Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98149
標題: 液化纖維素合成水性PU樹脂及其應用於有機-無機混成材料之研究
Waterborne Polyurethane Resins Synthesized from Liquefied Cellulose and Their Application in Organic-Inorganic Hybrid Materials
作者: 林均憲
Chun-Hsien Lin
關鍵字: 塗膜性質
液化纖維素
有機-無機混成材料
溶膠凝膠法
水性聚胺基甲酸酯
Coating properties
Liquefied cellulose
Organic-inorganic hybrids
Sol-gel process
Waterborne polyurethane
引用: 1. 杜逸虹 (2013) 聚合體學。三民書局。第23–28頁 2. 胡銘珊、宋憶青、李文昭 (2014) 含液化木質素水性PU樹脂之膠合及塗裝性能。林業研究季刊 36(3):217–225。 3. Adel, A. M., Z. H. A. El -Wahab, A. A. Ibrahim and M. T. Al-Shemy (2010). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresource Technology 101(12): 4446-4455. 4. Adel, A. M., Z. H. A. El-Wahab, A. A. Ibrahim and M. T. Al-Shemy (2011). Characterization of microcrystalline cellulose prepared from lignocellulosic materials Part II Physicochemical properties. Carbohydrate Polymers 83(2): 676-687. 5. Akindoyo, J. O., M. D. H. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam and A. R. Yuvaraj (2016). Polyurethane types, synthesis and applications - a review. Rsc Advances 6(115): 114453-114482. 6. Akram, D., O. Hakami, E. Sharmin and S. Ahmad (2017). Castor and linseed oil polyurethane/TEOS hybrids as protective coatings: a synergistic approach utilising plant oil polyols, a sustainable resource. Progress in Organic Coatings 108: 1-14. 7. Amarasekara, A. S. and B. Wiredu (2011). Degradation of cellulose in dilute aqueous solutions of acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride, and p-toluenesulfonic acid at moderate temperatures and pressures. Industrial & Engineering Chemistry Research 50(21): 12276-12280. 8. Amarasekara, A. S. and B. Wiredu (2015). Acidic ionic liquid catalyzed liquefaction of cellulose in ethylene glycol; identification of a new cellulose derived cyclopentenone derivative. Industrial & Engineering Chemistry Research 54(3): 824-831. 9. Barni, A. and M. Levi (2003). Aqueous polyurethane dispersions: a comparative study of polymerization processes. Journal of Applied Polymer Science 88(3): 716-723. 10. Cao, X. D., H. Dong and C. M. Li (2007). New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3): 899-904. 11. Cao, X. D., Y. Habibi and L. A. Lucia (2009). One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. Journal of Materials Chemistry 19(38): 7137-7145. 12. Cataldi, A., A. Dorigato, F. Deflorian and A. Pegoretti (2014). Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration. Journal of Materials Science 49(5): 2035-2044. 13. Chambon, F., F. Rataboul, C. Pinel, A. Cabiac, E. Guillon and N. Essayem (2011). Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis B: Environmental 105(1): 171-181. 14. Chattopadhyay, D. K. and K. Raju (2007). Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science 32(3): 352-418. 15. Chen, F. G. and Z. M. Lu (2009). Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products. Journal of Applied Polymer Science 111(1): 508-516. 16. Christ, U. and A. Bittner (1994). Rheology control of organic coatings with new hydrophobic silicas. Progress in Organic Coatings 24(1-4): 29-41. 17. Cinelli, P., I. Anguillesi and A. Lazzeri (2013). Green synthesis of flexible polyurethane foams from liquefied lignin. European Polymer Journal 49(6): 1174-1184. 18. D'Souza, J., R. Camargo and N. Yan (2014). Polyurethane foams made from liquefied bark-based polyols. Journal of Applied Polymer Science 131(16): 10. 19. D'Souza, J., S. Z. Wong, R. Camargo and N. Yan (2016). Solvolytic liquefaction of bark: understanding the role of polyhydric alcohols and organic solvents on polyol characteristics. ACS Sustainable Chemistry & Engineering 4(3): 851-861. 20. D'Souza, J. and N. Yan (2013). Producing bark-based polyols through liquefaction: effect of liquefaction temperature. ACS Sustainable Chemistry & Engineering 1(5): 534-540. 21. da Silva, G. R., A. da Silva-Cunha, F. Behar-Cohen, E. Ayres and R. L. Oréfice (2011). Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route. Materials Science and Engineering: C 31(2): 414-422. 22. Demirbas, A. (2000). Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management 41(6): 633-646. 23. Demirbas, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management 42(11): 1357-1378. 24. Desai, S., I. M. Thakore, B. D. Sarawade and S. Devi (2000). Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes. European Polymer Journal 36(4): 711-725. 25. Ding, D. Q., J. J. Wang, J. X. Xi, X. H. Liu, G. Z. Lu and Y. Q. Wang (2014). High-yield production of levulinic acid from cellulose and its upgrading to gamma-valerolactone. Green Chemistry 16(8): 3846-3853. 26. Ding, D. Q., J. X. Xi, J. J. Wang, X. H. Liu, G. Z. Lu and Y. Q. Wang (2015). Production of methyl levulinate from cellulose: selectivity and mechanism study. Green Chemistry 17(7): 4037-4044. 27. Gao, L. L., Y. H. Liu, H. W. Lei, H. Peng and R. Ruan (2010). Preparation of semirigid polyurethane foam with liquefied bamboo residues. Journal of Applied Polymer Science 116(3): 1694-1699. 28. Gilles, T. (2007). Chemistry and technology of polyols for polyurethanes. Milhail Ionescu. Rapra Technology, Shrewsbury, UK. Polymer International 56(6): 820-820. 29. Girisuta, B., L. P. B. M. Janssen and H. J. Heeres (2007). Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Industrial & Engineering Chemistry Research 46(6): 1696-1708. 30. Glowinska, E. and J. Datta (2015). Structure, morphology and mechanical behaviour of novel bio-based polyurethane composites with microcrystalline cellulose. Cellulose 22(4): 2471-2481. 31. Glowinska, E. and J. Datta (2016). Bio polyetherurethane composites with high content of natural ingredients: hydroxylated soybean oil based polyol, bio glycol and microcrystalline cellulose. Cellulose 23(1): 581-592. 32. Gonnet, J. F. (1998). Colour effects of co-pigmentation of anthocyanins revisited - 1. A colorimetric definition using the CIELAB scale. Food Chemistry 63(3): 409-415. 33. Gonnet, J. F. (1999). Colour effects of co-pigmentation of anthocyanins revisited - 2. A colorimetric look at the solutions of cyanin co-pigmented by rutin using the CIELAB scale. Food Chemistry 66(3): 387-394. 34. Hakim, A. A. A., M. Nassar, A. Emam and M. Sultan (2011). Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Materials Chemistry and Physics 129(1-2): 301-307. 35. Hassan, E. B. M. and N. Shukry (2008). Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues. Industrial Crops and Products 27(1): 33-38. 36. Hatakeyama, H., N. Kato, T. Nanbo and T. Hatakeyama (2012). Water absorbent polyurethane composites derived from molasses and lignin filled with microcrystalline cellulose. Journal of Materials Science 47(20): 7254-7261. 37. Haworth, W. N., E. L. Hirst and H. A. Thomas (1930). The existence of the cellobiose residue in cellulose. Nature 126: 438. 38. Hishikawa, Y., M. Yamaguchi, S. Kubo and T. Yamada (2013). Direct preparation of butyl levulinate by a single solvolysis process of cellulose. Journal of Wood Science 59(2): 179-182. 39. Hon, D. N. S., S. T. Chang and W. C. Feist (1985). Protection of wood surfaces against photooxidation. Journal of Applied Polymer Science 30(4): 1429-1448. 40. Honarkar, H. (2018). Waterborne polyurethanes: a review. Journal of Dispersion Science and Technology 39(4): 507-516. 41. Hu, S. J. and Y. B. Li (2014a). Polyols and polyurethane foams from acid-catalyzed biomass liquefaction by crude glycerol: effects of crude glycerol impurities. Journal of Applied Polymer Science 131(18): 9. 42. Hu, S. J. and Y. B. Li (2014b). Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: effects of crude glycerol impurities. Industrial Crops and Products 57: 188-194. 43. Hu, S. J., X. L. Luo and Y. B. Li (2014). Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. Chemsuschem 7(1): 66-72. 44. Hu, S. J., C. X. Wan and Y. B. Li (2012). Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresource Technology 103(1): 227-233. 