Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98145
標題: 製備纖維素基質交聯水膠及其於親水與疏水性藥物控制釋放之性質
Preparation of Crosslinked Cellulose-based Hydrogels for Controlled Release of Hydrophilic and Hydrophobic Drugs
作者: 何怡昕
Yi-Shin Ho
關鍵字: 水膠
羧甲基纖維素
聚乙二醇
控制釋放
親水性藥物
疏水性藥物
Hydrogel
Carboxymethyl cellulose
Polyethylene glycol
Controlled release
Hydrophilic drug
Hydrophobic drug
引用: 1. 杜逸虹 (1989) 聚合體學。三民書局。第151-155頁 2. Ahmed, K., Y. Li, D. J. McClements and H. Xiao (2012). Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chemistry 132 (2): 799-807. 3. Akar, E., A. Altinisik and Y. Seki (2012). Preparation of pH- and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr Polym 90 (4): 1634-1641. 4. Allen, T. M. and P. R. Cullis (2004). Drug Delivery Systems: Entering the Mainstream. Science 303 (5665): 1818. 5. Anumolu, S. S., A. R. Menjoge, M. Deshmukh, D. Gerecke, S. Stein, J. Laskin and P. J. Sinko (2011). Doxycycline hydrogels with reversible disulfide crosslinks for dermal wound healing of mustard injuries. Biomaterials 32 (4): 1204-1217. 6. Bao, Y., J. Ma and N. Li (2011). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydrate Polymers 84 (1): 76-82. 7. Barkhordari, S., M. Yadollahi and H. Namazi (2014). pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. Journal of Polymer Research 21 (6): 454. 8. Bennison, L., C. Miller, R. Summers, A. Minnis, G. Sussman and W. McGuiness (2017). The pH of wounds during healing and infection: a descriptive literature review. Wound Practice & Research: Journal of the Australian Wound Management Association 25 (2): 63. 9. Bergonzi, M. C., R. Hamdouch, F. Mazzacuva, B. Isacchi and A. R. Bilia (2014). Optimization, characterization and in vitro evaluation of curcumin microemulsions. LWT - Food Science and Technology 59 (1): 148-155. 10. Bhattarai, N., J. Gunn and M. Zhang (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews 62 (1): 83-99. 11. Bhattarai, N., H. R. Ramay, J. Gunn, F. A. Matsen and M. Zhang (2005). PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. Journal of Controlled Release 103 (3): 609-624. 12. Boyd, J., C. Parkinson and P. Sherman (1972). Factors affecting emulsion stability, and the HLB concept. Journal of Colloid and Interface Science 41 (2): 359-370. 13. Butler, M. F., Y. F. Ng and P. D. Pudney (2003). Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. Journal of Polymer Science Part A: Polymer Chemistry 41 (24): 3941-3953. 14. Buttafoco, L., N. G. Kolkman, P. Engbers-Buijtenhuijs, A. A. Poot, P. J. Dijkstra, I. Vermes and J. Feijen (2006). Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27 (5): 724-734. 15. Caló, E. and V. V. Khutoryanskiy (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal 65: 252-267. 16. Capanema, N. S. V., A. A. P. Mansur, A. C. de Jesus, S. M. Carvalho, L. C. de Oliveira and H. S. Mansur (2018). Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International Journal of Biological Macromolecules 106: 1218-1234. 17. Champion, J. A., Y. K. Katare and S. Mitragotri (2007). Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. Journal of Controlled Release 121 (1): 3-9. 18. Chang, C., D. Bo, C. Jie and Z. Lina (2010). Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European polymer journal: 92-100. 19. Chang, C. and L. Zhang (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers 84 (1): 40-53. 20. Chen, S. C., Y. C. Wu, F. L. Mi, Y. H. Lin, L. C. Yu and H. W. Sung (2004). A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96 (2): 285-300. 21. Chen, Y. C., C. L. Lo, Y. F. Lin and G. H. Hsiue (2013). Rapamycin encapsulated in dual-responsive micelles for cancer therapy. Biomaterials 34 (4): 1115-1127. 22. Costa, P. and J. M. Sousa Lobo (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences 13 (2): 123-133. 23. Credou, J. and T. Berthelot (2014). Cellulose: from biocompatible to bioactive material. Journal of Materials Chemistry B 2 (30): 4767-4788. 24. Cui, J., B. Yu, Y. Zhao, W. Zhu, H. Li, H. Lou and G. Zhai (2009). Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. International Journal of Pharmaceutics 371 (1): 148-155. 25. Dang, Q. F., J. Q. Yan, J. J. Li, X. J. Cheng, C. S. Liu and X. G. Chen (2011). Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. Carbohydrate Polymers 83 (1): 171-178. 26. Danielsson, I. and B. Lindman (1981). The definition of microemulsion. Colloids and Surfaces 3 (4): 391-392. 27. Debele, T. A., S. L. Mekuria and H.-C. Tsai (2016). Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Materials Science and Engineering: C 68: 964-981. 28. Delmar, K. and H. Bianco-Peled (2016). Composite chitosan hydrogels for extended release of hydrophobic drugs. Carbohydrate Polymers 136: 570-580. 29. Demitri, C., R. Del Sole, F. Scalera, A. Sannino, G. Vasapollo, A. Maffezzoli, L. Ambrosio and L. Nicolais (2008). Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. Journal of Applied Polymer Science 110 (4): 2453-2460. 30. Djerassi, C., J. D. Gray and F. A. Kincl (1960). Naturally Occurring Oxygen Heterocyclics. IX.1 Isolation and Characterization of Genipin2. The Journal of Organic Chemistry 25 (12): 2174-2177. 31. Dušek, K. and V. Vojta (1977). Concentration of elastically active network chains and cyclisation in networks obtained by alternating stepwise polyaddition. British Polymer Journal 9 (2): 164-171. 32. El-Sayed, S., K. H. Mahmoud, A. A. Fatah and A. Hassen (2011). DSC, TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Physica B: Condensed Matter 406 (21): 4068-4076. 33. Fei Liu, X., Y. Lin Guan, D. Zhi Yang, Z. Li and K. De Yao (2000). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science 79 (7): 1324-1335. 34. Ferreira, L., M. M. Figueiredo, M. H. Gil and M. A. Ramos (2005). Structural analysis of dextran‐based hydrogels obtained chemoenzymatically. Journal of Biomedical Materials Research Part B: Applied Biomaterials 77B (1): 55-64. 35. Fischer, D., Y. Li, B. Ahlemeyer, J. Krieglstein and T. Kissel (2003). In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24 (7): 1121-1131. 36. Francis S., J. K. and H. W. T. Matthew (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21 (24): 2589-2598. 37. French, A. D. (2017). Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24 (11): 4605-4609. 38. Gong, C. Y., S. Shi, L. Wu, M. L. Gou, Q. Q. Yin, Q. F. Guo, P. W. Dong, F. Zhang, F. Luo, X. Zhao, Y. QWei and Z. Qian (2009). Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel. Part 2: Sol–gel–sol transition and drug delivery behavior. Acta Biomaterialia 5 (9): 3358-3370. 39. Gong, C., Q. Wu, Y. Wang, D. Zhang, F. Luo, X. Zhao, Y. Wei and Z. Qian (2013). A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 34 (27): 6377-6387. 40. Gulrez, S. K., S. Al-Assaf and G. O. Phillips (2011). Hydrogels: methods of preparation, characterisation and applications. Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. 978-953-307-268-5. InTech. 41. Gupta, P., K. Vermani and S. Garg (2002). Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today 7 (10): 569-579. 42. Hamidi, M., A. Azadi and P. Rafiei (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews 60 (15): 1638-1649. 43. Haworth, W., E. Hirst and H. Thomas (1930). The existence of the cellobiose residue in cellulose. Nature 126 (3177): 438. 44. Hebeish, A., M. Hashem, M. M. El-Hady and S. Sharaf (2013). Development of CMCNA hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92 (1): 407-413. 45. Higuchi, T. (1961). Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. Journal of Pharmaceutical Sciences 50 (10): 874-875. 46. Higuchi, T. (1963). Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences 52 (12): 1145-1149. 47. Hoare, T. R. and D. S. Kohane (2008). Hydrogels in drug delivery: Progress and challenges. Polymer 49 (8): 1993-2007. 48. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 64 (Supplement): 18-23. 