Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98157
標題: 香蕉內生根瘤菌與農桿菌促進水稻生長與防治秧苗立枯病之潛力
Potential of banana endophytic rhizobia and agrobacteria for promoting rice growth and controlling seedling blight disease
作者: 黃玫潔
Mei-Chieh Huang
關鍵字: 香蕉
水稻
Rhizobium
Agrobacterium
秧苗立枯病
促進植物生長
banana rice
Rhizobium
Agrobacteriu
m
seedling blight
plant growth promotion
引用: Aamil, M., Zaidi, A., and Khan, M.S. 2004. Fungicidal impact on chickpea–Mesorhizobium symbiosis. Journal of Environmental Science and Health Part B 39: 779-790. Abbasi, M., Sharif, S., Kazmi, M., Sultan, T., and Aslam, M. 2011. Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosystems 145: 68-195. Afzal, A. and Bano, A. 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). International Journal of Agriculture and Biology 10: 85-88. Ahemad, M. and Khan, M.S. 2012. Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. strain MRP1. Emirates Journal of Food and Agriculture 24: 334. Al-Ani, R.A., Adhab, M.A., Mahdi, M.H., and Abood, H.M. 2012. Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Protection Science 48: 149-155. Arfaoui, A., Sifi, B., Boudabous, A., Hadrami, I.E., and Chérif, M. 2006. Identification of Rhizobium isolates possessing antagonistic activity against Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpea. Journal of Plant Pathology 88: 67-75. Baba, Z.A., Aziz, M.A., and Sheikh, T.A. 2015. Studies on soil health and plant growth promoting potential of Rhizobium isolates. Emirates Journal of Food and Agriculture 27: 423-429. Bardin, S.D., Huang, H.C., Pinto, J., Amundsen, E.J., and Erickson, R.S. 2004. Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Canadian Journal of Botany 82: 291-296. Beringer, J.E., Brewin, N., Johnston, A.W.B., Schulman, H.M., and Hopwood, D.A. 1979. The Rhizobium-legume symbiosis. Proceedings of the Royal Society of London. Biological Sciences 204: 219-233. Berraho, E., Lesueur, D., Diem, H.G., and Sasson, A. 1997. Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World Journal of Microbiology and Biotechnology 13: 501-510. Booth, C. 1971. Chapter II Fungal culture media. Methods in Microbiology volume 4. Academic Press. United States of America. 49-94 pp. Bric, J.M., Bostock, R.M., and Silverstone, S.E. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology 57: 535-538. Byers, H.K., Stackebrandt, E., Hayward, C., and Blackall, L.L. 1998. Molecular investigation of a microbial mat associated with the great artesian basin. FEMS Microbiology Ecology 25: 391-403. Chakraborty, U. and Chakraborty, B. 1989. Interaction of Rhizobium leguminosarum and Fusarium solani f. sp. pisi on pea affecting disease development and phytoalexin production. Canadian Journal of Botany 67: 1698-1701. Chen, W.X., Tan, Z.Y., Gao, J.L., Li, Y., and Wang, E.T. 1997. Rhizobium hainanense sp. nov., isolated from tropical legumes. International Journal of Systematic and Evolutionary Microbiology 47: 870-873. Datta, A., Singh, R.K., Kumar, S., and Kumar, S. 2015. An effective and beneficial plant growth promoting soil bacterium 'Rhizobium': a review. Annals of Plant Sciences 4: 933-942. David, B.V., Chandrasehar, G., and Selvam, P.N. 2018. Chapter 10 - Pseudomonas fluorescens: A plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. New and Future Developments in Microbial Biotechnology and Bioengineering: Crop Improvement Through Microbial Biotechnology. Elsevier. United States of America. 221-243 pp. Dazzo, F.B., Truchet, G.L., Sherwood, J.E., Hrabak, E.M., Abe, M., and Pankratz, S.H. 1984. Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Applied and Environmental Microbiology 48: 1140-1150. De Araújo, F., Carmona, F., Tiritan, C., and Creste, J. 2007. Biological fixation of N2 in bean plantation at doses of inoculants and chemical treatment to the seed compared with nitrogenous fertilization. Acta Scientiarum-Agronomy 29: 535-540. Dunfield, K.E., Siciliano, S.D., and Germida, J.J. 2000. The fungicides thiram and captan affect the phenotypic characteristics of Rhizobium leguminosarum strain C1 as determined by FAME and Biolog analyses. Biology and Fertility of Soils 31: 303-309. Eisen, J.A. 1995. The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. Journal of Molecular Evolution 41: 1105-1123. Farrand, S.K., Van Berkum, P.B., and Oger, P. 2003. Agrobacterium is a definable genus of the family Rhizobiaceae. International Journal of Systematic and Evolutionary Microbiology 53: 1681-1687. Fred, E. B., Baldwin, I. L., McCoy, E., and Starkey, R. L. 1932. Root Nodule Bacteria and Leguminous Plants. University of Wisconsin. Madison, United States of America. 167 pp. García-Fraile, P., Carro, L., and Robledo, M. 2012. Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7: e38122. Gaunt, M., Turner, S., Rigottier-Gois, L., Lloyd-Macgilp, S., and Young, J. 2001. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. International Journal of Systematic and Evolutionary Microbiology 51: 2037-2048. Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R.K., Gowda, C.L., and Krishnamurthy, L. 2015. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5: 355-377. Goteti, P.K., Desai, S., Emmanuel, L.D.A., Taduri, M., and Sultana, U. 2014. Phosphate solubilization potential of fluorescent Pseudomonas spp. isolated from diverse agro-ecosystems of India. International Journal of Soil Science 9: 101-110. Guene, N.F.D., Diouf, A., and Gueye, M. 2003. Nodulation and nitrogen fixation of field grown common bean (Phaseolus vulgaris) as influenced by fungicide seed treatment. African Journal of Biotechnology 2: 198-201. Hemissi, I., Mabrouk, Y., Neila, A., Bouraoui, M., Saidi, M., and Bouaziz, S. 2011. Effects of some Rhizobium strains on chickpea growth and biological control of Rhizoctonia solani. African Journal of Microbiology Research 5: 4080-4090. Husssain, M., Mehboob, I., Zahir, Z., Naveed, M., and Asghar, H. 2009. Potential of Rhizobium spp. for improving growth and yield of rice (Oryza sativa L.). Soil and Environment 28: 49-55. Jarvis, B., Ward, L., and Slade, E. 1989. Expression by soil bacteria of nodulation genes from Rhizobium leguminosarum biovar trifolii. Applied and Environmental Microbiology 55: 1426-1434. Kandel, S., Herschberger, N., Kim, S., and Doty, S. 2015. Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Science 55: 1765-1772. Kathiravan, R., Jegan, S., and Ganga, V. 2013. Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chick pea (Cicer arietinum L.). International Journal of Systematic and Evolutionary Microbiology 63: 4484-4488. Kaur, C., Maini, P., and Shukla, N. 2007. Effect of captan and carbendazim fungicides on nodulation and biological nitrogen fixation in soybean. Asian Journal of Experimental Sciences 21: 385-388. Laguerre, G., Bardin, M., and Amarger, N. 1993. Isolation from soil of symbiotic and nonsymbiotic Rhizobium leguminosarum by DNA hybridization. Canadian Journal of Microbiology 39: 1142-1149. Lalande, R., Racine, C., and Bissonnette, N. 1990. A note on in vitro inhibition studies between Rhizobium leguminosarum biovar viceae isolates and mycelial growth of root-infecting fungi. Phytoprotection 70: 105-108. Lin, H. C., Huang,W.D., Yang, S.S., and Tzeng, D.S. 2008. Growth promotion and reduced Sclerotium rolfsii seedling blight of rice by Bacillus subtilis WG6-14. Plant Pathology Bulletin 17: 53-64. Lin, B.W. 2018. Diversity, Characterization and application of banana from Cu-contaminated paddy fields in Changhua, Taiwan. National Chung Hsing University. Taichung. Master's thesis. 