Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98155
標題: 台灣三種瓜類萎凋病菌 Fusarium oxysporum 之病原性及分子親緣關係
Pathogenicity and phylogeny of Fusarium oxysporum causing three cucurbits wilting in Taiwan
作者: 鍾井辰
Ching-Chen Chung
關鍵字: 瓜類
萎凋病菌
交互病原性
嫁接苦瓜
親緣關係
SIX6
Cucurbitaceae
Fusarium oxysporum
cross-pathogenicity
grafted bitter gourd
phylogeny
SIX6
引用: Agrios, G. N. 2005. Plant Pathology. 5th eds. Department of Plant Pathology. University of Florida. United States of America: 523-526 pp. Alkher, H., El Hadrami, A., Rashid, K., Adam, L., and Daayf, F. 2009. Cross-pathogenicity of Verticillium dahliae between potato and sunflower. European Journal of Plant Pathology 124: 505-519. Appel, D. J., and Gordon, T. R. 1995. Intraspecific variation within populations of Fusarium oxysporum based on RFLP analysis of the intergenic spacer region of the rDNA. Experimental Mycology 19: 120-128. Armstrong, G. M., and Armstrong, J. K. 1978. Formae speciales and races of Fusarium oxysporum causing wilts of the Cucurbitaceae [Reclassification]. Phytopathology 68: 19-28. Baayen, R., Förch, M., Waalwijk, C., Bonants, P., Löffler, H., and Roebroeck, E. 1998. Pathogenic, genetic and molecular characterisation of Fusarium oxysporum f. sp. lilii. European Journal of Plant Pathology 104: 887-894. Bletsos, F. A. 2005. Use of grafting and calcium cyanamide as alternatives to methyl bromide soil fumigation and their effects on growth, yield, quality and fusarium wilt control in melon. Journal of Phytopathology 153: 155-161. Bourbos, V. A., Skoudridakis, M. T., Darakis, G. A., and Koulizakis, M. 1997. Calcium cyanamide and soil solarization for the control of Fusarium solani f. sp. cucurbitae in greenhouse cucumber. Crop Protection 16: 383-386. Cafri, D., Katan, J., and Katan, T. 2005. Cross‐pathogenicity between formae speciales of Fusarium oxysporum, the pathogens of cucumber and melon. Journal of Phytopathology 153: 615-622. Chakrabarti, A., Rep, M., Wang, B., Ashton, A., Dodds, P., and Ellis, J. 2011. Variation in potential effector genes distinguishing Australian and non‐Australian isolates of the cotton wilt pathogen Fusarium oxysporum f. sp. vasinfectum. Plant Pathology 60: 232-243. Chang, C. W., 2009. Race differential of Fusarium oxysporum f. sp. luffae and its control by using resistant rootstocks: National Chung Hsing University, Taichunng, Taiwan. M. S. Thesis. 54 pp. Chen, J. F., 1999. Identification of Fusarium wilt of cucumber and screening of nonpathogenic Fusarium oxysporum for the disease control: National Chung Hsing University, Taichunng, Taiwan. M. S. Thesis. 80 pp. Cohen, R., Horev, C., Burger, Y., Shriber, S., Hershenhorn, J., Katan, J., and Edelstein, M. 2002. Horticultural and pathological aspects of Fusarium wilt management using grafted melons. HortScience 37: 1069-1073. Cohen, R., Orgil, G., Burger, Y., Saar, U., Elkabetz, M., Tadmor, Y., Edelstein, M., Belausov, E., Maymon, M., and Freeman, S. 2015. Differences in the responses of melon accessions to fusarium root and stem rot and their colonization by Fusarium oxysporum f. sp. radicis‐cucumerinum. Plant Pathology 64: 655-663. Cumagun, C. J. R., Aguirre, J. A., Relevante, C. A., and Balatero, C. H. 2010. Pathogenicity and aggressiveness of Fusarium oxysporum Schl. in bottle gourd and bitter gourd. Plant Protection Science 46: 51-58. Dissanayake, M. L. M. C., Kashima, R., Tanaka, S., and Ito, S.