49. Holowka, E. P. and S. K. Bhatia (2014). Drug Delivery: Materials Design and Clinical Perspective. New York, NY, Springer New York. 50. Huang, X. and C. S. Brazel (2001). On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release 73 (2): 121-136. 51. Hussain, Z., H. E. Thu, M. W. Amjad, F. Hussain, T. A. Ahmed and S. Khan (2017). Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Materials Science and Engineering: C 77: 1316-1326. 52. Işiklan, N. (2006). Controlled release of insecticide carbaryl from sodium alginate, sodium alginate/gelatin, and sodium alginate/sodium carboxymethyl cellulose blend beads crosslinked with glutaraldehyde. Journal of Applied Polymer Science 99 (4): 1310-1319. 53. Ito, T., Y. Yeo, C. B. Highley, E. Bellas, C. A. Benitez and D. S. Kohane (2007). The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 28 (6): 975-983. 54. Jenkins, A., P. Kratochvil, R. Stepto and U. Suter (1996). Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure and applied chemistry 68 (12): 2287-2311. 55. Jeong, B., Y. H. Bae and S. W. Kim (2000). Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. Journal of Controlled Release 63 (1): 155-163. 56. Jeong, B., S. W. Kim and Y. H. Bae (2012). Thermosensitive sol–gel reversible hydrogels. Advanced Drug Delivery Reviews 64: 154-162. 57. Job, N., A. Théry, R. Pirard, J. Marien, L. Kocon, J.-N. Rouzaud, F. Béguin and J.-P. Pirard (2005). Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials. Carbon 43 (12): 2481-2494. 58. Joung, Y. K., J. Y. Jang, J. H. Choi, D. K. Han and K. D. Park (2013). Heparin-Conjugated Pluronic Nanogels as Multi-Drug Nanocarriers for Combination Chemotherapy. Molecular Pharmaceutics 10 (2): 685-693. 59. Kim, M. S., S. J. Park, B. K. Gu and C.-H. Kim (2012). Ionically crosslinked alginate–carboxymethyl cellulose beads for the delivery of protein therapeutics. Applied Surface Science 262: 28-33. 60. Kim, S., G. Iyer, A. Nadarajah, J. M. Frantz and A. L. Spongberg (2010). Polyacrylamide Hydrogel Properties for Horticultural Applications. International Journal of Polymer Analysis and Characterization 15 (5): 307-318. 61. Klemm, D., B. Heublein, H. P. Fink and A. Bohn (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition 44 (22): 3358-3393. 62. Kong, M., X. G. Chen, K. Xing and H. J. Park (2010). Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology 144 (1): 51-63. 63. Kono, H. (2014). Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethylene glycol. Carbohydrate Polymers 106: 84-93. 64. Kono, H., K. Ogasawara, R. Kusumoto, K. Oshima, H. Hashimoto and Y. Shimizu (2016). Cationic cellulose hydrogels cross-linked by poly(ethylene glycol): Preparation, molecular dynamics, and adsorption of anionic dyes. Carbohydrate Polymers 152: 170-180. 65. Kono, H., K. Onishi and T. Nakamura (2013). Characterization and bisphenol A adsorption capacity of β-cyclodextrin–carboxymethylcellulose-based hydrogels. Carbohydrate Polymers 98 (1): 784-792. 66. Kontturi, E., T. Tammelin and M. Osterberg (2006). Cellulose-model films and the fundamental approach. Chemical Society Reviews 35 (12): 1287-1304. 67. Korsmeyer, R. W., R. Gurny, E. Doelker, P. Buri and N. A. Peppas (1983). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics 15 (1): 25-35. 68. Kulkarnia, A. R., K. S. Soppimatha, T. M. Aminabhavia, A. M. Daveb and M. H. Mehtab (2000). Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. Journal of Controlled Release 63 (1-2): 97–105. 69. Lawrence, M. J. and G. D. Rees (2012). Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews 64: 175-193. 70. Lawrence, W. H., M. Malik, J. E. Turner and J. Autian (1972). Toxicity profile of epichlorohydrin. Journal of Pharmaceutical Sciences 61 (11): 1712-1717. 71. Leach, J. B. and C. E. Schmidt (2005). Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 26 (2): 125-135. 72. Lee, K. Y. and D. J. Mooney (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science 37 (1): 106-126. 73. Lee, P. I. (1985). Kinetics of drug release from hydrogel matrices. Journal of Controlled Release 2: 277-288. 