Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98123
標題: 以結構為基礎探討由棘黴素作用於含脫氧肌苷錯配之去氧核醣核酸雙螺旋
Structural basis for the binding of echinomycin to DNA duplex containing I:C mismatch
作者: 黃香娣
Hsiang-Ti Huang
關鍵字: 棘黴素
I:C 錯配鹼基
echinomycin
I:C mismatch
引用: 1. Chargaff, E., et al., The composition of the deoxyribonucleic acid of salmon sperm. J Biol Chem, 1951. 192(1): p. 223-30. 2. Watson, J.D. and F.H. Crick, Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 1953. 171(4356): p. 737-8. 3. Gunes, S., M. Al-Sadaan, and A. Agarwal, Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online, 2015. 31(3): p. 309-19. 4. Williams, J.S., S.A. Lujan, and T.A. Kunkel, Processing ribonucleotides incorporated during eukaryotic DNA replication. Nat Rev Mol Cell Biol, 2016. 17(6): p. 350-63. 5. Berglund, A.K., et al., Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA. PLoS Genet, 2017. 13(2): p. e1006628. 6. Alseth, I., B. Dalhus, and M. Bjoras, Inosine in DNA and RNA. Curr Opin Genet Dev, 2014. 26: p. 116-23. 7. Slotkin, W. and K. Nishikura, Adenosine-to-inosine RNA editing and human disease. Genome Med, 2013. 5(11): p. 105. 8. Krepl, M., et al., Effect of guanine to inosine substitution on stability of canonical DNA and RNA duplexes: molecular dynamics thermodynamics integration study. J Phys Chem B, 2013. 117(6): p. 1872-9. 9. Kuraoka, I., Diversity of Endonuclease V: From DNA Repair to RNA Editing. Biomolecules, 2015. 5(4): p. 2194-206. 10. Vilaivan, C., et al., Specific recognition of cytosine by hypoxanthine in pyrrolidinyl peptide nucleic acid. Org Biomol Chem, 2013. 11(14): p. 2310-7. 11. Shojo, H., et al., A Unique Primer with an Inosine Chain at the 5'-Terminus Improves the Reliability of SNP Analysis Using the PCR-Amplified Product Length Polymorphism Method. PLoS One, 2015. 10(9): p. e0136995. 12. Corfield, P.W., et al., Inosine.adenine base pairs in a B-DNA duplex. Nucleic Acids Res, 1987. 15(19): p. 7935-49. 13. Cruse, W.B., et al., Refined crystal structure of an octanucleotide duplex with I.T. mismatched base pairs. Nucleic Acids Res, 1989. 17(1): p. 55-72. 14. Xuan, J.C. and I.T. Weber, Crystal structure of a B-DNA dodecamer containing inosine, d(CGCIAATTCGCG), at 2.4 A resolution and its comparison with other B-DNA dodecamers. Nucleic Acids Res, 1992. 20(20): p. 5457-64. 15. Keane, P.M., et al., Inosine Can Increase DNA's Susceptibility to Photo-oxidation by a Ru(II) Complex due to Structural Change in the Minor Groove. Chemistry, 2017. 23(43): p. 10344-10351. 16. Leonard, G.A., et al., The conformational variability of an adenosine.inosine base-pair in a synthetic DNA dodecamer. Nucleic Acids Res, 1992. 20(18): p. 4753-9. 17. Peters, J.P., et al., Comparative analysis of inosine-substituted duplex DNA by circular dichroism and X-ray crystallography. J Biomol Struct Dyn, 2017: p. 1-20. 18. Iyer, R.R., et al., DNA mismatch repair: functions and mechanisms. Chem Rev, 2006. 106(2): p. 302-23. 19. Okoye, E.I., et al., Defective DNA Mismatch Repair Influences Expression of Endometrial Carcinoma Biomarkers. Int J Gynecol Pathol, 2016. 35(1): p. 8-15. 20. Dizdaroglu, M., Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat Res, 2005. 591(1-2): p. 45-59. 21. Farrington, S.M., et al., Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am J Hum Genet, 2005. 77(1): p. 112-9. 22. Robertson, A.B., et al., DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell Mol Life Sci, 2009. 66(6): p. 981-93. 23. Krokan, H.E. and M. Bjoras, Base excision repair. Cold Spring Harb Perspect Biol, 2013. 5(4): p. a012583. 