Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98066
標題: 雞隻Cryptochrome 4基因之分子選殖與表達
Molecular cloning and expression of chicken Cryptochrome 4
作者: 陳怡妏
Yi-Wen Chen
關鍵字: 晝夜節律
Cryptochrome 4

過度表達
小雞初始肝臟細胞
Circadian oscillator
Cryptochrome 4
Chicken
Overexpression
Chick primary hepatocytes
引用: [1] Bell-Pedersen, D., V. M. Cassone, D. J. Earnest, S. S. Golden, P. E. Hardin, T. L. Thomas, and M. J. Zoran. 2005. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6:544-556. [2] Welsh, D.K., J.S. Takahashi, and S.A. Kay. 2010. Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72:551-577. [3] Ebihara, S., and H. Kawamura. 1981. The role of the pineal organ and the suprachiasmatic nucleus in the control of circadian locomotor rhythms in the Java sparrow, Padda oryzivora. J. Comp. Physiol. 141:207-214. [4] Steele, C.T., B.D. Zivkovic, T. Siopes, and H. Underwood. 2003. Ocular clocks are tightly coupled and act as pacemakers in the circadian system of Japanese quail. Am. J. Phys. Regul. Integr. Comp. Phys. 284:R208-R218. [5] Takahashi, J., and M. Menaker. 1982. Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus, J. Neurosci. 2:815-828. [6] Benoit, J., and I. Assenmacher. 1954. Comparative sensitivity of superficial and deep receptors in photosexual reflex in duck. C. R. Hebd Seances Acad. Sci. 239(1):105-107. [7] Menaker, M. 1968. Extraretinal light perception in the sparrow. I. Entrainment of the biological clock. Proc. Natl. Acad. Sci. U. S. A. 59(2):414-421. [8] Menaker, M., and Underwood, H., 1976. Extraretinal photoreception in birds. Photophysiology 23(4):299–306. [9] Sellix, M. T. 2014. Circadian clock function in the mammalian ovary. J. Biol. Rhythms. 30:7-19. [10] Konishi, H., K. Iida, M. Ohta, and M. Akahashi. 1988. A possible role for the eyes in the photoperiodic response of quail. Gen. Comp. Endocrinol. 72:461-466. [11] Siopes, T. D., and W. O. Wilson. 1974. Extraocular modification of photoreception in intact and pinealectomized coturnix. Poult. Sci. 53:2035-2041. [12] Nakane, Y., and T. Yoshimura. 2010. Deep brain photoreceptors and a seasonal signal transduction cascade in birds. Cell Tissue Res. 342(3):341-344. [13] Peirson, S.N., S. Halford, and R. G. Foster. 2009. The evolution of irradiance detection: melanopsin and the non-visual opsins. Philos. Trans. R. Soc. B. 364(1531):2849-2865. [14] Max, M., P. J. McKinnon, K. J. Seidenman, R. K. Barrett, M. L. Applebury, J. S. Takahashi, and R. F. Margolskee, 1995. Pineal opsin: a nonvisual opsin expressed in chick pineal. Science 267(5203):1502-1506. [15] Korencic, A., K. Rok, B. Grigory, L. Robert, R. Damjana, and H. Hanspeter. 2014. Timing of circadian genes in mammalian tissues. Sci. Rep. 4:5782. [16] Reppert, S. M., and D. R. Weaver. 2002. Coordination of circadian timing in mammals. Nature. 418:935-941. [17] Karaganis, S.P., P. A. Bartell, V. R. Shende, A. F. Moore, and V. M. Cassone. 2009. Modulation of metabolic and clock gene mRNA rhythms by pineal and retinal circadian oscillators. Gen. Comp. Endocrinol. 161(2):179-192. [18] Bailey, M. J., and V. M. Cassone. 2004. Opsin photoisomerases in the chick retina and pineal gland: characterization, localization, and circadian regulation. Invest. Ophthalmol. Vis. Sci. 45(3):769-775. [19] Balsalobre, A., D. Francesca, and S. Ueli. 1998. A Serum Shock Induces Circadian Gene Expression in Mammalian Tissue Culture Cells. Cell. Vol. 93:929-937 . [20] Pagani, L. E., A. Semenova, E. Moriggi, V. L. Revell, L.M0 Hack, S.W. Lockley, J. Arendt, D.J. Skene, F. Meier, J. Izakovic, A. W. Justice, C. Cajochen, O. J. Sergeeva, S. V. Cheresiz, K. V. Danilenko, A. Eckert, and S. A. Brown. 2010. The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts. PLoS One 5:e13376. [21] Yagita, K., F. Tamanini, G. T. Horst, and H. Okamura. 2001. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292:278-281. [22] Shearman, L. P., X. Jin, C. Lee, S. M. Reppert, and D. R. Weaver. 2000. Targeted disruption of the mPer3 gene: subtle effects on circadian clock function. Mol Cell Biol 20:6269-6275. [23] Pendergast, J. S., K. D. Niswender, and S. Yamazaki. 2011. Tissue-specific function of period3 in circadian rhythmicity. PloS one 7:e30254. [24] Bell-Pedersen, D., M. C.Vincent, J. E. David, S. G. Susan, E. H. Paul, L. T. Terry, and J. Z. Mark. 2005. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Drug. Discov. doi:10.1038/nrd1633. [25] Moore, R. Y., and V. B. Eichler. 1972. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42:201-206. [26] Stephan, F. K., and I. Zucker. 1972. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA 69:1583-1586. [27] Mosko, S. S., and R. Y. Moore. 1979. Neonatal suprachiasmatic nucleus lesions: Effects on the development of circadian rhythms in the rat. Brain Res. 164:17-38. [28] Albers, H. E., R. Lydic, P. H. Gander, and M. C.Moore-Ede. 1981. Gradual decay of circadian drinking organization following lesions of the suprachiasmatic nuclei in primates. Neurosci. Lett. 27:119-124. [29] Fuller, C. A., R. Lydic, F. M. Sulzman, H. E. Albers, B. Tepper, and M. C. MooreEde. 1981. Circadian rhythm of body temperature persists after suprachiasmatic lesions in the squirrel monkey. Am. 1. Physioi. 241:R385-R391. [30] Reppert, S. M., M. J. Perlow, L. G. Ungerleider, M. Mishkin, and L.Tamarkin. 1981. Effects of damage to the suprachiasmatic area of the anterior hypothalamus on the daily melatonin and cortisol rhythms in the rhesus monkey. Neurosci. 1:1414-1425. [31] Wehr, T. A., D. Sack, N. Rosenthal, W. Duncan, and J. C. Gillin. 1983. Circadian rhythm disturbances in manicdepressive illness. Fed. Proc. 42:2809-2814. [32] Kohsaka, A., A. D. Laposky, K. M. Ramsey, C. Estrada, C. Joshu, Y. Kobayashi, F. W. Turek, and J. Bass. 2007. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6:414-421. [33] Broberger, C. 2005. Brain regulation of food intake and appetite: molecules and networks. J. Intern. Med. 258:301-327. [34] Buijs, R. M., and F. Kreier. 2006. The metabolic syndrome: a brain disease? J. Neuroendocrinol. 18:715-716. [35] Satoh, Y., H. Kawai, N. Kudo, Y. Kawashima, and A. Mitsumoto. 2006. Time-restricted feeding entrains daily rhythms of energy metabolism in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R1276-R1283. [36] Yanagihara, H., H. Ando, Y. Hayashi, Y. Obi, and A. Fujimura. 2006. High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol. Int. 23:905-914. [37] Barnea, M., Z. Madar, and O. Froy. 2009. High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology. 150:161-168. [38] Karaganis, S. P., A. B. Paul, R. S. Vikram, F. M. Ashli, and M. C. Vincent. 2009. Modulation of metabolic and clock gene mRNA rhythms by pineal and retinal circadian oscillators. Gen. Comp. Endocrinol. 161:179-192. [39] Gwinner, E., and R. Brandstätter. 2001. Complex bird clocks. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 356(1415):1801-1810. [40] Cassone, V. M., A. M. Forsyth, G. L. Woodlee. 1990. Hypothalamic regulation of circadian noradrenergic input to the chick pineal gland. J. Comp. Physiol. A. 167:187-192. [41] Dominoni, D. M. Quetting, and J. Partecke. 2013. Artificial light at night advances avian reproductive physiology. Proc. R. Soc. B. 280:20123017. [42] Lowrey, P. L., and J. S. Takahashi. Mammalian Circadian Biology: Elucidating Genome-wide Levels of Temporal Organization. 2004. Annu. Rev. Genomics Hum. Genet. 5:407-441. [43] Ko, C. H., and J. S. Takahashi. Molecular components of the mammalian circadian clock. 2006. Hum. Mol. Genet. 15:271-277. [44] Nancy, N., P. C. George, and K. Tomoshige. 2010. Interactions of the circadian CLOCK system and the HPA axis. Trends. Endocrin. Met. 21:277-286. [45] McNamara, P., S. P. Seo, R. D. Rudic, A. Sehgal, D. Chakravarti, and G. A. FitzGerald. 