74. Li, D., Y. Ye, D. Li, X. Li and C. Mu (2016). Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin–PEG composite hydrogel fibers for wound dressings. Carbohydrate Polymers 137: 508-514. 75. Li, L., P. M. Thangamathesvaran, C. Y. Yue, K. C. Tam, X. Hu and Y. C. Lam (2001). Gel Network Structure of Methylcellulose in Water. Langmuir 17 (26): 8062-8068. 76. Li, Y., M. Hu, Y. Du, H. Xiao and D. J. McClements (2011). Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocolloids 25 (1): 122-130. 77. Liang, H.-F., M.-H. Hong, R.-M. Ho, C.-K. Chung, Y.-H. Lin, C.-H. Chen and H.-W. Sung (2004). Novel Method Using a Temperature-Sensitive Polymer (Methylcellulose) to Thermally Gel Aqueous Alginate as a pH-Sensitive Hydrogel. Biomacromolecules 5 (5): 1917-1925. 78. Lin, C.-C. and K. S. Anseth (2009). PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharmaceutical Research 26 (3): 631-643. 79. Lin, C.-C. and A. T. Metters (2006). Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews 58 (12): 1379-1408. 80. Lin, Y. C., J. Cho, G. A. Tompsett, P. R. Westmoreland and G. W. Huber (2009). Kinetics and Mechanism of Cellulose Pyrolysis. Journal of Physical Chemistry C 113 (46): 20097-20107. 81. Liu, P., M. Zhai, J. Li, J. Peng and J. Wu (2002). Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiation Physics and Chemistry 63 (3): 525-528. 82. Liu, T.-Y., S.-Y. Chen, Y.-L. Lin and D.-M. Liu (2006). Synthesis and Characterization of Amphiphatic Carboxymethyl-hexanoyl Chitosan Hydrogel:  Water-Retention Ability and Drug Encapsulation. Langmuir 22 (23): 9740-9745. 83. Ma, J., L. Zhang, B. Fan, Y. Xu and B. Liang (2008). A novel sodium carboxymethylcellulose/poly (N‐isopropylacrylamide)/Clay semi‐IPN nanocomposite hydrogel with improved response rate and mechanical properties. Journal of Polymer Science Part B: Polymer Physics 46 (15): 1546-1555. 84. Majewicz, T. G., P. E. Erazo‐Majewicz and T. J. Podlas (2002). Cellulose ethers. Encyclopedia of polymer science and technology: 85. Maleki, H., L. Durães and A. Portugal (2014). An overview on silica aerogels synthesis and different mechanical reinforcing strategies. Journal of Non-Crystalline Solids 385: 55-74. 86. Ghannam, M. T. and M. N. Esmail (1997). Rheological properties of carboxymethyl cellulose. Journal of applied polymer science, 1997, 64.2: 289-301. 87. Marsano, E., E. Bianchi and L. Sciutto (2003). Microporous thermally sensitive hydrogels based on hydroxypropyl cellulose crosslinked with poly-ethyleneglicol diglycidyl ether. Polymer 44 (22): 6835-6841. 88. Mishra, R. K., M. Datt and A. K. Banthia (2008). Synthesis and Characterization of Pectin/PVP Hydrogel Membranes for Drug Delivery System. AAPS PharmSciTech 9 (2): 395-403. 89. Mitsumata, T., Y. Suemitsu, K. Fujii, T. Fujii, T. Taniguchi and K. Koyama (2003). pH-response of chitosan, κ-carrageenan, carboxymethyl cellulose sodium salt complex hydrogels. Polymer 44 (23): 7103-7111. 90. Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology 11 (3): 266-277. 91. Morgan, K. M., J. A. Ellis, J. Lee, A. Fulton, S. L. Wilson, P. S. Dupart and R. Dastoori (2013). Thermochemical studies of epoxides and related compounds. The Journal of organic chemistry 78 (9): 4303-4311. 92. Morris, J. K. (1965). A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. J. cell Biol 27: 1A-149A. 93. Mota, M., P. Carvalho, J. Ramalho and E. Leite (1991). Spectrophotometric analysis of sodium fluorescein aqueous solutions. Determination of molar absorption coefficient. International ophthalmology 15 (5): 321-326. 94. Muzzarelli, R. A. A. (2009). Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers 77 (1): 1-9. 95. Naksuriya, O., S. Okonogi, R. M. Schiffelers and W. E. Hennink (2014). Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35 (10): 3365-3383. 96. Odian, G. (2004). Principles of polymerization, John Wiley & Sons. 97. Ono, S., R. Imai, Y. Ida, D. Shibata, T. Komiya and H. Matsumura (2015). Increased wound pH as an indicator of local wound infection in second degree burns. Burns 41 (4): 820-824. 