Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98070
標題: 探討乳脂肪球膜之乳化性質及其於冰淇淋之應用
Evaluation of emulsifying properties of milk fat globule membrane and its application to ice cream manufacture
作者: 張思靜
Ssu-Ching Chang
關鍵字: 乳脂肪球膜
冰淇淋
乳化性
milk fat globule membrane
ice cream
emulsifying property
引用: 林頎生、葉瑞月。2004。感官品評應用與實作。第一版。第97頁。睿煜出版社。屏東縣。 林慶文。2008。乳品加工學。第四版。第321頁。華香園出版社。台北市。 蔡宇宣。2018。紫梗羅勒與迷迭香萃取物之添加對豬肝醬於4±2℃儲存期間其品質的影響。國立中興大學碩士論文。台中市。 蕭辰芳。2017。酸沉澱之除鹽鹹鴨卵白功能性的評估及應用。國立中興大學碩士論文。台中市。 魏天恩。2017。以氫氧磷灰石前處裡搭配微過濾之新穎乳脂肪球膜分離技術探討其產物與乳酸菌之交互作用。國立中興大學碩士論文。台中市。 Ahn, Y. J., P. Ganesan and H. S. Kwak. 2011. Composition, structure, and bioactive components in milk fat globule membrane. Korean J. Food Sci. Ani. Resour. 31: 1-8. Aime, D. B., S. D. Arntfield, L. J. Malcolmson and D. Ryland. 2001. Texture analysis of fat reduced vanilla ice cream product. Food Res. Int. 34:237-246. Arranz, E. and M. Corredig. 2017. Invited review: Milk phospholipid vesicles, their colloidal properties, and potential as delivery vehicles for bioactive molecules. J. Dairy Sci. 100: 1-10. Astaire, C., R. Ward, J. B. German and R. Jime ́nez-Flores. 2003. Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction. J. Dairy Sci. 86: 2297–2307. Atroshi, F., T. Alaviuhkola, R. Schildt, and M. Sandholm. 1983. Fat globule membrane of sow milk as a target for adhesion of K88-positive Escherichia coli. Comp. Immunol. Microb. 6: 235-245. Bahramparvar, M. and A. M. Tehrani. 2011. Application and functions of stabilizers in ice cream. Food Rev. Int. 27: 389-407. Bermúdez‐Aguirre, D., R. Mawson and G.V. Barbosa‐Cánovas. 2008. Microstructure of fat globules in whole milk after thermosonication treatment. J. Food Sci. 73: 325-332. Brisson, G., H. F. Payken, J. P. Sharpe and R. ́Nez-Flores, 2010. Characterization of Lactobacillus reuteri interaction with milk fat globule membrane components in dairy products. J. Agric. Food Chem. 58: 5612-5619. Bu, H. F., X. L. Zuo, X. Wang, M. A. Ensslin, V. Koti, W. Hsueh, A. S. Raymond, B. D. Shur and X. D. Tan. 2007. Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J. Clin. Invest. 117: 3673-3683. Burgain, J., J. Scher, G. Francius, F. Borges, M. Corgneau, A. M. Revol-Junelles, C. Cailliez-Grimal and C. Gaiani. Lactic acid bacteria in dairy food: Surface characterization and interactions with food matrix components. Adv. Colloid Interfac. 213: 21-35. Clare, D., Z. Zheng, H. M. Hassan, H. E. Swaisgood and G. L. Catignani. 2008. Antimicrobial properties of milkfat globule membrane fractions. J. Food Prot. 71: 126-133. Conway, V., P. Couture, C. Richard, S. F. Gauthier, Y. Pouliot and B. Lamarche. 2013. Impact of buttermilk consumption on plasma lipids and surrogate markers of cholesterol homeostasis in men and women. Nutr. Metab. Cardiovasc. Dis. 23:1255-1262. Corredig, M. and D. G. Dalgleish. 1997. Isolates from industrial buttermilk:  emulsifying properties of materials derived from the milk fat globule membrane. J. Agric. Food Chem. 45: 4595-4600. Corredig, M. and D. G. Dalgleish. 1998a. Buttermilk properties in emulsions with soybean oil as affected by fat globule membrane‐derived proteins. J. Food Sci. 63: 476-480. Corredig, M. and D. G. Dalgleish. 1998b. Characterization of the interface of an oil-in-water emulsion stabilized by milk fat globule membrane material. J. Dairy Res. 65: 465-477. Corredig, M., R. R. Roesch and D. G. Dalgleish. 2003. Production of a novel ingredient from buttermilk. J. Dairy Sci. 86: 2744-2750. Dewettinck, K., R. Rombaut, N. Thienpon. T. T. Le, K. Messen and J. Van Camp. 2008. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 18: 436-457. Et-Thakafy, O., F. Guyomarc'h and C. Lopez. 2017. Lipid domains in the milk fat globule membrane: Dynamics investigated in situ in milk in relation to temperature and time. Food Chem. 220: 352-361. Evers, J. M. 2004. The milk fat globule membrane-compositional and structural changes post secretion by the mammary secretory cell. Int. Dairy J. 14: 661-674. Evers, J. M., R. G. Haverkamp, S. E. Holroyd, G. B. Jameson, D. D. S. Mackenzie and O. J. McCarthy. 2008. Heterogeneity of milk fat globule membrane structure and composition as observed using fluorescence microscopy techniques. Int. Dairy J. 18: 1081-1089. Fong, B. Y., C. S. Norris and A. K. H. MacGibbon. 