45. Huang, H. J. and X. Z. Yuan (2015). Recent progress in the direct liquefaction of typical biomass. Progress in Energy and Combustion Science 49: 59-80. 46. Ilharco, L. M., A. R. Garcia, J. L. daSilva and L. F. V. Ferreira (1997). Infrared approach to the study of adsorption on cellulose: Influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13(15): 4126-4132. 47. Jasiukaityte, E., M. Kunaver and M. Strlic (2009). Cellulose liquefaction in acidified ethylene glycol. Cellulose 16(3): 393-405. 48. Jena, K. K. and K. Raju (2008). Synthesis and characterization of hyperbranched polyurethane hybrids using tetraethoxysilane (TEOS) as cross-linker. Industrial & Engineering Chemistry Research 47(23): 9214-9224. 49. Jin, Y. Z., Y. B. Hahn, K. S. Nahm and Y. S. Lee (2005). Preparation of stable polyurethane–polystyrene copolymer emulsions via RAFT polymerization process. Polymer 46(25): 11294-11300. 50. Kim, B. K. (1996). Aqueous polyurethane dispersions. Colloid and Polymer Science 274(7): 599-611. 51. Kim, B. K., J. W. Seo and H. M. Jeong (2003). Properties of waterborne polyurethane/nanosilica composite. Macromolecular Research 11(3): 198-201. 52. Kiziltas, A., D. J. Gardner, Y. Han and H. S. Yang (2011). Thermal properties of microcrystalline cellulose-filled PET-PTT blend polymer composites. Journal of Thermal Analysis and Calorimetry 103(1): 163-170. 53. Kobayashi, H. and A. Fukuoka (2013). Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chemistry 15(7): 1740-1763. 54. Krzan, A. and E. Zagar (2009). Microwave driven wood liquefaction with glycols. Bioresource Technology 100(12): 3143-3146. 55. Kumar, S., R. Gupta, Y. Y. Lee and R. B. Gupta (2010). Cellulose pretreatment in subcritical water: effect of temperature on molecular structure and enzymatic reactivity. Bioresource Technology 101(4): 1337-1347. 56. Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001a). Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood. Biomass & Bioenergy 21(5): 381-390. 57. Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001b). Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresource Technology 77(1): 33-40. 58. Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000). Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresource Technology 74(2): 151-157. 59. Lee, S. H., Y. Teramoto and N. Shiraishi (2002). Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. Journal of Applied Polymer Science 83(7): 1482-1489. 60. Lee, S. H., M. Yoshioka and N. Shiraishi (2000). Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. Journal of Applied Polymer Science 78(2): 319-325. 61. Lee, W. J. and M. S. Lin (2008). Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir. Journal of Applied Polymer Science 109(1): 23-31. 62. Lin, L. Z., Y. G. Yao, M. Yoshioka and N. Shiraishi (1997). Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts - studies on beta-O-4 model compound .1. Structural characterization of the reaction products. Holzforschung 51(4): 316-324. 63. Lin, L. Z., Y. G. Yao, M. Yoshioka and N. Shiraishi (2004). Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohydrate Polymers 57(2): 123-129. 64. Lin, W. T. and W. J. Lee (2017). Effects of the NCO/OH molar ratio and the silica contained on the properties of waterborne polyurethane resins. Colloids and Surfaces a-Physicochemical and Engineering Aspects 522: 453-460. 65. Lu, Y. S. and R. C. Larock (2008). Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties. Biomacromolecules 9(11): 3332-3340. 66. Lynd, L. R., J. H. Cushman, R. J. Nichols and C. E. Wyman (1991). Fuel ethanol from cellulosic biomass. Science 251(4999): 1318-1323. 67. Mota, T., D. Oliveira, R. Marchiosi, O. Ferrarese-Filho and W. dos Santos (2018). Plant cell wall composition and enzymatic deconstruction. AIMS Bioengineering 5(1): 63-77. 