98. Pakulska, M. M., K. Vulic, R. Y. Tam and M. S. Shoichet (2015). Hybrid crosslinked methylcellulose hydrogel: a predictable and tunable platform for local drug delivery. Advanced Materials 27 (34): 5002-5008. 99. Park, Y. S., J. Won and Y. S. Kang (2000). Preparation of Poly(ethylene glycol) Brushes on Polysulfone Membranes for Olefin/Paraffin Separation. Langmuir 16 (24): 9662-9665. 100. Peppas, N. A., J. Z. Hilt, A. Khademhosseini and R. Langer (2006). Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Advanced Materials 18 (11): 1345-1360. 101. Peppas, N. A., K. B. Keys, M. Torres-Lugo and A. M. Lowman (1999). Poly(ethylene glycol)-containing hydrogels in drug delivery. Journal of Controlled Release 62 (1): 81-87. 102. Peppas, N. A. and A. R. Khare (1993). Preparation, structure and diffusional behavior of hydrogels in controlled release. Advanced Drug Delivery Reviews 11 (1): 1-35. 103. Perez-Cantu, L., F. Liebner and I. Smirnova (2014). Preparation of aerogels from wheat straw lignin by cross-linking with oligo(alkylene glycol)-α,ω-diglycidyl ethers. Microporous and Mesoporous Materials 195: 303-310. 104. Pettersen, R. C. (1984). The Chemical Composition of Wood. American Chemical Society. 105. Pushpamalar, V., S. J. Langford, M. Ahmad and Y. Y. Lim (2006). Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydrate Polymers 64 (2): 312-318. 106. Raafat, A. I., M. Eid and M. B. El-Arnaouty (2012). Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 283: 71-76. 107. Rao, K. R. and K. P. Devi (1988). Swelling controlled-release systems: recent developments and applications. International Journal of Pharmaceutics 48 (1-3): 1-13. 108. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science 31 (7): 603-632. 109. Ritger, P. L. and N. A. Peppas (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release 5 (1): 37-42. 110. Rodrı́guez, R., C. Alvarez-Lorenzo and A. Concheiro (2003). Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. Journal of Controlled Release 86 (2–3): 253-265. 111. Rokhade, A. P., S. A. Agnihotri, S. A. Patil, N. N. Mallikarjuna, P. V. Kulkarni and T. M. Aminabhavi (2006). Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydrate Polymers 65 (3): 243-252. 112. Rowley, J. A., G. Madlambayan and D. J. Mooney (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20 (1): 45-53. 113. Roy, D., M. Semsarilar, J. T. Guthrie and S. Perrier (2009). Cellulose modification by polymer grafting: a review. Chemical Society Reviews 38 (7): 2046-2064. 114. Ruel-Gariépy, E. and J.-C. Leroux (2004). In situ-forming hydrogels—review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics 58 (2): 409-426. 115. Sannino, A., C. Demitri and M. Madaghiele (2009). Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials 2 (2): 353-373. 116. Saravanakumar, G., D.-G. Jo and J. H Park (2012). Polysaccharide-based nanoparticles: a versatile platform for drug delivery and biomedical imaging. Current medicinal chemistry 19 (19): 3212-3229. 117. Schmaljohann, D. (2006). Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 58 (15): 1655-1670. 118. Schneider, L. A., A. Korber, S. Grabbe and J. Dissemond (2007). Influence of pH on wound-healing: a new perspective for wound-therapy? Archives of dermatological research 298 (9): 413-420. 119. Semete, B., L. Booysen, Y. Lemmer, L. Kalombo, L. Katata, J. Verschoor and H. S. Swai (2010). In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine: Nanotechnology, Biology and Medicine 6 (5): 662-671. 120. Shargel, L., B. Andrew and S. Wu-Pong (1999). Applied biopharmaceutics & pharmacokinetics, Appleton & Lange Stamford. 121. Siepmann, J. and F. Siepmann (2008). Mathematical modeling of drug delivery. International Journal of Pharmaceutics 364 (2): 328-343. 