110 pp. Lindström, K. and Young, J. 2011. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Agrobacterium and Rhizobium. International Journal of Systematic and Evolutionary Microbiology 61: 3089-3093. Liu, Y., Wang, R.P., Ren, C., Lai, Q.L., Zeng, R.Y. 2015. Rhizobium marinum sp. nov., a malachite-green-tolerant bacterium isolated from seawater. International Journal of Systematic and Evolutionary Microbiology 65: 4449-4454. Long, S.R. 1996. Rhizobium symbiosis: nod factors in perspective. The Plant Cell 8: 1885-1898. Merabet, C., Martens, M., and Mahdhi, M. 2010. Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. International Journal of Systematic and Evolutionary Microbiology 60: 664-674. Mew, T.W., Leung, H., Savary, S., Vera Cruz, C.M., and Leach, J.E. 2004. Looking ahead in rice disease research and management. Critical Reviews in Plant Sciences 23: 103-127. Milagres, A.M., Machuca, A., and Napoleao, D. 1999. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods 37: 1-6. Mousavi, S.A., österman, J., and Wahlberg, N. 2014. Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Systematic and Applied Microbiology 37: 208-215. Mousavi, S.A., Willems, A., Nesme, X., De Lajudie, P., and Lindström, K. 2015. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Systematic and Applied Microbiology 38: 84-90. Nour, S.M., Fernandez, M.P., Normand, P., and Cleyet-Marel, J.C. 1994. Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). International Journal of Systematic and Evolutionary Microbiology 44: 511-522. Oke, V. and Long, S.R. 1999. Bacteroid formation in the Rhizobium–legume symbiosis. Current Opinion in Microbiology 2: 641-646. Perrine-Walker, F.M., Gartner, E., Hocart, C.H., Becker, A., Rolfe, B.G. 2007a. Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation. Molecular Plant-Microbe Interactions 20: 283-292. Perrine-Walker, F.M., Prayitno, J., Rolfe, B.G., Weinman, J.J., and Hocart, C.H. 2007b. Infection process and the interaction of rice roots with rhizobia. Journal of Experimental Botany 58: 3343-3350. Peter, J., Young, W., and Haukka, K.E. 1996. Diversity and phylogeny of rhizobia. New Phytologist 133: 87-94. Picot, L., Abdelmoula, S.M., and Merieau, A. 2001. Pseudomonas fluorescens as a potential pathogen: adherence to nerve cells. Microbes and Infection 3: 985-995. Prayitno, J., Stefaniak, J., Mciver, J., Weinman, J.J., Dazzo, F.B., Ladha, J.K, Barraquio, W., Yanni, Y.G., and Rolfe, B.G. 1999. Interactions of rice seedlings with bacteria isolated from rice roots. Functional Plant Biology 26: 521-535. Reitz M., Rudolph K., Schröder I., Hoffmann-Hergarten S., Hallmann J., and Sikora R.A. 2000. Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Applied and Environmental Microbiology 66: 3515-3518. Rennie, R., Howard, R., Swanson, T., and Flores, G. 1985. The effect of seed-applied pesticides on growth and N2 fixation in pea, lentil, and fababean. Canadian Journal of Plant Science 65: 23-28. Rice, W. and Olsen, P. 1988. Dinitrogen fixation in soil and alfalfa nodules in the presence of nitrification inhibitors. Soil Biology and Biochemistry 20: 245-249. Robert, F.M. and Schmidt, E. 1983. Population changes and persistence of Rhizobium phaseoli in soil and rhizospheres. Applied and Environmental Microbiology 45: 550-556. Sadowsky, M.J., Keyser, H.H., and Bohlool, B.B. 1983. Biochemical characterization of fast-and slow-growing rhizobia that nodulate soybeans. International Journal of Systematic and Evolutionary Microbiology 33: 716-722. Sanguin, H., Herrera, A., and Oger‐Desfeux, C. 2006. Development and validation of a prototype 16S rRNA‐based taxonomic microarray for Alphaproteobacteria. Environmental Microbiology 8: 289-307. Sawada, H., Ieki, H., and Matsuda, I. 1995. PCR detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains. Applied and Environmental Microbiology 61: 828-831. Sawada, H., Ieki, H., Oyaizu, H., and Matsumoto, S. 1993. Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. International Journal of Systematic and Evolutionary Microbiology 43: 694-702. Somasegaran, P. and Hoben, H.J. 1985. Methods in legume-Rhizobium technology. University of Hawaii Nitrogen fixation in Tropical Agricultural Legumes Project and Microbiological Resources Center. United States of America. 69-70 pp. Stacy, A., Fleming, D., Lamont, R.J., Rumbaugh, K.P., and Whiteley, M. 2016. A commensal bacterium promotes virulence of an opportunistic pathogen via cross-respiration. MBio 7: 1-10. Suzaki, K., Yoshida, K., and Sawada, H. 2004. Detection of tumorigenic Agrobacterium strains from infected apple saplings by colony PCR with improved PCR primers. Journal of General Plant Pathology 70: 342-347. Syu, Z.J. 2014. Identification of rice genes associated with susceptibility or resistance to Pythium through the screening of Taiwan Rice Insertional Mutant library. National Chung Hsing University. Taichung. Master's thesis. 78 pp. Tjamos, E., Papavizas, G.C., and Cook, R.J. 2013. Biological control of plant diseases: progress and challenges for the future. Springer Science and Business Media: 462. Velázquez, E., Peix, A., Zurdo-Piñiro, J.L., Mateos, P.F., Rivas, R., Muñoz-Adelantado, E., Toro, N., García-Benavides, P., and Martínez-Molina, E. 2005. The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. Molecular Plant-Microbe Interactions 18: 1325-1332. Walker, V., Bruto, M., Bellvert, F., Bally, R., Muller, D., Prigent-Combaret, C., Moënne-Loccoz, Y., and Comte, G. 2013. Unexpected phytostimulatory behavior for Escherichia coli and Agrobacterium tumefaciens model strains. Molecular Plant-Microbe Interactions 26: 495-502. Wongdee, J., Songwattana, P., Nouwen, N., Noisangiam, R., Fardoux, J., Chaintreuil, C., Teaumroong, N., Tittabutr, P., and Giraud, E. 2016. nifDK clusters located on the chromosome and megaplasmid of Bradyrhizobium sp. strain DOA9 contribute differently to nitrogenase activity during symbiosis and free-living growth. Molecular plant-Microbe Interactions 29: 767-773. Wu, H.Y., Chung, P.C., Shih, H.W., Wen, S.R., and Lai, E.M. 2008. Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. Journal of Bacteriology 190: 2841-2850. Yamada K and Xu H.L. 2001. Properties and applications of an organic fertilizer inoculated with effective microorganisms. Journal of Crop Production 3: 255-268. Yanni, Y.G. and Dazzo, F.B. 2010. Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant and Soil 336: 129-142. Young, J., Kuykendall, L., Martinez-Romero, E., Kerr, A., and Sawada, H. 2001. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematic and Evolutionary Microbiology 51: 89-103. Young, J., Kuykendall, L., Martinez-Romero, E., Kerr, A., and Sawada, H. 2003. Classification and nomenclature of Agrobacterium and Rhizobium–a reply to Farrand et al.(2003). International Journal of Systematic and Evolutionary Microbiology 53: 1689-1695. Zahir, Z., Shah, M.K., Naveed, M., and Akhter, M.J. 2010. Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. Journal of Microbiology and Biotechnology 20: 1288-1294. Zakhia, F. and De Lajudie, P. 2001. Taxonomy of rhizobia. Agronomie 21: 569-576.