2001. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell. 105:877-889. [46] Inoue, I., Y. Shinoda, M. Ikeda, K. Hayashi, K. Kanazawa, and M. Nomura. 2005. CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. J. Atheroscler. Thromb. 12:169-174. [47] Canaple, L., J. Rambaud, O. Dkhissi-Benyahya, B. Rayet, N. S. Tan, and L. Michalik. 2006. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol. Endocrinol. 20:1715-1727. [48] Liu, C., S. Li, T. Liu, J. Borjigin, and J. D. Lin. 2007. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature. 447:477-481. [49] Oishi, K., H. Shirai, and N. Ishida. 2005. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem. J. 386:575-581. [50] Doi, M., J. Hirayama, and P. Sassone-Corsi. 2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell. 125:497-508. [51] Michan, S., and D. Sinclair. 2007. Sirtuins in mammals: insights into their biological function. Biochem. J. 404:1-13. [52] Asher, G., D. Gatfield, M. Stratmann, H. Reinke, C. Dibner, and F. Kreppel. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 134:317-328. [53] Nakahata, Y., M. Kaluzova, B. Grimaldi, S. Sahar, J. Hirayama, and D. Chen. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 134:329-340. [54] Houtkooper, R. H., C. Cantó, R. J. Wanders, and J. Auwerx. 2010. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31:194-223. [55] Rutter, J., M. Reick, L. C. Wu, and S. L. McKnight. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science. 293:510-514. [56] Rutter, J., M. Reick, and S. L. McKnight. 2002. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71:307-331. [57] Hirota, T., and Y. Fukada. 2004. Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog. Sci. 21:359-368. [58] Etchegaray, J. P., C. Lee, P. A. Wade, and S. M. Reppert. 2003. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature. 421:177-182. [59] Curtis, A. M., S. B. Seo, E. J. Westgate, R. D. Rudic, E. M. Smyth, and D. Chakravarti. 2004. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 279:7091-7097. [60] Naruse, Y., K. Oh-hashi, N. Iijima, M. Naruse, H. Yoshioka, and M. Tanaka. 2004. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell Biol. 24:6278-6287. [61] Ripperger, J. A., and U. Schibler. 2006. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38:369-374. [62] Belden, W. J., and J. C. Dunlap. 2008. SIRT1 is a circadian deacetylase for core clock components. Cell. 134:212-214. [63] Hirayama, J., S. Sahar, B. Grimaldi, T. Tamaru, K. Takamatsu, Y. Nakahata, and P. Sassone-Corsi. 2007. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature. 450:1086-1090. [64] Asher, G. and U. Schibler. 2011. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metabolism. 13:125-137. [65] Leone, T. C., J. J. Lehman, B. N. Finck, P. J. Schaeffer, A. R. Wende, and S. Boudina. 2005. PGC-1alpha deficiency causes multisystem energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS. Biol. 3:672-687. [66] Lin, J., C. Handschin, and B. M. Spiegelman. 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1:361-370. [67] Liu, C., S. Li, T. Liu, J. Borjigin, and J. D. Lin. 2007. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature. 447:477-481. [68] Yu, X., H. Liu, J. Klejnot, and C. Lina. 2010. The Cryptochrome Blue Light Receptors. Plant. Physiol. e0135:1-27. [69] Cashmore, A.R. 2003. Cryptochromes: enabling plants and animals to determine circadian time. Cell. 114:537-543. [70] Partch, C.L., and A. Sancar. 2005. Cryptochromes and circadian photoreception in animals. Methods Enzymol. 393:726-745. [71] Partch, C.L., and A. Sancar. 2005. Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem Photobiol. 81:1291-1304. [72] Sancar, G.B. 2000. Enzymatic photoreactivation: 50 years and counting. Mutat. Res. 451:25-37. [73] Sancar, A. 2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103:2203-2237. [74] Kleine, T., P. Lockhart, and A. Batschauer. 