-I. 2009. Genetic diversity and pathogenicity of Fusarium oxysporum isolated from wilted Welsh onion in Japan. Journal of General Plant Pathology 75: 125-130. Enya, J., Togawa, M., Takeuchi, T., Yoshida, S., Tsushima, S., Arie, T., and Sakai, T. 2008. Biological and phylogenetic characterization of Fusarium oxysporum complex, which causes yellows on Brassica spp., and proposal of F. oxysporum f. sp. rapae, a novel forma specialis pathogenic on B. rapa in Japan. Phytopathology 98: 475-483. FAO. 2016. Food and agriculture data. Retrieved August 19, 2018, from http://www.fao.org/faostat/en/#home Fletcher, J. T., and Kingham, H. G. 1966. Fusarium wilt of cucumbers in England. Plant Pathology 15: 85-89. Fourie, G., Steenkamp, E. T., Ploetz, R. C., Gordon, T. R., and Viljoen, A. 2011. Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infection, Genetics and Evolution 11: 533-542. Fraser‐Smith, S., Czislowski, E., Meldrum, R. A., Zander, M., O'neill, W., Balali, G. R., and Aitken, E. A. B. 2014. Sequence variation in the putative effector gene SIX8 facilitates molecular differentiation of Fusarium oxysporum f. sp. cubense. Plant Pathology 63: 1044-1052. Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., and Travers, S. E. 2006. Climate change effects on plant disease: genomes to ecosystems. Annual Review of Phytopathology 44: 489-509. Gerlagh, M., and Blok, W. J. 1988. Fusarium oxysporum f. sp. cucurbitacearum n.f. embracing all formae speciales of F. oxysporum attacking cucurbitaceous crops. European Journal of Plant Pathology 94: 17-31. Gordon, T. R., and Martyn, R. D. 1997. The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology 35: 111-128. Guadet, J., Julien, J., Lafay, J. F., and Brygoo, Y. 1989. Phylogeny of some Fusarium species, as determined by large-subunit rRNA sequence comparison. Molecular Biology and Evolution 6: 227-242. Guan, W., Zhao, X., Hassell, R., and Thies, J. 2012. Defense mechanisms involved in disease resistance of grafted vegetables. HortScience 47: 164-170. Haegi, A., Catalano, V., Luongo, L., Vitale, S., Scotton, M., Ficcadenti, N., and Belisario, A. 2013. A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes. Phytopathology 103: 802-810. Hsu, H. C., 2002. Disease ecology of Fusarium wilt of loofah and its grafting control: National Chung Hsing University, Taichunng, Taiwan. M. S. Thesis. 64 pp. Huang, K. S., 1996. The identification and management of diseases of bitter gourd- loofah grafts. Taichung city, Taiwan: National Chung Hsing University. M. S. Thesis. 132 pp. Huang, M. J., 2006. Characterization of Fusarium oxysporum isolates obtained from cucumber in Taiwan by pathogenicity, VCG and RAPD: National Chung Hsing University, Taichunng, Taiwan. M. S. Thesis. 59 pp. Huang, M. J., 2010. Identification for the causal agent of melon Fusarium wilt and its essential biological characteristics and screening test of biocontrol agents: National Chung Hsing University, Taichunng, Taiwan. M. S. Thesis. 