. Oda, K., Kakizono, D., Yamada, O., Iefuji, H., Akita, O., & Iwashita, K. 2006. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Applied and Environmental Microbiology, 72(5), 3448-3457. Oostra, J., le Comte, E. P., van den Heuvel, J. C., Tramper, J., & Rinzema, A. 2001. Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnology and Bioengineering, 75(1), 13-24. Oriol, E., Raimbault, M., Roussos, S., & Viniegragonzales, G. 1988. Water and water activity in the solid state fermentation of cassava starch by Aspergillus niger. Applied Microbiology and Biotechnology, 27, 498-503. Osmolovskiy, A.A., Baranova, N.A., Kreier, V.G., Kurakov, A.V., & Egorov, N.S. 2014. Solid-state and membrane-surface liquid cultures of micromycetes: Specific features of their development and enzyme production (a Review). Applied Biochemistry and Microbiology, 50(3), 219–227. Rahardjo, Y. S., Weber, F. J., le Comte, E. P., Tramper, J., & Rinzema, A. 2002. Contribution of aerial hyphae of. Aspergillus oryzae to respiration in a. model solid-state fermentation system. Biotechnology and Bioengineering, 5; 78(5): 539-544. Ring, S. G. 1985. Some studies on starch gelation. Starch/Stärke, 37, 80-83. Sitanggang, A. B., Wu, H. S., & Wang, S. S. 2009. Determination of fungal glucosamine using HPLC with 1-napthyl isothiocyanate derivatization and microwave heating. Biotechnology and Bioprocess Engineering, 14(6), 819-827. Sitanggang, A. B., Wu, H. S., Wang, S. S., & Ho, Y. C. 2010. Effect of pellet size and stimulating factor on the glucosamine production using Aspergillus sp. BCRC 31742. Bioresource Technology, 101(10), 3595-3601. Snow, D. 1945. Mould deterioration of feeding-stuffs in relation to humidity of storage. Part III. The isolation of mould species from feeding-stuffs stored at different humidities. Annals of Applied Biology, 32, 40. Snow, D. 1949. The germination of mould spores at controlled humidities. Annals of Applied Biology, 36, 1-13. Sridevi, S. & Sri Rami Reddy, D. 2016. Production of chitinase from aquatic waste using Aspergillus oryzae and Streptomyces griseus under solid state fermentation. Indo American Journal of Pharmaceutical Research, 6(03), 4634-4638. Sugai-Guerios, M.H., Balmant, W., Furigo, JR, A., Krieger, N., & Mitchell, D.A. 2016. Colonization of solid particles by Rhizopus oligosporus and Aspergillus oryzae in solid-state fermentation involves two types of penetrative hyphae: a model-based study on how these hyphae grow. Biochemical Engineering Journal, 114, 176–185. Sugiyama, SI. 1984. Selection of micro-organisms for use in the fermentation of soy sauce. Food Microbiology, 1(4), 339-347. Taymaznikerel, H., Cankorurcetinkaya, A., & Kirdar, B. 2016. Genome-wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations. Frontiers in Bioengineering and Biotechnology, 4, 17. te Biesebeke, R., Ruijter, G., Rahardjo, Y. S., Hoogschagen, M. J., Heerikhuisen, M., Levin, A., van Driel, K. G., Schutyser, M. A., Dijksterhuis, J., Zhu, Y., Weber, F. J., de Vos, W. M., van den Hondel, K.A., Rinzema, A., & Punt, P.J. 2002. Aspergillus oryzae in solid-state and submerged fermentations progress report on a multi-disciplinary project. FEMS Yeast Research, 2, 245-248. Tsay, Y., Nishi, A., & Yanagita, T. 1965. Carbon dioxide fixation in Aspergillus oryzae conidia at the initial phase of germination. The Journal of Biochemistry, 58(5), 487-493. Waniska, R. D., & Gomez, M. H. 1992. Disperaion behavior of starch. Food Technology, 5, 110-123. Ying, W., Zhu, R., Lu, W., & Gong, L. 2009. A new strategy to apply Bacillus subtilis MA139 for the production of solid-state fermentation feed. Letters in Applied Microbiology, 49(2), 229-234. Zhang, J., Liu, L., Li, J., Du, G., & Chen, J. 2012. Enhanced glucosamine production by Aspergillus sp. BCRC 31742 based on the time-variant kinetics analysis of dissoloved oxygen level. Bioresource Technology, 111, 507-511.