68. Nevell T. P. (1985). Cellulose and its derivatives: chemistry, biochemistry and applications edited by J. F. Kennedy, G. O. Phillips, D. J. Wedlock and P. A. Williams, Ellis Horwood, Ltd, Chichester, 1985. pp. 551. ISBN 0‐85312‐704‐2. British Polymer Journal 17(4): 378-378. 69. Nishiyama, Y., P. Langan and H. Chanzy (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. Journal of the American Chemical Society 124(31): 9074-9082. 70. Nishiyama, Y., J. Sugiyama, H. Chanzy and P. Langan (2003). Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron x-ray and neutron fiber diffraction. Journal of the American Chemical Society 125(47): 14300-14306. 71. Noble, K. L. (1997). Waterborne polyurethanes. Progress in Organic Coatings 32(1-4): 131-136. 72. Noreen, A., K. M. Zia, M. Zuber, S. Tabasum and M. J. Saif (2016). Recent trends in environmentally friendly water-borne polyurethane coatings: a review. Korean Journal of Chemical Engineering 33(2): 388-400. 73. Otto, B. (1947). Das di‐isocyanat‐polyadditionsverfahren (polyurethane). Angewandte Chemie 59(9): 257-272. 74. Owens, G. J., R. K. Singh, F. Foroutan, M. Alqaysi, C. M. Han, C. Mahapatra, H. W. Kim and J. C. Knowles (2016). Sol–gel based materials for biomedical applications. Progress in Materials Science 77: 1-79. 75. Pastorova, I., R. E. Botto, P. W. Arisz and J. J. Boon (1994). Cellulose char structure - a combined analytical Py-GC-MS, FTIR, and NMR-study. Carbohydrate Research 262(1): 27-47. 76. Pauly, M. and K. Keegstra (2008). Cell-wall carbohydrates and their modification as a resource for biofuels. Plant Journal 54(4): 559-568. 77. Petrović, Z. S. and J. Ferguson (1991). Polyurethane elastomers. Progress in Polymer Science 16(5): 695-836. 78. Pu, S. J. and N. Shiraishi (1993a). Liquefaction of wood without a catalyst .1. time-course of wood liquefaction with phenols and effects of wood phenol ratios. Mokuzai Gakkaishi 39(4): 446-452. 79. Pu, S. J. and N. Shiraishi (1993b). Liquefaction of wood without a catalyst .2. weight-loss by gasification during wood liquefactio, and effects of temperature and water. Mokuzai Gakkaishi 39(4): 453-458. 80. Randall, D. and S. Lee (2002). The polyurethanes book. [Everberg, Belgium]; New York, [Huntsman Polyurethanes] ; Distributed by John Wiley & Sons. 81. Roy, D., M. Semsarilar, J. T. Guthrie and S. Perrier (2009). Cellulose modification by polymer grafting: a review. Chemical Society Reviews 38(7): 2046-2064. 82. Segal, L., J. J. Creely, A. E. Martin and C. M. Conrad (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal 29(10): 786-794. 83. Serkis, M., R. Poreba, J. Hodan, J. Kredatusova and M. Spirkova (2015). Preparation and characterization of thermoplastic water-borne polycarbonate-based polyurethane dispersions and cast films. Journal of Applied Polymer Science 132(42): 14. 84. Serkis, M., M. Spirkova, J. Hodan and J. Kredatusova (2016). Nanocomposites made from thermoplastic waterborne polyurethane and colloidal silica. The influence of nanosilica type and amount on the functional properties. Progress in Organic Coatings 101: 342-349. 85. Shen, J. C. and C. E. Wyman (2012). Hydrochloric acid‐catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields. AIChE Journal 58(1): 236-246. 86. Sonnenschein, M. (2014). Polyurethanes: science, technology, markets, and trends. ISBN 978-1118737835. John Wiley and Sons. 87. Swatloski, R. P., S. K. Spear, J. D. Holbrey and R. D. Rogers (2002). Dissolution of cellose with ionic liquids. Journal of the American Chemical Society 124(18): 4974-4975. 88. Thygesen, A., J. Oddershede, H. Lilholt, A. B. Thomsen and K. Stahl (2005). On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6): 563-576. 89. Wang, H. and H. Z. Chen (2007). A novel method of utilizing the biomass resource: rapid liquefaction of wheat straw and preparation of biodegradable polyurethane foam (PUF). Journal of the Chinese Institute of Chemical Engineers 38(2): 95-102. 90. Wei, L. Q. and A. G. McDonald (2016). A review on grafting of biofibers for biocomposites. Materials 9(4): 23. 