51 pp. Jeffrey, C. 1980. A review of the Cucurbitaceae. Botanical Journal of the Linnean Society 81: 233-247. Jelinski, N. A., Broz, K., Jonkers, W., Ma, L. J., and Kistler, H. C. 2017. Effector gene suites in some soil isolates of Fusarium oxysporum are not sufficient predictors of vascular wilt in tomato. Phytopathology 107: 842-851. Keinath, A. P., and Hassell, R. L. 2014. Control of Fusarium wilt of watermelon by grafting onto bottlegourd or interspecific hybrid squash despite colonization of rootstocks by Fusarium. Plant Disease 98: 255-266. Kuldau, G. A., and Yates, I. E., 2000. Evidence for Fusarium endophytes in cultivated and wild plants. In Microbial endophytes. Marcel Dekker. New York. 85–117 pp. Lee, J. M. 1994. Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience 29: 235-239. Leslie, J. F., and Summerell, B. A., 2008. The Fusarium laboratory manual. Blackwell Publishing. Iowa, USA. 1-388 pp. Lievens, B., Claes, L., Vakalounakis, D. J., Vanachter, A. C. R. C., and Thomma, B. P. H. J. 2007. A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis‐cucumerinum. Environmental Microbiology 9: 2145-2161. Lievens, B., Houterman, P. M., and Rep, M. 2009. Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiology Letters 300: 201-215. Lievens, B., Rep, M., and Thomma, B. P. H. J. 2008. Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. Pest Management Science 64: 781-788. Lin, Y. S., Chen, Y. J., and Wang, C. J. 2011. Wilt-type disease of Cucurbitaceous plants in field. Paper presented at the 2011 Symposium on Special issue or the symposium on diagnosis of plant pests and case study. From http://gimi.tmu.edu.tw/files/archive/33_d83cf40f.pdf Lin, Y. S., Huang, C. H., and Kuo, M. S. 1996. Occurrence and dissemination of Fusarium wilt of bitter gourd in Taiwan. Plant Pathology Bulletin 5: 38-46. Ling, N., Zhang, W., Wang, D., Mao, J., Huang, Q., Guo, S., and Shen, Q. 2013. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One 8: e63383. Louws, F. J., Rivard, C. L., and Kubota, C. 2010. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Scientia Horticulturae 127: 127-146. Malcolm, G. M., Kuldau, G. A., Gugino, B. K., and Jiménez-Gasco, M. D. M. 2013. Hidden host plant associations of soilborne fungal pathogens: an ecological perspective. Phytopathology 103: 538-544. Mandeel, Q., and Baker, R. 1991. Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 81: 462-469. Martyn, R. D., and Hartz, T. K. 1986. Use of soil solarization to control Fusarium wilt of watermelon. Plant Disease 70: 762-766. Martyn, R. D., and Mclaughlin, R. J. 1983. Susceptibility of summer squash to the watermelon wilt pathogen (Fusarium oxysporum f. sp. niveum). Plant Disease 67: 263-266. Mbofung, G. Y., Hong, S. G., and Pryor, B. M. 2007. Phylogeny of Fusarium oxysporum f. sp. lactucae inferred from mitochondrial small subunit, elongation factor 1-α, and nuclear ribosomal intergenic spacer sequence data. Phytopathology 97: 87-98. Meldrum, R. A., Fraser-Smith, S., Tran-Nguyen, L. T. T., Daly, A. M., and Aitken, E. A. B. 2012. Presence of putative pathogenicity genes in isolates of Fusarium oxysporum f. sp. cubense from Australia. Australasian Plant Pathology 41: 551-557. Namiki, F., Izumi, S., Kayamura, T., and Shiomi, T. 1992. Specialization of pathogenic strains of Fusarium oxysporum in the Cucurbitaceae. Annals of the Phytopathological Society of Japan 58: 540-541. Namiki, F., Shiomi, T., Kayamura, T., and Tsuge, T. 1994. Characterization of the formae speciales of Fusarium oxysporum causing wilts of cucurbits by DNA fingerprinting