24. Nouspikel, T., DNA repair in mammalian cells : Nucleotide excision repair: variations on versatility. Cell Mol Life Sci, 2009. 66(6): p. 994-1009. 25. Scharer, O.D., Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol, 2013. 5(10): p. a012609. 26. Petruseva, I.O., A.N. Evdokimov, and O.I. Lavrik, Molecular mechanism of global genome nucleotide excision repair. Acta Naturae, 2014. 6(1): p. 23-34. 27. de Boer, J. and J.H. Hoeijmakers, Nucleotide excision repair and human syndromes. Carcinogenesis, 2000. 21(3): p. 453-60. 28. Miskovic, K., et al., Antineoplastic DNA-binding compounds: intercalating and minor groove binding drugs. Arh Hig Rada Toksikol, 2013. 64(4): p. 593-602. 29. Puyo, S., D. Montaudon, and P. Pourquier, From old alkylating agents to new minor groove binders. Crit Rev Oncol Hematol, 2014. 89(1): p. 43-61. 30. Singh, R.K., et al., Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur J Med Chem, 2018. 151: p. 401-433. 31. Murray, V., J.K. Chen, and L.H. Chung, The Interaction of the Metallo-Glycopeptide Anti-Tumour Drug Bleomycin with DNA. Int J Mol Sci, 2018. 19(5). 32. Foster, B.J., et al., Echinomycin: the first bifunctional intercalating agent in clinical trials. Invest New Drugs, 1985. 3(4): p. 403-10. 33. Sato, M., et al., Echinomycin biosynthesis. Curr Opin Chem Biol, 2013. 17(4): p. 537-45. 34. Wu, P.C., et al., Cooperative recognition of T:T mismatch by echinomycin causes structural distortions in DNA duplex. Nucleic Acids Res, 2018. 35. Yoshinari, T., et al., Inhibition of topoisomerase II by a novel antitumor cyclic depsipeptide, BE-22179. Jpn J Cancer Res, 1994. 85(5): p. 550-5. 36. Bachur, N.R., et al., Antihelicase action of DNA-binding anticancer agents: relationship to guanosine-cytidine intercalator binding. Mol Pharmacol, 1993. 44(5): p. 1064-9. 37. Adams, R.L. and A. Rinaldi, Effect of echinomycin on DNA methylation. FEBS Lett, 1987. 215(2): p. 266-8. 38. Kong, D., et al., Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res, 2005. 65(19): p. 9047-55. 39. Yonekura, S., et al., Effects of the HIF1 inhibitor, echinomycin, on growth and NOTCH signalling in leukaemia cells. Anticancer Res, 2013. 33(8): p. 3099-103. 40. Cuesta-Seijo, J.A. and G.M. Sheldrick, Structures of complexes between echinomycin and duplex DNA. Acta Crystallogr D Biol Crystallogr, 2005. 61(Pt 4): p. 442-8. 41. Pfoh, R., J.A. Cuesta-Seijo, and G.M. Sheldrick, Interaction of an echinomycin-DNA complex with manganese ions. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2009. 65(Pt 7): p. 660-4. 42. Cuesta-Seijo, J.A., M.S. Weiss, and G.M. Sheldrick, Serendipitous SAD phasing of an echinomycin-(ACGTACGT)2 bisintercalation complex. Acta Crystallogr D Biol Crystallogr, 2006. 62(Pt 4): p. 417-24. 43. Takusagawa, H.L. and F. Takusagawa, Crystallization and preliminary X-ray diffraction studies of d(ACGTAGCTACGT)2:[actinomycin D, (echinomycin)2] and d(ACGTAGCTACGT)2:[actinomycin D, (triostin A)2] complexes. Acta Crystallogr D Biol Crystallogr, 2000. 56(Pt 3): p. 344-7. 44. McCoy, A.J., et al., Phaser crystallographic software. J Appl Crystallogr, 2007. 40(Pt 4): p. 658-674. 45. Murshudov, G.N., A.A. Vagin, and E.J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr, 1997. 53(Pt 3): p. 240-55. 46. Adams, P.D., et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 2): p. 213-21. 47. Zheng, G., X.J. Lu, and W.K. Olson, Web 3DNA--a web server for the analysis, reconstruction, and visualization of three-dimensional nucleic-acid structures. Nucleic Acids Res, 2009. 37(Web Server issue): p. W240-6.