91. Wen, J. and G. L. Wilkes (1996). Organic/inorganic hybrid network materials by the sol−gel approach. Chemistry of Materials 8(8): 1667-1681. 92. Werpy, T. and G. Petersen (2004). Top value added chemicals from biomass: volume I - results of screening for potential candidates from sugars and synthesis gas, ; National Renewable Energy Lab., Golden, CO (US): Medium: ED; Size: 76 pp. pages. 93. Wu, Q. J., M. Henriksson, X. Liu and L. A. Berglund (2007). A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8(12): 3687-3692. 94. Xie, J. L., C. Y. Hse, C. J. Li, T. F. Shupe, T. X. Hu, J. Q. Qi and C. F. De Hoop (2016). Characterization of microwave liquefied bamboo potential use in the generation of nanofibrillated residue and its cellulosic fiber. Acs Sustainable Chemistry & Engineering 4(6): 3477-3485. 95. Yamada, T., M. Aratani, S. Kubo and H. Ono (2007). Chemical analysis of the product in acid-catalyzed solvolysis of cellulose using polyethylene glycol and ethylene carbonate. Journal of Wood Science 53(6): 487-493. 96. Yamada, T., Y. Hu and H. Ono (2001). Condensation reaction of degraded lignocellulose during wood liquefaction in the presence of polyhydric alcohols. Journal of The Adhesion Society of Japan 37(12): 471-478. 97. Yamada, T. and H. Ono (1999). Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technology 70(1): 61-67. 98. Yamada, T. and H. Ono (2001). Characterization of the products resulting from ethylene glycol liquefaction of cellulose. Journal of Wood Science 47(6): 458-464. 99. Yan, Y. B., M. M. Hu and Z. H. Wang (2010). Kinetic study on the liquefaction of cornstalk in polyhydric alcohols. Industrial Crops and Products 32(3): 349-352. 100. Yan, Y. B., H. Pang, X. X. Yang, R. L. Zhang and B. Liao (2008). Preparation and characterization of water-blown polyurethane foams from liquefied cornstalk polyol. Journal of Applied Polymer Science 110(2): 1099-1111. 101. Yang, C.-H., F.-J. Liu, Y.-P. Liu and W.-T. Liao (2006). Hybrids of colloidal silica and waterborne polyurethane. Journal of Colloid and Interface Science 302(1): 123-132. 102. Yeh, J.-M., C.-T. Yao, C.-F. Hsieh, H.-C. Yang and C.-P. Wu (2008). Preparation and properties of amino-terminated anionic waterborne-polyurethane–silica hybrid materials through a sol–gel process in the absence of an external catalyst. European Polymer Journal 44(9): 2777-2783. 103. Yona, A. M. C., F. Budija, B. Kricej, A. Kutnar, M. Pavlic, P. Pori, C. Tavzes and M. Petric (2014). Production of biomaterials from cork: liquefaction in polyhydric alcohols at moderate temperatures. Industrial Crops and Products 54: 296-301. 104. Zhang, H. R., F. Ding, C. R. Luo, L. Xiong and X. D. Chen (2012a). Liquefaction and characterization of acid hydrolysis residue of corncob in polyhydric alcohols. Industrial Crops and Products 39: 47-51. 105. Zhang, H. R., H. Pang, J. Z. Shi, T. Z. Fu and B. Liao (2012b). Investigation of liquefied wood residues based on cellulose, hemicellulose, and lignin. Journal of Applied Polymer Science 123(2): 850-856. 106. Zhang, Q., G. Zhao and J. Chen (2006). Effects of inorganic acid catalysts on liquefaction of wood in phenol. Frontiers of Forestry in China 1(2): 214. 107. Zhang, T., Y. J. Zhou, D. H. Liu and L. Petrus (2007). Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresource Technology 98(7): 1454-1459. 108. Zhao, Y., N. Yan and M. Feng (2012). Polyurethane foams derived from liquefied mountain pine beetle-infested barks. Journal of Applied Polymer Science 123(5): 2849-2858. 109. Zhou, X., Y. Li, C. Q. Fang, S. J. Li, Y. L. Cheng, W. Q. Lei and X. J. Meng (2015). Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: a review. Journal of Materials Science & Technology 31(7): 708-722. 110. Zia, K. M., S. Anjum, M. Zuber, M. Mujahid and T. Jamil (2014). Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. International Journal of Biological Macromolecules 66: 26-32.