122. Sowasod, N., K. Nakagawa, W. Tanthapanichakoon and T. Charinpanitkul (2012). Development of encapsulation technique for curcumin loaded O/W emulsion using chitosan based cryotropic gelation. Materials Science and Engineering: C 32 (4): 790-798. 123. Sutar, P. B., R. K. Mishra, K. Pal and A. K. Banthia (2008). Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system. Journal of Materials Science: Materials in Medicine 19 (6): 2247-2253. 124. Tang, J., G. Fan, Z. Li, X. Li, R. Xu, Y. Li, D. Zhang, W.-J. Moon, S. D. Kaloshkin and M. Churyukanova (2013). Synthesis of carbon nanotube/aluminium composite powders by polymer pyrolysis chemical vapor deposition. Carbon 55: 202-208. 125. Tang, M. M. and R. Bacon (1964). Carbonization of cellulose fibers—I. Low temperature pyrolysis. Carbon 2 (3): 211-220. 126. Tanigo, T., R. Takaoka and Y. Tabata (2010). Sustained release of water-insoluble simvastatin from biodegradable hydrogel augments bone regeneration. Journal of Controlled Release 143 (2): 201-206. 127. Tavsanli, B. and O. Okay (2016). Preparation and fracture process of high strength hyaluronic acid hydrogels cross-linked by ethylene glycol diglycidyl ether. Reactive and Functional Polymers 109: 42-51. 128. Thorsteinn, L. and B. M. E. (2010). Pharmaceutical applications of cyclodextrins: basic science and product development. Journal of Pharmacy and Pharmacology 62 (11): 1607-1621. 129. Tongdeesoontorn, W., L. J. Mauer, S. Wongruong, P. Sriburi and P. Rachtanapun (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal 5 (1): 6. 130. Tønnesen, H. H., M. Másson and T. Loftsson (2002). Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. International Journal of Pharmaceutics 244 (1): 127-135. 131. Uskoković, V. (2008). Composites comprising cholesterol and carboxymethyl cellulose. Colloids and Surfaces B: Biointerfaces 61 (2): 250-261. 132. USP30-NF25, U. P. (2007). US Pharmacopoeial Convention. Inc., Rockville, MD, USA: 133. van Rijt, S. H., T. Bein and S. Meiners (2014). Medical nanoparticles for next generation drug delivery to the lungs. European Respiratory Journal 44 (3): 765. 134. Vareda, J. P., A. Lamy-Mendes and L. Durães (2018). A reconsideration on the definition of the term aerogel based on current drying trends. Microporous and Mesoporous Materials 258: 211-216. 135. Voet, D., J. G. Voet and C. W. Pratt (2016). Fundamentals of Biochemistry: Life at the Molecular Level, 5th Edition: Life at the Molecular Level, Wiley. 136. Wang, J. and P. Somasundaran (2005). Adsorption and conformation of carboxymethyl cellulose at solid–liquid interfaces using spectroscopic, AFM and allied techniques. Journal of Colloid and Interface Science 291 (1): 75-83. 137. Wang, X., Y. Jiang, Y.-W. Wang, M.-T. Huang, C.-T. Ho and Q. Huang (2008). Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chemistry 108 (2): 419-424. 138. Wichterle, O. and D. Lím (1960). Hydrophilic gels for biological use. Nature 185 (4706): 117-118. 139. Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials 29 (20): 2941-2953. 140. Working, P. K., M. S. Newman, J. Johnson and J. B. Cornacoff (1997). Safety of Poly(ethylene glycol) and Poly(ethylene glycol) Derivatives. Poly(ethylene glycol), American Chemical Society. 680: 45-57. 141. Yallapu, M. M., M. Jaggi and S. C. Chauhan (2012). Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discovery Today 17 (1): 71-80. 142. Yeshma, J., A. Bhaw-Luximon, D. Wesner, N. Goonoo, H. Schönherr and D. Jhurry (2017). Polysucrose-based hydrogels for loading of small molecules and cell growth. Reactive and Functional Polymers 115 (Supplement C): 18-27. 143. Zalipsky, S. (1995). Functionalized Poly(ethylene glycols) for Preparation of Biologically Relevant Conjugates. Bioconjugate Chemistry 6 (2): 150-165. 144. Zhang, C., M. R. Salick, T. M. Cordie, T. Ellingham, Y. Dan and L.-S. Turng (2015). Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Materials Science and Engineering: C 49: 463-471. 145. Zohuriaan, M. J. and F. Shokrolahi (2004). Thermal studies on natural and modified gums. Polymer Testing 23 (5): 575-579.