摘要: 根瘤菌為土壤常見之革蘭氏陰性菌,可內生於植物根部,並於豆科植物上形成根瘤進行固氮作用促進寄主植物生長;而在非豆科植物,如水稻,亦能展現良好之促進生長功效,且具有防治植物病害之潛力。根瘤菌與農桿菌因親緣關係非常接近,在16S rDNA基因序列分析上兩者較難區分。在台灣,根瘤菌已作為微生物肥料被廣泛使用,但在防治方面則應用不多。水稻為台灣主要的糧食作物,在苗期易受到秧苗立枯病之危害而影響秧苗品質,Pythium spp.為主要病原菌之一。本研究目的為,分離香蕉根部之內生根瘤菌與農桿菌,篩選具促進水稻生長與抑制秧苗立枯病菌生長之菌株,並了解有益根瘤菌與農桿菌之特性及評估防治立枯病之效果。本研究共分離到80株菌株,經16S rDNA基因分析,有44株為Rhizobium屬,另36株為Agrobacterium屬。在對峙試驗中,對Pythium arrhenomanes菌株PA-YL 1303菌絲生長抑制率最高者為BRE1 (11.93 %) 與C2-1 (10.84%) 菌株;在水稻生長試驗中,得知BRE6、R7-43及BR8-1菌株之穩定性與效果較佳。將所篩選出具拮抗性與生長促進之五株菌株,以atpD與recA基因序列分析,顯示BRE1為Rhizobium multihospitium,BRE6與BR8-1為Agrobacterium sp.,R7-43與C2-1為Rhizobium sp.。對農藥耐受性測試結果顯示,除依得利外,五株菌株對免賴得、殺紋寧、亞托敏及滅達樂均有良好耐受性。促進生長特性分析中,五株菌株均無螯鐵蛋白生合成之能力,除R7-43外,其餘四株菌株均可產生IAA,而BRE1與C2-1具有溶磷之能力。水稻秧苗立枯病之防治效果評估部分,第一次試驗以BR8-1效果最顯著,第二次試驗則以C2-1 + BR8-1處理效果較佳。將篩選所得之菌株,以專一性引子對VCF / VCR與VCF3 / VCR3經聚合酶連鎖反應測定是否具致病基因之Ti或Ri質體,五株菌株均無偵測到此質體。而在馬鈴薯接種試驗中,五株菌株均不會形成腫瘤。未來需深入探討影響供試菌株穩定性之因子,以建立最佳施用平台,並嘗試和化學藥劑複合施用,以期能降低農藥使用量,達成永續農業經營之理念。
Rhizobium is a genus of Gram-negative soil bacteria that can colonize in plant root, invade leguminous plants to produce nitrogen-fixing root nodules and promote growth of host plants as a plant growth promoting rhizobia (PGPR). Not only for leguminous plants, Rhizobium spp. also have well-known PGP ability on non-leguminous plants like rice. Certain Rhizobium strains have been reported to show the ability for control of plant diseases. In Taiwan, Rhizobium has been used as bio-fertilizer. However, the application of Rhizobium on disease control is rarely. Current taxonomy studies of Rhizobium indicated that Agrobacterium and Rhizobium could not be distinguished as separate monophyletic clades based on 16S rDNA sequences. Rice (Oryza sativa L.) is the most widely crop grown and staple food in Taiwan, which usually suffer from Pythium spp. attacks at seedling stage, causing seedling blight disease. This study aimed to collect the Agrobacterium and Rhizobium strains from the roots of banana, examine the ability on promoting rice growth and inhibiting the growth of Pythium arrhenomanes, test their ability on controlling seedling blight disease and analyze their characterization. A total of 80 strains was isolated from banana roots, which 44 strains belonged to the genus Rhizobium, and 36 strains belonged to the genus Agrobacterium based on 16S rDNA sequence. For the antifungal activity test, BRE1 (11.93 %) and C2-1 (10.84%) strains had the highest inhibition rate on tested pathogen. For the plant growth promotion test, BRE6, R7-43 and BR8-1 strains had better stability and effects. Therefore, BRE1, C2-1, BRE6, R7-43 and BR8-1 strains were examined for further analysis. BRE1 revealed belonging Rhizobium multihospitium; C2-1 and R7-43 belonged to Rhizobium sp.; BRE6 and BR8-1 belonged to Agrobacterium sp., based on recA and atpD gene sequence. The fungicide sensitivity assay indicated that except for etridiazole, five strains showed well tolerability with metalaxyl, azoxystrobin, hymexazol and benomyl. Qualitative analysis of plant growth promotion traits showed that BRE1 and C2-1 strains had ability to solubilize phosphate. BRE1, C2-1, BR8-1, and BRE6 strains could produce IAA. However, these five strains could not produce siderophore. For the control of rice seedling blight test, strain BR8-1 showed the best control ability in the first trial, while combination of strains C2-1 + BR8-1 had better effects in the second trial. The specificity primers VCF / VCR and VCF3 / VCR3 were used for detecting Ti or Ri plasmid from phytopathogenic Agrobacterium strains. No Ti or Ri plasmid was detected from these five strains. For the tumorigenesis assay, no tumor was detected with strains BRE1, C2-1, BRE6, R7-43, and BR8-1. In the future, we need to confirm the factors that affect the stability of the strains in rice. In order to reduce the use of fungicides, we hope these strains could apply with fungicides at the same time, and achieve the goal of agriculture sustainable development.
URI: http://hdl.handle.net/11455/98157
文章公開時間: 2020-08-20
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.