2007. Protein and lipid composition of bovine milk fat globule membrane. Int. Dairy J. 17: 275-288. Goff, H. D. 2002. Formation and stabilization of structure in ice-cream and related products. Colloid and Interface Sci. 7: 432-437. Guri, A., M. Griffiths, C. M. Khursigara and M. Corredig. 2012. The effect of milk fat globules on adherence and internalization of Salmonella Enteritidis to HT-29 cells. J. Dairy Sci. 95: 6937-6945. Herald, T. J., F. M. Aramouni and M. H. Abu-Ghouse. 2008. Comparison study of egg yolks and egg. J. of Texture Studies. 39: 284-295. Holzmüller, W. and U. Kulozik. 2016a. Technical difficulties and future challenges in isolating membrane material from milk fat globules in industrial settings – A critical review. Int. Dairy J. 61: 51-66. Holzmüller, W. and U. Kulozik. 2016b. Isolation of milk fat globule membrane (MFGM) material by coagulation and diafiltration of buttermilk. Int. Dairy J. 63: 88-91. Holzmüller, W. and U. Kulozik. 2016. Quantification of MFGM proteins in buttermilk and butter serum by means of a stain free SDS-PAGE method. Journal of Food Composition and Analysis. 49: 102-109. Kannpo, C., Y. Shimomura and E. Takano. 1991. Physicochemical properties of milk fat emulsions stabilized with bovine milk fat globule membrane. J. Food Sci. 56: 1219-1223. Le, T. T., J. Van CampLe, R. Rombaut, F. V. Leeckwyck F, K. Dewettinck. 2009. Effect of washing conditions on the recovery of milk fat globule membrane proteins during the isolation of milk fat globule membrane from milk. J. Dairy Sci. 92:3592-3603. Lindmark-MaÊnsson, H. and B. AÊkesson. 2000. Antioxidative factors in milk. British J. of Nutrition. 1: 103-110 . Lu, J., N. Argov-Argaman, J. Anggrek, S. Boeren, T. Hooijdonk, J. Vervoort and K. A. Hettinga. 2015. The protein and lipid composition of the membrane of milk fat globules depends on their size. J. Dairy Sci. 99: 4726-4738. McGhee, C. E., J. O. Jones and Y. W. Park. 2015. Evaluation of textural and sensory characteristics of three types of low-fat goat milk ice cream. Small Rumin. Res. 123:293-300. Morin, P., R. Jiménez-Flores and Y. Pouliot. 2004. Effect of temperature and pore size on the fractionation of fresh and reconstituted buttermilk by microfiltration. J. Dairy. Sci. 87:267-273. Morin, P., Y. Pouliot and R. Jiménez-Flores. 2006. A comparative study of the fractionation of regular buttermilk and whey buttermilk by microfiltration. J. Food. Eng. 77:521-528. Morin, P., M. Britten, R. Jiménez-Flores and Y. Pouliot. 2007a. Microfiltration of buttermilk and washed cream buttermilk for concentration of milk fat globule membrane components. J. Dairy. Sci. 90:2132-2140. Morin, P., M. Britten, R. Jiménez-Flores and Y. Pouliot. 2007b. Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes. Int. Dairy. J. 17:1179-1187. Ogg, S. L., A. K., L. Dobbi, A. J Smith. and I. H. Mather. 2004. Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Natl. Acad. Sci. USA 101:10083-10089. Rashidinejad, A., E. J. Birch and D. W. Everett. Interactions between milk fat globules and green tea catechins. 2016. Food Chem. 199: 347-355. Rasmussen, J. T. 2009. Bioactivity of milk fat globule membrane proteins. Aust. J. Dairy Technol. 64: 63-67. Roland, A. M., L. G. Phillips and K. J. Boor. 1999. Effects of fat content on the sensory properties, melting, color, and hardness of ice cream. J. Dairy Sci. 82: 32-38. Sachdeva, S., M. Ho, M. Alexander and M. Corredig. 2012. Effect of soluble calcium on membrane processing. Kieler Milchw. Forsch. 49:47-68. Sandra, S., M. Ho, M. Alexander and M. Corredig. 2012. Effect of soluble calcium on the renneting properties of casein micelles as measured by rheology and diffusing wave spectroscopy. J. Dairy. Sci. 95:75-82. Singh, H. and S. Gallier. 2016. Nature's complex emulsion: The fat globules of milk. 2017. 68: 81-89. Spitsberg, V. L. 2005. Invited review: bovine milk fat globule membrane as a potential nutraceutical. J. Dairy Sci. 88: 2289-2294. Ye, A., J. Cui and H. Singh. 2011. Proteolysis of milk fat globule membrane proteins during in vitro gastric digestion of milk. J. Dairy Sci. 94: 2762-2770. Zou, L., G. Pande and C. C. Akoh. 2016. Infant formula fat analogs and human milk fat: new focus on infant developmental needs. Annu. Rev. Food Sci. Technol. 7: 139-65. Zou, X., Z. Guo, Q. Jin, J. Huang, L. Cheong, X. Xu and X. Wang. 2015. Composition and microstructure of colostrum and mature bovine milk fat globule membrane. Food Chem. 185: 362-370.