摘要: 本研究以羧甲基纖維素鈉(Sodium carboxymethyl cellulose;CMCNa)與交聯劑聚乙二醇二縮水甘油醚(Poly(ethylene glycol) diglycidyl ether;PEGDE)製備CMC/PEG 水膠,探討交聯劑分子量及添加量對水膠性質之影響,以 CMC/PEG 包覆親疏水性藥物,不同 pH 值探討其釋放行為及動力學。本研究分為三個部分, 第一部分探討水膠製備條件對於其性質之影響,結果顯示 CMCNa 與 PEGDE 開 環聚合產生醚鍵結構,增加交聯劑 PEGDE 之添加量及分子量,使水膠之熱穩定 性和凝膠分率提高,且平均孔徑和平衡膨潤率降低,結果證實交聯劑使水膠分子 鏈活動性下降、架橋密度與機械性質增加,體外細胞存活率試驗顯示 CMC/PEG 具生物相容性。第二部分為 CMC/PEG 水膠於親水性藥物(Fluorescein sodium salt; FSS)傳輸系統之應用,於不同 pH 值環境下水膠與乾凝膠皆具有緩釋作用,同 時其釋放速率隨交聯劑添加量及分子量增加而下降,其釋放行為符合 Higuchi 動力學模型。第三部分為 CMC/PEG 水膠於疏水性藥物薑黃素(Curcumin;CUR) 傳輸系統之應用,以乳化液提高 CUR 於水相中溶解度達 1600 倍,於不同 pH 值 環境下水膠具有緩釋效果,釋放曲線近零級動力學模型為理想之藥物釋放,研究 結果證實 CMC/PEG 水膠可應用於親疏水性藥物傳輸系統之潛力。
In this study, CMC/PEG hydrogels were synthesized from sodium carboxymethyl cellulose (CMCNa) and poly(ethylene glycol) diglycidyl ether (PEGDE) as a crosslinking agent. The effect of molecular weight and ratio of crosslinking agent on the properties of CMC/PEG hydrogel has been investigated. Hydrophilic and hydrophobic drugs loaded into CMC/PEG hydrogel-based drug delivery systems were monitored the release profiles under in different pH values. This dissertation is divided into three parts, the first part is the synthesis and properties of CMC/PEG hydrogel. The results indicate that CMCNa react with PEGDE to form ether bond by ring opening polymerization. Increasing the molar ratio and molecular weight of PEGDE, the results show that increase of thermal stability and gel fraction and decrease of the average pore diameter and equilibrium swelling ratio of CMC/PEG hydrogel. The results indicate that higher crosslink density and lower molecular chain activity increase and mechanical property. In vitro cytotoxicity indicated CMC/PEG hydrogels have good biocompatibility properties. The second part is the study of CMC/PEG hydrogels and xerogels delivery system for a hydrophilic model drug, fluorescein sodium salt (FSS). CMC/PEG hydrogel and xerogel both show the sustained release profile. The release profiles show the release rate of CMC/PEG delivery system with increasing the molar ratio and molecular weight of PEGDE are retarded. FSS release kinetics of CMC/PEG followed the Higuchi model. The third part is the application of hydrophobic drug delivery system. Emulsification technique increases solubility 1600 times of curcumin (CUR) in water phase. CUR shows sustained release property of CMC/PEG hydrogels in different pH value. The release profile of CUR from CMC/PEG hydrogels followed the ideal zero-order model. Those results demonstrated CMC/PEG hydrogels have great potential as hydrophilic and hydrophobic drug delivery systems.
URI: http://hdl.handle.net/11455/98145
文章公開時間: 2021-08-29
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.