2003. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant. J. 35:93-103. [75] Zhan, S. 2011. The monarch butterfly genome yields insights into long-distance migration. Cell. 147:1171-1185. [76] Dodson1, C. A., P.J. Hore, and M. I. Wallace. 2013. A radical sense of direction: signaling and mechanism in cryptochrome magnetoreception. Trends. Biochem. Sci. 38(9):435-446. [77] Thresher, R.J., M. H.Vitaterna, Y. Miyamoto, A. Kazantsev, D. S. Hsu, C. Petit, C. P. Selby, L. Dawut, O. Smithies, J. S. Takahashi, and A. Sancar. 1998. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science. 282:1490-1494. [78] Van der Horst, G.T., M. Muijtjens, K. Kobayashi, R. Takano, S. Kanno, M. Takao, J. de Wit, A. Verkerk, A. P. Eker, D. van Leenen, R. Buijs, D. Bootsma, J. H. Hoeijmakers, and A. Yasui. 1999. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature. 398:627-630. [79] Vitaterna, M. H., C. P. Selby, T. Todo, H. Niwa, C. Thompson, E. M. Fruechte, K. Hitomi, R. J. Thresher, T. Ishikawa, J. Miyazaki, J. S. Takahashi, and A. Sancar. 1999. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl. Acad. Sci. 96:12114-12119. [80] Hitomi, K., K. Okamoto, H. Daiyasu, H. Miyashita, S. Iwai, H. Toh, M. Ishiura, and T. Todo. 2000. Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. Nucleic. Acids. Res. 28:2353-2362. [81] Bayram, O., C. Biesemann, S. Krappmann, P. Galland, and G.H. Braus. 2008. More Than a Repair Enzyme: Aspergillus nidulans Photolyase-like CryA Is a Regulator of Sexual Development. Mol. Biol. Cell. 19:3254-3262. [82] Coesel, S., M. Mangogna, T. Ishikawa, M. Heijde, A. Rogato, G. Finazzi, T. Todo, C. Bowler, and A. Falciatore. 2009. Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Rep. 10:655-661. [83] Ahmad, M., P Galland, T. Ritz, R. Wiltschko, and W. Wiltschko 2007. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta. 225:615-624. [84] Liedvogel, M., K. Maeda, K. Henbest, E. Schleicher, T. Simon, C. R. Timmel, P. J. Hore, and H. Mouritsen. 2007. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms longlived radical-pairs. PLoS One. 2:e1106. [85] Gegear, R.J., A. Casselman, S. Waddell, and S. M. Reppert. 2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature. 454:1014-1018. [86] Gegear, R.J., L. E. Foley, A. Casselman, and S. M. Reppert. 2010. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature. 463:804-807. [87] Du, X. L., J. Wang, W. S. Pan, X. J. Wang, W. J. Wu, Photochem. Photobiol. 2015. Photoactivation of the cryptochrome/photolyase superfamily. J. Photochem. Photobiol. B. 22:84-102. [88] Brettel, K. and M. Byrdin. 2010. Reaction mechanisms of DNA photolyase. Curr. Opin. Struct. Biol. 20:693-701. [89] Muller, M. and T. Carell. 2009. Structural biology of DNA photolyases and cryptochromes. Curr. Opin. Struct. Biol. 19:277-285. [90] Sancar, A. 2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103:2203-2237. [91] Lin, C., D. E. Robertson, M. Ahmad, A. A. Raibekas, M. S. Jorns, P. L. Dutton, and A. R. Cashmore. 1995. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science. 269:968-970. [92] Giovani, B., M. Byrdin, M. Ahmad, and K. Brettel. 2003. Lightinduced electron transfer in a cryptochrome blue-light photoreceptor. Nat. Struct. Biol. 10:489-490. [93] Banerjee, R., E. Schleicher, S. Meier, R. M. Viana, R. Pokorny, M. Ahmad, R. Bittl, and A. Batschauer. 2007. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J. Biol. Chem. 282:14916-14922. [94] Berndt, A., T. Kottke, H. Breitkreuz, R. Dvorsky, S. Hennig, M. Alexander, and E. Wolf. 2007. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J. Biol. Chem. 282:13011-13021. [95] Kondoh, M., C. Shiraishi, P. Muller, M. Ahmad, K. Hitomi, E. D. Getzoff, and M. Terazima. 2011. Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome. J. Mol. Biol. 413:128-137. [96] Ozturk, N., C. P. Selby, Y. Annayev, D. Zhong, and A. Sancar. 2011. Reaction mechanism of Drosophila cryptochrome. Proc. Natl. Acad. Sci. 108:516-521. [97] Vaidya, A. T., D. Top, C. C. Manahan, J. M. Tokuda, S. Zhang, L. Pollack, M. W. Young, and B. R. Crane. 2013. Flavin reduction activates Drosophila cryptochrome. Proc. Natl. Acad. Sci. 110:20455-20460. [98] Ozturk, N., C. P. Selby, D. Zhong, and A. Sancar. 2014. Mechanism of photosignaling by Drosophila cryptochrome: Role of the redox status of the flavin chromophore. J. Biol. Chem. 289:4634-4642. [99] Muller, P., J. P. Bouly, K. Hitomi, V. Balland, E. D. Getzoff, T. Ritz, and K. Brettel. 2014. ATP binding turns plant cryptochrome into an efficient natural photoswitch. Sci. Rep. 4:5175. [100] Kume, K., M. J. Zylka, S. Sriram, L. P. Shearman, D. R. Weaver, X. Jin, E. S. Maywood, M. H. Hastings, and S. M. Reppert. 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 98:193-205. [101] Yamamoto, K., T. Okano, and Y. Fukada. 2001. Chicken pineal Cry genes: Light-dependent up-regulation of cCry1 and cCry2 transcripts. Neurosci. Lett. 313:13-16. [102] Kobayashi, Y., T. Ishikawa, J. Hirayama, H. Daiyasu, S. Kanai, H. Toh, I. Fukuda, T. Tsujimura, N. Terada, Y. Kamei, S. Yuba, S. Iwai, and T. Todo. 2000. Molecular analysis of zebrafish photolyase/cryptochrome family: Two types of cryptochromes present in zebrafish. Genes Cells. 5:725-738. [103] Kubo, Y., M. Akiyama, Y. Fukada, and T. Okano. 2006. Molecular cloning, mRNA expression, and immunocytochemical localization of a putative blue-light photoreceptor CRY4 in the chicken pineal gland. J. Neurochem. 97:1155-1165. [104] Takeuchi, T., Y. Kubo, K. Okano, and T. Okano. 2014. Identification and characterization of cryptochrome4 in the ovary of western clawed frog Xenopus tropicalis. Zool. Sci. 31:152-159. [105] Ozturk, N., S. H. Song, S. Ozgur, C. P. Selby, L. Morrison, C. Partch, D. Zhong, and A. Sancar. 2007. Structure and function of animal cryptochromes. Cold Spring Harbor Symp. Quant. Biol. 72:119-131. [106] Watari, R., C. Yamaguchi, W. Zemba, Y. Kubo, K. Okano, and T. Okano. 2012. Light-dependent structural change of chicken retinal Cryptochrome4. J. Biol. Chem. 287:42634-42641. [107] Ritz, T., S. Adem, and K. Schulten. 2000. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78:707-718. [108] Ozturk, N., C. P. Selby, S. H. Song, R. Ye, C. Tan, Y. T. Kao, D. Zhong, and A. Sancar. 2009. Comparative photochemistry of animal type 1 and type 4 cryptochromes. Biochemistry 48:8585-8593. [109] Watari, R., C. Yamaguchi, W. Zemba, Y. Kubo, K. Okano, and T. Okano. 2012. Light-dependent Structural Change of Chicken Retinal Cryptochrome4. J. Biol. Chem. 287:42634-42641. [110] Mitsui, H., T. Maeda, C. Yamaguchi, Y. Tsuji, R. Watari, Y. Kubo, K. Okano, and T. Okano. 2015. Overexpression in Yeast, Photocycle, and in Vitro Structural Change of an Avian Putative Magnetoreceptor Cryptochrome4. Biochemistry. 54:1908-1917. [111] Takeuchi, T., Y. Kubo, K. Okano, and T. Okano. 2014. Identification and Characterization of Cryptochrome4 in the Ovary of Western Clawed Frog Xenopus tropicalis. Zoological Science. 31:152-159. [112] Imaizumi, T., T. Kanegae, and M. Wada. 2000. Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris. Plant Cell. 12:81-95. [113] Kobayashi, Y., T. Ishikawa, J. Hirayama, H. Daiyasu, S. Kanai, H. Toh, I. Fukuda, T. Tsujimura, N. Terada, Y. Kamei, S. Yuba, S. Iwai,and T. Todo. 2000. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish. Genes Cells. 5:725-738. [114] Helfer, G., A. E. Fidler, D. Vallone, N. S. Foulkes, and R. Brandstaetter. 2006. Molecular Analysis of Clock Gene Expression in the Avian Brain. Chronobiol. Int. 23:113-127. [115] Ozturk, N., C. P. Selby, S. Song, R. Ye, C. Tan, Y. Kao, D. Zhong, and A. Sancar. 