摘要: 脫氧肌苷(deoxyinosine, dI)是一種自然發生的鹼基,可以與四種典型鹼基形成鹼基配對,具有不同穩定性,因此在 DNA 複製過程中可能引起突變。另外,dI 可能導致 DNA結合蛋白的識別位點改變,已有研究顯示,肌苷存在於 RNA 編輯中會導致各種疾病的發生,包括癌症,然而,關於肌苷作用於 DNA 鹼基配對的信息很少。棘黴素 (echinomycin) 是 DNA 結合藥物會嵌入於 DNA 鹼基中,干擾 DNA 複製和轉錄。本篇研究是想要了解 echinomycin 與 I:C 錯配結合會對 DNA 結構和穩定性的造成甚麼影響。首先我們想要了解 echinomycin 如何去辨識I:C錯配,所以我們設計出d(ACGICGT)/d(ACGCCGT)含有一個 I:C 錯配的雙股 DNA 序列,並解析出 echinomycin 與 I:C 錯配的晶體結構,結構結果說明,結構中的 I:C 錯配的配對方式為搖擺鹼基對 (Wobble base pair),echinomycin 插入到 DNA 中會造成結構的鹼基間距縮小,但 I:C 錯配會與鄰近的兩個喹喔啉環產生作用,提供整體複合物結構的穩定性,接著使用熱熔點溫度實驗(Tm)來測定,比較在有無藥物的存在下,DNA 之間的 Tm 值(ΔTm)的差異來測量DNA的穩定性。總體來說,echinomycin對I:C錯配會表現出特異的親和力,因此可用於製藥和DNA的試劑開發中。
Deoxyinosine (dI) is a naturally occurring base which can form base-pairing with all four canonical bases with different stabilities and thus may cause mutations during DNA replication process. Also, the dI may lead to altered recognition sites for DNA binding proteins. It has been shown that the presence of inosine leads to various diseases including cancers during RNA editing, however, very few information is known about the inosine acting in DNA base pairing. Furthermore, the echinomycin is a DNA binding intercalator which inserts into the DNA base pair to interfere transcription and replication. In the current study, we analyzed the effects of echinomycin binding on the structure and stability to I:C mismatched DNA. We solved the crystal structure of echinomycin binding to d(ACGICGT)/ d(ACGCCGT) duplex containing single I:C mismatch to understand the structural details of I:C mismatch recognition by echinomycin. The structural results shows that, insertion of echinomycin into DNA causes structural compression and the I:C base pair flanking bis-intercalator site shows wobble base pairing. Furthermore, the staggered quinoxaline rings of the two echinomycin that surround the I:C mismatch shows the stacking interactions within the duplex which provides the stability to overall complex .The stability of DNA is measured by using melting temperature (Tm) assay to compare differences of Tm (ΔTm) between DNAs in presence and absence of drug.Overall, the echinomycin shows specific affinity to I:C mismatch and thus can have potential applications in pharmaceuticals and DNA based nanotechnology development.
URI: http://hdl.handle.net/11455/98123
文章公開時間: 2021-08-31
Appears in Collections:基因體暨生物資訊學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.