with nuclear repetitive DNA sequences. Applied and Environmental Microbiology 60: 2684-2691. Nel, B., Steinberg, C., Labuschagne, N., and Viljoen, A. 2007. Evaluation of fungicides and sterilants for potential application in the management of Fusarium wilt of banana. Crop Protection 26: 697-705. Netzer, D., Niego, S., and Galun, E. 1977. A dominant gene conferring resistance to Fusarium wilt in cucumber. Phytopathology 67: 525-527. Nomura, Y. 1992. Pathogenicity to pumpkins (Cucurbita spp.) of bottle gourd fusarium wilt organism (Fusarium oxysporum f. sp. lagenariae) isolated from acutely wilted cucurbitaceous plants. Japanese Journal of Phytopathology 58: 373-379. Nyvall, R. F., and Haglund, W. A. 1976. Effect of plant age on severity of pea wilt caused by Fusarium oxysporum f. sp. pisi race 5. Phytopathology 66: 1093-1096. O'donnell, K., Kistler, H. C., Cigelnik, E., and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences, 95: 2044-2049. Owen, J. H. 1956. Cucumber wilt, caused by Fusarium oxysporum f. cucumerinum. Phytopathology 46: 153-157. Palti, J., and Joffe, A. Z. 1971. Causes of the Fusarium wilts of cucurbits in Israel and conditions favoring their development. Journal of Phytopathology 70: 31-42. Petrini, O., 1991. Fungal endophytes of tree leaves. In. Microbial Ecology of Leaves. Springer. New York. 179-197 pp. Populer, C. 2012. Changes in host susceptibility with time. Plant Disease 2: 239-262. Ramegowda, V., and Senthil-Kumar, M. 2015. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology 176: 47-54. Rep, M. 2005. Small proteins of plant‐pathogenic fungi secreted during host colonization. FEMS Microbiology Letters 253: 19-27. Rep, M., van der Does, H. C., Meijer, M., van Wijk, R., Houterman, P. M., Dekker, H. L., de Koster, C. G., and Cornelissen, B. J. C. 2004. A small, cysteine‐rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I‐3‐mediated resistance in tomato. Molecular Microbiology 53: 1373-1383. Rispail, N., Bani, M., and Rubiales, D. 2015. Resistance reaction of Medicago truncatula genotypes to Fusarium oxysporum: effect of plant age, substrate and inoculation method. Crop and Pasture Science 66: 506-515. Saitoh, K.-I., Togashi, K., Arie, T., and Teraoka, T. 2006. A simple method for a mini-preparation of fungal DNA. Journal of General Plant Pathology 72: 348-350. Schmidt, S. M., Houterman, P. M., Schreiver, I., Ma, L., Amyotte, S., Chellappan, B., Boeren, S., Takken, F. L. W., and Rep, M. 2013. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics 14: 119. Schwarz, D., Rouphael, Y., Colla, G., and Venema, J. H. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Scientia Horticulturae 127: 162-171. Silva, F. P. D., Vechiato, M. H., and Harakava, R. 2014. EF-1α gene and IGS rDNA sequencing of Fusarium oxysporum f. sp. vasinfectum and F. oxysporum f. sp. phaseoli reveals polyphyletic origin of strains. Tropical Plant Pathology 39: 64-73. Snyder, W. C., and Hansen, H. N. 1940. The species concept in Fusarium. American Journal of Botany 27: 64-67. Staub, J. E., Serquen, F. C., and Gupta, M. 1996. Genetic markers, map construction, and their application in plant breeding. HortScience 31: 729-741. Thangavelu, R., and Mustaffa, M. M., 2012. Current advances in the Fusarium wilt disease management in banana with emphasis on biological control. In. Plant Pathology, Cumagun, C.J. (Ed.). Chapter 11, InTech Publisher, Rijeka, Croatia. 