2009. Comparative Photochemistry of Animal Type 1 and Type 4 Cryptochromes. Biochemistry. 48:8585-8593. [116] Ram, P. T., C. M. Horvath, and R. Iyengar. 2000. Stat3-mediated transformation of NIH-3T3 cells by the constitutively active Q205L galphao protein. Sci. 287:142-144. [117] Ryoo, S. R., Y. K. Kim, M. H. Kim, and D. H. Min. 2010. Behaviors of NIH-3T3 fibroblasts on praphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS. Nano 23:6587-6598. [118] Whitmore, D., N. S. Foulkes, and P. Sassone-Corsi. 2000. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature. 404:87-91. [119] Fu, Z., M. Inaba, T. Noguchi, and H. Kato1. 2002. Molecular Cloning and Circadian Regulation of Cryptochrome Genes in Japanese Quail (Coturnix coturnix japonica). J. Biol. Rhythm. 17:14-27. [120] Yamamoto, K., T. Okano, Y. Fukada. 2001. Chicken pineal Cry genes: light-dependent up-regulation of cCry1 and cCry2 transcripts. Neuroscience Letters. 313: 13-16. [121] Chong, N. W., S. S. Chaurasia, R. Haque, D. C. Klein, and P. M. Iuvone. 2003. Temporal–spatial characterization of chicken clock genes: circadian expression in retina, pineal gland, and peripheral tissues. J. neurochem. 85:851-860. [122] Atticus, P. R., S. Bensch, and R. Muheim. 2018. Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception. J. R. Soc. Interface 15:20180058. [123] Liu, C., J. Hu, C. Qu, L. Wang, G. Huang, P. Niu, Z. Zhong, F. Hong, G. Wang, J. H. Postlethwait, and H. Wang, 2015. Molecular evolution and functional divergence of zebrafish (Danio rerio) cryptochrome genes. Sci. Rep. 5:8113. [124] Canto, C., Z. Gerhart-Hines, J. N. Feige, M. Lagouge, L. Noriega, J. C. Milne, P. J. Elliott, P. Puigserver, and J. Auwerx. 2009. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 458:1056-1060. [125] Guenthner, C. J., M. E. Luitje, L. A. Pyle, P. C. Molyneux, J. K. Yu, A. S. Li, T. L. Leise, and M. E. Harrington. 2014. Circadian Rhythms of PER2::LUC in Individual Primary Mouse Hepatocytes and Cultures. PLoS One. 9: e87573. [126] Yamajuku, D., T. Inagaki, T. Haruma, S. Okubo, and Y. Kataoka. 2012. Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock. Sci Rep 2:439. [127] O'Neill, J. S., and M. H. Hastings. 2008. Increased coherence of circadian rhythms in mature fibroblast cultures. J. Biol. Rhythms. 23:483-488. [128] Welsh, D. K., S. H. Yoo, A. C. Liu, J. S. Takahashi, and S. A. Kay. 2004. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 14: 2289-2295. [129] Wiltschko, R., and W. Wiltschko. 1995. Magnetic Orientation in Animals. (Zoophysiology Volume 33) (Springer). [130] Mouritsen, H. 2013. The magnetic senses. In Neurosciences – From Molecule to Behavior: A University Textbook, C.G. Galizia, and P.M. Lledo, eds. (Springer), pp. 427-443. [131] Hein, C. M., M. Zapka, D. Heyers, S. Kutzschbauch, N. L. Schneider, and H. Mouritsen. 2010. Night-migratory garden warblers can orient with their magnetic compass using the left, the right or both eyes. J. R. Soc. Interface 7 (Suppl 2 ), S227-S233. [132] Hein, C. M., S. Engels, D. Kishkinev, and H. Mouritsen. 2011. Robins have a magnetic compass in both eyes. Nature 471:E11-E12. [133] Zapka, M., D. Heyers, C. M. Hein, S. Engels, N. L. Schneider, J. Hans, S. Weiler, D. Dreyer, D. Kishkinev, J. M. Wild, and H. Mouritsen. 2009. Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature. 461:1274-1277. [134] Hore, P. J., and H. Mouritsen. 2016. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45:299-344. [135] Heyers, D., M. Manns, H. Luksch, O. Gu¨ ntu¨ rku¨ n, and H. Mouritsen. 2007. A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS ONE. 2:e937. [136] Mouritsen, H., D. Heyers, and O. Gu¨ ntu¨ rku¨ n. 2016. The neural basis of long-distance navigation in birds. Annu. Rev. Physiol. 78:133-154. [137] Ritz, T., S. Adem, and K. Schulten. 2000. A model for photoreceptorbased magnetoreception in birds. Biophys. J. 78:707-718. [138] Giovani, B., M. Byrdin, M. Ahmad, and K. Brettel. 