摘要: 有鑑於化石原料日漸枯竭,本研究以液化反應轉化生質物(Biomass)取代部分傳統化學品。第一部分以微晶纖維素(Microcrystalline cellulose;MC)及Whatman 1號濾紙(Whatman No.1 filter paper;WH)為原料,聚乙二醇(Polyethylene glycol;PEG-400)及丙三醇為液化溶劑,硫酸為催化劑進行液化處理,探討液化產物性質之經時變化;第二部分以液化MC與WH取代部分多元醇與異佛爾酮二異氰酸酯(Isophorone diisocyanate;IPDI)以預聚合法合成水性聚胺基甲酸酯(Waterborne polyurethane;WPU)樹脂,並探討合成樹脂及其應用於塗料之性質;第三部分則於水性PU樹脂添加四乙基矽氧烷(Tetraethoxysilane;TEOS),以溶膠凝膠法(Sol-gel process)製備水性PU/矽氧有機-無機混成材料,並探討不同TEOS添加量對混成材薄膜性質之影響。研究結果顯示液化纖維素之殘渣率隨液化時間增加而降低,液化處理90 min後MC和WH之羥價為294和286 mg KOH/g,重量平均分子量為998和1153 g/mol,顯微影像證實液化處理之殘渣尺寸較原料小且分布較窄,XRD分析證明液化產物殘渣維持纖維素Ⅰβ型結晶結構。液化纖維素為原料可成功製備水性PU樹脂,隨液化纖維素取代比例增加,樹脂液之黏度及粒徑增大,其樹脂薄膜之拉伸模數及儲存模數增加,液化纖維素基質者於紫外光波段之穿透率降低,然熱安定性、拉伸強度及破壞伸長率則降低。塗裝性質則顯示各條件樹脂塗膜附著性、耐衝擊性、耐冷及耐熱性佳,添加液化纖維素者顏色偏黃且硬度增加,惟耐磨耗性降低。添加TEOS製備之水性PU/矽氧混成材所形成之SiO2三次元網狀結構會增加材料間之交互作用,並限制水性PU樹脂分子鏈之活動性,提高水性PU/矽氧混成材之熱穩定性,但過量SiO2影響水性PU樹脂分子鏈排列之規則性,降低樹脂薄膜之耐水性、耐溶劑性及機械性質,惟液化纖維素取代比例50%者,添加TEOS之薄膜拉伸強度及拉伸模數顯著增加。
In this study, biomass was liquefied to substitute partial chemicals due to the depletion of fossil fuels. In the first section, microcrystalline cellulose (MC) and Whatman No.1 filter paper (WH) were liquefied using PEG400-glycerol co-solvent with sulfuric acid as a catalyst. The properties of liquefied MC and WH at various liquefaction time intervals were investigated. In the second section, waterborne polyurethane (PU) resins were prepared from polyol that partial polyhydric alcohol was substituted by liquefied cellulose and isophorone diisocyanate (IPDI) by prepolymer mixing process. The properties of waterborne PU resin solution, films and coatings were studied. In the third section, waterborne PU/silica organic-inorganic hybrids were prepared by mixing waterborne PU resins with tetraethoxysilane (TEOS) through sol-gel process. The performance of prepared hybrid films was discussed. The result shows that residual content of liquefied cellulose gradually decreased with prolonged liquefaction time. The hydroxyl values of liquefied MC and WH are 294 and 286 mg KOH/g. The weight average molecular weight of liquefied MC and WH are 998 and 1153 g/mol. Microscopy images show that residues of liquefied cellulose have smaller particle size and narrower distribution than unliquefied ones. X-ray diffraction analysis confirms that residues of liquefied MC and WH maintain cellulose type Ⅰβ crystal structure. Liquefied cellulose can be successfully used in preparing waterborne PU resins. Viscosity and particle size of synthetic resins increases with increased the substitution ratio of liquefied cellulose. Waterborne PU resin films contain liquefied cellulose have lower ultraviolet (UV) transmittance than conventional PU film. With the content of liquefied cellulose increasing, the Young's modulus and storage modulus of PU film increase while the tensile strength, elongation at break and thermal stability decrease. PU resin coatings prepared with various content of liquefied cellulose show good performance of adhesion, impact resistance, cold and heat resistance for wood. With the content of liquefied cellulose increasing, the color of waterborne PU coatings turns yellow and the hardness increase. However, the abrasion resistance of liquefied cellulose-based waterborne PU decreases. Waterborne PU/silica organic-inorganic hybrids can be successfully prepared by mixing waterborne PU resins with TEOS. The network structure of SiO2 increases the interaction between materials and limits the activity of the molecular chains of waterborne PU resin. Thus, the thermal stability of waterborne PU/silica hybrids can be improved. The water resistance, solvent resistance and mechanical properties of PU/silica hybrid films are reduced since excessive SiO2 affect the regular arrangement of the molecular chains of waterborne PU resin. Notably, the tensile strength and Young's modulus of waterborne PU resin films containing 50% liquefied cellulose increase after adding TEOS.
URI: http://hdl.handle.net/11455/98149
文章公開時間: 2021-08-29
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.