273-298 pp. Tu, C. C., and Hsiao, C. H. 1990. Compendium of crop cultivars in Taiwan (cucurbitaceae). In.: Taiwan Agricultural Research Institute, Taichung, Taiwan, 260 pp. Vakalounakis, D. J. 1996. Root and stem rot of cucumber caused by Fusarium oxysporum f. sp. radicis-cucumerinum f. sp. nov. Plant Disease 80: 313. Vakalounakis, D. J., and Fragkiadakis, G. A. 1999. Genetic diversity of Fusarium oxysporum isolates from cucumber: differentiation by pathogenicity, vegetative compatibility, and RAPD fingerprinting. Phytopathology 89: 161-168. van Dam, P., de Sain, M., ter Horst, A., van der Gragt, M., and Rep, M. 2018. Use of comparative genomics-based markers for discrimination of host specificity in Fusarium oxysporum. Applied and Environmental Microbiology 84: e01868-01817. van Dam, P., Fokkens, L., Schmidt, S. M., Linmans, J. H. J., Kistler, H. C., Ma, L. J., and Rep, M. 2016. Effector profiles distinguish formae speciales of Fusarium oxysporum. Environmental Microbiology 18: 4087-4102. Walker, J. C., and Smith, R. 1930. Effect of environmental factors upon, the resistance of Cabbage ta yellows. Journal of Agricultural Research 41:1-15. Wang, C. J., 2013. The study of nonpathogenic Fusarium oxysporum on controlling Fusarium wilt of cucumber: National Chung Hsing University, Taichunng, Taiwan. PhD Thesis. 154 pp. Wang, C. J., Lin, Y. S., Lin, Y. H., and Chung, W. H. 2013. Modified primers for the identification of nonpathogenic Fusarium oxysporum isolates that have biological control potential against Fusarium wilt of cucumber in Taiwan. PLoS One 8: e65093. Wang, Y. H., Lin, T. K., and Lin, J. N. 2011. Breeding and cultural technologies of cucurbits in the changing agricultural environment. Proceedings of the Workshop on Crop Breeding and Management of Agricultural Environment for Coping with Climate Change. Taiwan Agricultural Research Institute. Taichung. 153-161 pp. Webb, K. M., Brenner, T., and Jacobsen, B. J. 2015. Temperature effects on the interactions of sugar beet with Fusarium yellows caused by Fusarium oxysporum f. sp. betae. Canadian Journal of Plant Pathology 37: 353-362. White, T. J., Bruns, T., Lee, S. J. W. T., and Taylor, J. L. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications 18: 315-322. Yang, W., Hsiao, C. H., Huang, C. H., and Liou, P. C. 2002. Breeding of the vegetable sponge F1 hybrid cultivar 'Tainung No. 1'. Journal of Agricultural Research of China 51: 37-48.
摘要: 葫蘆科植物為廣泛分佈於世界各地之作物;在台灣,以絲瓜、苦瓜及胡瓜為田間常見之果菜類作物。然於作物生長季中,常會發生嚴重的真菌性病害,其中以 Fusarium oxysporum (Fo) 所造成的瓜類萎凋病為瓜類栽培最主要限制因子。Fo在侵染作物時具有寄主專一性,不同菌株可以分化型 (Forma specialis) 加以區分。儘管如此,交互病原性 (cross-pathogenicity) 的現象在瓜類作物與萎凋病菌之間發生普遍,且交互感染現象受多種因子影響,如品種、溫度、植齡、接種方式等。因此,輔以分子親緣分析可以區分不同的分化型。在台灣,由於苦瓜萎凋病發生嚴重,農民普遍以苦瓜嫁接絲瓜根砧方式防治苦瓜萎凋病,然近年卻於田間觀察到嫁接苦瓜仍有萎凋現象,此現象是否為交互感染所引發,有必要進一步釐清。本研究自田間嫁接苦瓜穗與絲瓜根砧中分離到萎凋病菌,以生物分析法 (bioassay) 確定其分化型;另於不同條件下測試絲瓜、苦瓜及胡瓜萎凋病菌於3種瓜類上之交互感染情形。此外亦以嫁接苦瓜植株進行接種試驗,瞭解嫁接植株發病與萎凋病菌於植體內分布情況。最後,以核糖體DNA (rDNA) 基因間隔區 (intergenic spacer region, IGS)、轉譯延長因子 (translation elongation factor-1α, EF-1α) 及 secreted in xylem 6 (SIX6) 核酸序列,分析3種瓜類萎凋病菌之親緣關係。於病原性測試結果指出,於田間嫁接植株中所分離出萎凋病菌菌株皆可感染絲瓜。於20°C環境下,將胡瓜、絲瓜及苦瓜以剪根方式接種3種瓜類萎凋病菌後,胡瓜與苦瓜之萎凋病菌可感染農民自留種 (open pollination, OP) 絲瓜,而絲瓜萎凋病菌可感染萬吉品種胡瓜;另於28°C下,苦瓜萎凋病菌 Fomo33仍可感染部份絲瓜植株,而絲瓜萎凋病菌 Fomhl6則不使絲瓜植株產生病徵,僅纏據於植體中。以浸根方法接種真葉未展開之幼齡植株時,交互感染之現象更明顯;然以帶菌土壤 (infested soil) 接種時,3種萎凋病菌無明顯交互感染。此外,嫁接植株接種測試中,得知植株僅受絲瓜萎凋病菌危害,萎凋病菌可分布於全株,然苦瓜萎凋病菌僅侷限於下胚軸或根砧部位。於分子親緣關係分析,指出IGS與EF-1α 序列無法有效區別胡瓜與絲瓜萎凋病菌;而以與病原性相關之 SIX6 基因序列分析,則顯示SIX6基因序列能有效區別胡瓜與絲瓜萎凋病菌,具有輔助區分不同分化型之潛力。