2003. Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat. Struct. Biol. 10:489-490. [139] Liedvogel, M., K. Maeda, K. Henbest, E. Schleicher, T. Simon, C. R. Timmel, P. J. Hore, and H. Mouritsen. 2007. Chemical magnetoreception:Bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs. PLoS ONE 2:e1106. [140] Liedvogel, M., and H. Mouritsen. 2010. Cryptochromes–a potential magnetoreceptor: What do we know and what do we want to know? J. R. Soc. Interface. 7:S147–S162. [141] Maeda, K., A. J. Robinson, K. B. Henbest, H. J. Hogben, T. Biskup, M. Ahmad, E. Schleicher, S. Weber, C. R. Timmel, and P. J. Hore. 2012. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl. Acad. Sci. 109:4774-4779. [142] Rodgers, C. T., and P. J. Hore. 2009. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl. Acad. Sci. 106:353-360. [143] Rodgers, C.T. 2009. Magnetic field effects in chemical systems. Pure. Appl. Chem. 81:19-43. [144] Steiner, U.E. and T. Ulrich. 1989. Magnetic-field effects in chemicalkinetics and related phenomena. Chem. Rev. 89:51-147. [145] Sancar, A. 2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103:2203-2237. [146] Kume, K., M. J. Zylka, S. Sriram, L. P. Shearman, D. R. Weaver, X. Jin, E. S. Maywood, M. H. Hastings, and S. M. Reppert. 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 98:193-205. [147] Liedvogel, M., and H. Mouritsen. 2010. Cryptochromes–a potential magnetoreceptor: What do we know and what do we want to know? J. R. Soc. 7:S147-S162. [148] Lau, J.C., N. Wagner-Rundell, C. T. Rodgers, N. J. Green, and P. J. Hore. 2010. Effects of disorder and motion in a radical pair magnetoreceptor. J. R. Soc. 7:S257-S264. [149] Solov'yov, I.A., H. Mouritsen, and K. Schulten, 2010. Acuity of a cryptochrome and vision-based magnetoreception system in birds. Biophys. J. 99:40-49. [150] Watari, R., C. Yamaguchi, W. Zemba, Y. Kubo, K. Okano, and T. Okano. 2012. Light-dependent structural change of chicken retinal Cryptochrome4. J. Biol. Chem. 287:42634-42641. [151] Qin, S., H. Yin, C. Yang, Y. Dou, Z. Liu, P. Zhang, H. Yu, Y. Huang, J. Feng and J. Hao. 2016. A magnetic protein biocompass. Nat. Mater. 15:217-226. [152] Gu¨ nther, A., A. Einwich, E. Sjulstok, R. Feederle, P. Bolte, K. Koch, I. Solov'yov, and H. Mouritsen. 2018. Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4. Current Biology. 28:211-223.
摘要: 生物體之生存與其周圍環境密切相關,此能夠感覺並反應24小時的光照變化節奏,被稱為晝夜節律(circadian oscillation)。在鳥類,晝夜系統的中心部分由視交叉上核,視網膜和松果體組成;而周邊振盪器(peripheral oscillators)則存在於許多組織中,諸如腎臟、心臟與肝臟。當中樞與周邊震盪器相互連接便能使生物體內部有最佳相位關係並與外部環境同步(synchronization)。晝夜節律的分子機制是透過光照刺激去影響基因的轉錄(transcription)、轉譯(translation)、轉譯後修飾(post-translational modification)等作用帶動其下游因子產生正負回饋之相互作用,機制的核心因子有PER (Period)、CRY (Cryptochrome)、BMAL1 ( Brain and Muscle ARNT-Like 1)以及CLOCK (Circadian Locomotor Output Cycles Kaput)。相較於哺乳動物,鳥類表達特有Cry4,可作為藍光感受器或磁感機制受體(magnetoreceptors)。本試驗目的為成功選殖雞的CRY4基因,並轉染至小雞肝臟細胞(chick primary hepatocytes),於不同光照模式下,以即時定量PCR(qRT-PCR)分析其24小時之間節律相關基因的表現脈動。定序結果與NCBI上公佈雞Cryptochrome4序列(XM_015298682.2)有100%符合,因此可確定有成功選殖CRY4基因。比較其基因24小時的變化,在all light處理下, CRY4 overexpression會壓抑BMAL1、CLOCK、SIRT1的波動性,但增強PER2、PER3、CRY1、CRY2、CRY4、PCC-1α、E4bp4波動性,在12L:12D處理中,CRY4 overexpression只會壓抑BAMl1、CLOCK、CRY1、CRY2,而其餘基因皆增強其波動性,最後在all dark處理下,會壓抑CLOCK、PCC-1α,其餘基因皆增強其波動性。另外,CRY4 overexpression處理下所造成的節律基因表現,在12L:12D處理組中,高峰皆出現在光照期間,推測光照與黑夜變化能活化CRY4進而調控下游基因表現。CRY4本身則是基因表現皆相當明顯,在三個光照組中,過度表達與控制組的高峰都相差6個小時。在三光照處理組中,all light處理組通常在大多時間點都會有高於其他2組的表達量。最後以西方免疫吸漬法(Western Blot)分析CRY4蛋白在細胞中的表達,結果顯示在做為正對照組的肝臟、視網膜、下視丘與CRY4 overexpression之3T3 fibroblasts cells中可以看到CRY4蛋白位於約61kDa,而對照組未經轉染3T3 fibroblasts cells,並未有蛋白表達,因此確認此抗體可以確實結合到目標蛋白。 以上結果顯示本研究確實成功選殖CRY4之全長段序列,並在小雞初始肝臟細胞中過度表達。小雞初始肝臟細胞在正常狀態下其節律基因表現皆有其本身之脈動,CRY4的過度表達在各種光照下有對不同節律基因表現脈動有不同程度影響。在三組光照間比較,全光照處理組的各基因表達量於大多時間點高於其他兩組。