摘要: 乳脂肪球膜(milk fat globule membranes;MFGM)為富含生物活性物質之三層磷脂結構,於乳汁中包覆於三酸甘油酯表面以形成乳脂肪球,使乳脂肪能均勻存於乳汁中。而乳脂肪球膜富含之生物活性物質,包括磷脂質與醣蛋白等,其中又以磷脂質被指出具乳化特性,故乳脂肪球膜為一具高機能性之乳原料。一般市售冰淇淋之脂肪含量超過10%,因此添加適當之乳化劑以避免油水相分離有其必要性,但近年來消費者逐漸重視健康及養身之觀念,因此以添加天然乳化劑以取代人工合成之冰淇淋逐漸成為未來市場之銷售趨勢。故本試驗旨在探討不同MFGM製備方法之乳化性質,與取代冰淇淋乳化劑對冰淇淋品質之影響,以期確立MFGM做為天然乳化劑之潛力。 本試驗中以檸檬酸鈉(sodium citrate;SC)及氫氧磷灰石(hydroxyapatite; HA)前處理,並通過微過濾(microfiltration)所得之MFGM,分別使用0.01%、0.1%、0.2%、0.5%及1.0%,並與脫脂乳粉(non-fat dry milk powder;NFDM)、酪乳粉(buttermilk powder;BTM)及僅添加去離子水之控制組(control;C),使用10%之黃豆油進行乳化試驗。顯微鏡觀察結果顯示,乳化效果隨各處理組使用比例越高,有提升之趨勢,並以使用1.0%之乳脂肪球膜處理組具最小粒徑顆粒,具最佳乳化效果;冰淇淋質地結果顯示,以添加乳脂肪球膜做為天然乳化劑之冰淇淋組具最緩慢之融化速率,並以使用氫氧磷灰前處理所得乳脂肪球膜分離物組別之膨脹率顯著高於其他處理組,顯微結構圖以未使用乳化劑之組別具最大且密集之冰晶分布,並以乳脂肪球膜蛋白組別具小顆粒冰晶均勻分布表現;冰淇淋於儲藏六個月中之整體風味接受度與質地則以使用0.5% HA及SC皆與商業用乳化劑無顯著差異(p <0.05)。綜合以上,MFGM具一定之乳化效果,且效果隨使用之比例愈高而有提升之趨勢,並具作為冰淇淋天然乳化劑之潛力。
Milk fat globule membrane (MFGM) is rich in biologically active substances, including phospholipids, glycoproteins and others, which in turn are characterized as having emulsifying properties of phospholipids. MFGM is known to be composed mainly of polar lipids and proteins which encloses the fat droplets in milk and contributes to stabilizing milk as an emulsion. Generally, the commercial ice cream has a high fat content of more than 10%. Therefore, it is necessary to add an appropriate emulsifier to avoid oil-water phase separation. Furthermore, in recent years, consumers have paid attention to the concept of health and natural food. So, the purpose of this study was to evaluate the emulsion properties of MFGM and its application to ice cream manufacture as a replacer for commercial emulsifier. The MFGM obtained from microfiltration with either sodium citrate (SC) or hydroxyapatite (HA) pretreatment. The emulsion properties of SC and HA (0.25%, 0.1%, 0.2%, 0.5% and 1.0%), non-fat dry milk powder (NFDM), buttermilk powder (BTM), and deionized water (Control) were compared in a soy bean oil system. The micrograph showed that the emulsifying property was higher in the high concentration of all MFGM, where the 1.0% concentration of milk fat globule membrane treatment group with no matter SC or HA treatment showed the smallest particle size, indicated that the better emulsifying property of them. The texture evaluation of ice cream showed that the ice cream group with milk fat globule membrane as the natural emulsifier had the slowest melting rate, and the overrun of the HA group was significantly higher than that other treatment groups. The sensory evaluation of ice cream showed that the overall flavor acceptance and texture of the ice cream during storage for six months were shown in both HA and SC group, where there were not significantly different from commercial group (p <0.05). In summary, MFGM has a certainly emulsifying property, and has the potential for application as a natural emulsifier for ice cream.
URI: http://hdl.handle.net/11455/98070
文章公開時間: 10000-01-01
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.