Cucurbitaceae is an important crop distributed over the world widely. In Taiwan, loofah, bitter gourd and cucumber are three vegetables common in the field. However, several infectious fungal diseases are severe during growth season. Among the diseases, the Fusarium wilt caused by Fusarium oxysproum (Fo) is one of the most important diseases in cucubit production area. Currently, more than 150 formae speciales have been recorded throughout the world. Although formae speciales show the pathogenic specificity on original host, the cross-pathogenicity has been found generally within cucurbitaceae Fusarium wilt. Besides, there are several factors affecting the cross-pathogenicity such as cultivar, temperatuer, plant stage, and method of inoculation. Therefore, combining pathogenicity tests with molecular phlogeny analysis would help the identification of formae speciales. In Taiwan, grafted bitter gourd (with loofah stock) is widely used to prevent Fusarium wilt in the filed, however, grafted bitter gourd still wilt in recent years. It is necessary to clarify if F. oxysproum f. sp. momordicae (Fomo) is cross pathogenic to loofah stock or F. oxysproum f. sp. luffae (Folu) already arrive at the soil. In this study, the F. oxysproum obtained from cucumber, bitter gourd, and loofah were used to examine the pathogenicty and cross-pathogenicty with three cucurbits and phylogeny analysis was carried out . The results indicated that F. oxysproum isolates from cucumber and bitter gourd could infect loofah (open pollination, OP) and F. oxysporum isolates from loofah could infect cucumber (cv. Vantage) at 20°C based on root dipping method. In addition, some of loofah (cv. Merit) individuals could be infested by F. oxysporum isolates from bitter gourd at 28°C with root dipping method, but one isolate from loofah (Fomhl6) did not cause symptom on loofah under the same condition. Fomhl6 isolate colonized in loofah only. When we inoculated young stage plant (seedling with 2 cotyledons) by root dipping method, the symptom of cross-infection was even more severe. But when we inoculated plants with infested soil, cross-pathogenicity was not obvious. Also, we did the inoculation of grafted (loofah as stock, bitter gourd as scion) plants to mimic the plant infested in the field. The results revealed the main influence isolates on grafted plant was Folu. For the distribution of isolates in grafted plant, we found that Folu could be distributed in the whole plant, however, Fomo was limited in hypocotyl (or stock). Finally, results of phylogeny analysis indicated the F. oxysporum isolates from three cucurbits did not associate with host specificity based on rDNA intergenic spacer (IGS) and translation elongation factor-1α (EF-1α) sequences. However, the sequences of secreted in xylem 6 (SIX6) gene, which associated with pathogenicty, could separate the F. oxysporum isolates from three cucurbits.
URI: http://hdl.handle.net/11455/98155
文章公開時間: 2021-08-27
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.