摘要: 近年,已有許多研究使用微生物發酵法,以黴菌菌絲作為生產葡萄糖胺之原料,本實驗使用實驗室自篩菌Aspergillus oryzae NCH-42分別以PDA基礎培養基及碎米培養基,以固態發酵法探討不同培養基組成及培養條件,對於黴菌生產葡萄糖胺之影響。 實驗結果以最適PDA基礎培養基條件(0.2 cm厚度,額外添加2% (g/L) glucose 之0.5% (5 g/L) ammonium chloride )接種100 μL (1%, v/v)孢子液(107~108 spores/mL),於30℃下培養4天,可得12.26±0.28 g/L菌絲生物量,收集菌絲並以8 N HCl於100℃下水解1小時,再以HPLC測定葡萄糖胺,測得葡萄糖胺含量有0.30±0.07 g/g biomass、葡萄糖胺產量為3.68±0.82 g/L以及葡萄糖胺生產率920.61±204.75 mg/(L∙day)。 以清酒製麴方式為發想所製成之碎米培養基,以7.5 mL含20%碎米濃度並額外添加yeast extract之碎米培養基,接種100 μL孢子液(107~108 spores/mL),於30℃下培養5天,收集菌絲後以澱粉酶處理菌絲,以8 N HCl於100℃下水解1小時,測得葡萄糖胺含量為0.13±0.00 g/g biomass。經FE-SEM鏡檢不同培養基組成及培養條件之菌絲,發現以添加最適碳源及氮源於PDA基礎培養基之菌絲,可比未添加組別結構更為緊密扎實,且有延緩產孢及老化現象,而以碎米培養基培養之黴菌菌絲,比PDA基礎培養基之組別,菌絲網絡更為密布且仍未有產孢現象;此外比較菌絲經澱粉酶處理之差異,可明顯看出酵素能有效去除殘留基質,可避免實驗測定及分析之誤差。
Recently, it has been possible to produce glucosamine (GlcN) from microbial fermentation processes from mycelium of fungi. This study aims to use Aspergillus oryzae NCH-42 (isolated from lab) as the experimental strain determine the optimized fermentation conditions and medium compositions for the GlcN production in PDA basal medium and broken rice medium by using solid-state fermentation. The results showed that inoculating 100 μL(1%, v/v) spore suspension (107~108 spores/mL) into the optimized PDA basal medium (thickness 2.0 cm, supplemented with 2% (20 g/L) glucose 0.5% (5 g/L) ammonium chloride) cultured under 30℃for 4 day could obtain 12.26±0.28 g/L mycelia biomass. After collecting dried mycelium, it was hydrolysis by 8 N HCl under 100℃ for 1 hour. Then, the GlcN concentration of hydrolysate was determined by HPLC. The results indicated that the maximum GlcN content, GlcN concentration and GlcN productivity were 0.30±0.07 g/g biomass, 3.68±0.82 g/L and 920.61±204.75 mg/(L∙day), respectively. As a concept of the way to produce sake with koji, this study used broken rice medium as solid substrate. Broken rice medium (7.5 mL, 20% broken rice concentration, supplemented with yeast extract) was inoculated 100 μL spore suspension (107~108 spores/mL) and cultured under 30℃ for 5 day. Collected mycelium would treated with amylase before acid hydrolysis by 8N HCl under 100℃ for 1 hour. The result existed that GlcN content was 0.13±0.00 g/g biomass。 It was possible to compare the mycelium from various medium compositions and culture conditions and characteristic surface structures in FE-SEM micrographs. It could find that mycelium from optimized PDA basal medium was more tight and intensive than initial group, while it seems to postpone sporulation and aging. This research compared mycelium from broken rice medium to PDA basal medium group. Its showed that the former was more high density and no sporulation. In addition, it was obvious that there was substantial difference between mycelium treated with amylase and without amylase. This means amylase treatment could remove most residual broken rice substrate and reduce experiment error.
URI: http://hdl.handle.net/11455/98031
文章公開時間: 2021-08-23
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.