The survival of organisms is closely related to their surroundings. They are capable to rhythmically sense and respond to the light-dark phases along the daily-24 h changes; namely circadian oscillation. In birds, the central part of the circadian system consists of the suprachiasmatic nucleus, retina, and the pineal gland. Peripheral oscillators are present in a variety of tissues such as the kidney, heart and liver. Central and peripheral oscillators are interconnected to achieve optimal phase relationships inside the organism and synchronization to external changes. The molecular mechanism of circadian rhythm is operated through the interaction of transcription, translation, and post-translational modification of genes inresponse to light and thereby regulate the interaction of positive and negative feedback of downstream factors. The core factors of the mechanism are: PER (Period), CRY (Cryptochrome), BMAL1 (Brain and Muscle ARNT-Like 1) and CLOCK (Circadian Locomotor Output Cycles Kaput). In contrast to mammals, birds are characterized by a novel avian-specific CRY4 gene expression. CRYs have been found in a wide variety of living organisms and can function as blue light photoreceptors or magnoreceptors. The study amied to clone CRY4 gene from chickens and examine the effect of enforced overexpression of CRY4 in chick primary cells under different light modes on the daily pulsation of rhythm-related genes through qRT-PCR analysis. The sequence results of cloned chicken CRY4 suggested 100% similarity in comparison with the published chicken CRY4 sequence (XM_015298682.2) in Genbank, thus confirming the successful cloning of the CRY4 gene. In the pulsatile changes of circadian gene expressions, under all light treatment, CRY4 overexpression suppressed the daily pulsation of BMAL1, CLOCK, SIRT1 in primary chick hepatocytes, but enhanced the fluctuation of PER2, PER3,CRY1, CRY2, CRY4, PCC-1α, E4bp4, when compared to the control. In the 12L:12D mode, CRY4 overexpression only suppressed pulsatile changes of BAMl1, CLOCK, CRY1, and CRY2 expression, but promoted flucturations of the other circadian gene expressions. Finally, under all dark treatment, CLOCK and PCC-1α pulsation were suppressed and the pulsatile expression of other circadian genes was enhanced by CRY4 overexpression. In addition, under 12L:12D mode, all of the peak expression of circadian genes occurred in the pohotphase suggesting that CRY4 is activated by circadian light and dark change, which in turn regulates downstream gene expressions. Both control and cells overexpressing CRY4 exhibited rhythmic patterns of CRY4 expression with 6 hr interval under the three light modes. In the three light modes, the all light treatment group tended to promote circadian gene expression levels than the other two groups. In addition, an antiserum against a synthetic epitope of chicken CRY4 was elicited from rabbits and used for Western blot analysis to validate the expression of CRY4 protein. Results suggested that the CRY4 protein was located at approximately 61 kDa in the liver, retina, hypothalamus and 3T3 fibroblasts with CRY4 overexpression, whereas the negative control of 3T3 fibroblasts with vehicle transfection had no protein expression, confirming that this antibody specifically recognized the target protein. The results showed that the full-length sequence of CRY4 was successfully cloned, enforced to express in chick primary hepatocytes. In the normal state, chick primary hepatocytes have their own rhythmic gene expression, and the overexpression of CRY4 had differential effects on the pulstation of circadian gene expressions. In addition, all light mode tended to increase the circadian gene expressions mostly along the time course as compared to the other light modes.
URI: http://hdl.handle.net/11455/98066
文章公開時間: 2019-08-28
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.