Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98158
標題: 多功能Bacillus屬益生菌防治不結球白菜與草莓炭疽病
Multiple function Bacillus spp. on control of Pak-choi and strawberry anthracnose
作者: 蔡軫羽
Chen-Yu Tsai
關鍵字: Bacillus
多功能
拮抗作用
誘導抗病
Bacillus
multiple function
antagonism
induced systemic resistance
引用: Adam, M., Heuer, H., and Hallmann, J. 2014. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLOS ONE 9: e90402. doi: 10.1371/journal.pone.0090402. Aktar, M. W., Sengupta, D., and Chowdhury, A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology 2: 1-12. Alabouvette, C., Olivain, C., and Steinberg, C. 2006. Biological control of plant diseases: the european situation. European Journal of Plant Pathology 114: 329-341. Andrade Pinto, J. M., Souza, E. A., and Oliveira, D. F. 2010. Use of plant extracts in the control of common bean anthracnose. Crop Protection 29: 838-842. Ann, P. J., Lu, L. S., Chuang, T. Y., and Koa, C. W. 1998. Effect of fruit bagging and mulching on control of mango fruit anthracnose disease. Plant Pathology Bulletin 7: 19-26. Ansaldi, M., Marolt, D., Stebe, T., Mandic-Mulec, I., and Dubnau, D. 2002. Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Molecular Microbiology 44: 1561-1573. Ashwini, N., and Srividya, S. 2014. Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. Three Biotechnology 4: 127-136. Bargabus, R. L., Zidack, N. K., Sherwood, J. E., and Jacobsen, B. J. 2002. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology 61: 289-298. Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., and Kolter, R. 2013. Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences 110: E1621-E1630. doi: 10.1073/pnas.1218984110 Byers, H. K., Stackebrandt, E., Hayward, C., and Blackall, L. L. 1998. Molecular investigation of a microbial mat associated with the Great Artesian Basin. FEMS Microbiology Ecology 25: 391-403. Cao, Y., Zhang, Z., Ling, N., Yuan, Y., Zheng, X., Shen, B., and Shen, Q. 2011. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biology and Fertility of Soils 47: 495-506. Checinska, A., Paszczynski, A., and Burbank, M. 2015. Bacillus and other spore-forming genera: variations in responses and mechanisms for survival. Annual Review of Food Science and Technology 6: 351-369. Chen, K., Tian, Z., Luo, Y., Cheng, Y., and Long, C. A. 2018. Antagonistic activity and the mechanism of Bacillus amyloliquefaciens DH-4 against citrus green mold. Phytopathology 0: ja. doi: 10.1094/PHYTO-01-17-0032-R. Chen, L. S., Chung, W. C., and Chung, W. H. 2009. Sensitivity of Botrytis cinerea of strawberry to strobilurins (QoIs) in Taiwan. Plant Pathology Bulletin 18: 88-99. Chung, P. C., Peng, S. C., Chang, K. M., Yang, H. C., and Yu, S. W. 2012. Occurrence and management of strawberry pests and diseases. Taichung: Taiwan Agricultural Chemicals and Toxic Substances Research Institute. 31 pp. Chung, P. C., and Wu, T. Y. 2018. Strawberry cultivation management reduces the incidence of anthracnose. Miaoli Agriculture Bulletin 81: 1-3. Chung, W. H., Chung, W. C., Peng, M. T., Yang, H. R., and Huang, J. W. 2010. Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP. New Biotechnology 27: 17-24. Compant, S. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry 42: 669-678. Cook, R. J., and Baker, K. F. 1983. The nature and practice of biological control of plant pathogens. St. Paul, Minnesota: American Phytopathological Society. 539 pp. Damalas, C. 2009. Understanding benefits and risks of pesticide use. Scientific Research and Essays 4: 945-949. Earl, A. M., Losick, R., and Kolter, R. 2008. Ecology and genomics of Bacillus subtilis. Trends in Microbiology 16: 269-275. . El-Hassan, S. A., and Gowen, S. R. 2006. Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. Journal of Phytopathology 154: 148-155. Emmert, E. A., and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiology Letters 171: 1-9. Falardeau, J., Wise, C., Novitsky, L., and Avis, T. J. 2013. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. Journal of Chemical Ecology 39: 869-878. Farrar, K., Bryant, D., and Cope-Selby, N. 2014. Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnology Journal 12: 1193-1206. Fei, W. C., and Wang, Y. 2010. Plant protection manual-fruit trees. Taichung: Taichung District Agriculture Research and Extension Station Press. 297 pp. Freeman, S. 2008. Management, survival strategies, and host range of Colletotrichum acutatum on strawberry. HortScience 43: 66-68. Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., Nitzani, Y., Kirshner, B., Rav-David, D., Bilu, A., Dag, A., Shafir, S., and Elad, Y. 2004. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. European Journal of Plant Pathology 110: 361-370. Freeman, S., Nizani, Y., Dotan, S., Even, S., and Sando, T. 1997. Control of Colletotrichum acutatum in strawberry under laboratory, greenhouse, and field conditions. Plant Disease 81: 749-752. Furuya, S., Mochizuki, M., Aoki, Y., Kobayashi, H., Takayanagi, T., Shimizu, M., and Suzuki, S. 2011. Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Science and Technology 21: 705-720. García-Gutiérrez, L., Romero, D., Zeriouh, H., Cazorla, F. M., Torés, J. A., De Vicente, A., and Pérez-García, A. 2012. Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon. Plant and Soil 358: 201-212. Gond, S. K., Bergen, M. S., Torres, M. S., and White Jr, J. F. 2015. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiological Research 172: 79-87. Harish, S., Manjula, K., and Podile, A. R. 1998. Fusarium udum is resistant to the mycolytic activity of a biocontrol strain of Bacillus subtilis AF 1. FEMS Microbiology Ecology 25: 385-390. Howard, C. M., Maas, J. L., Chandler, C. K., and Albregts, E. E. 1992. Anthracnose of strawberry caused by the Colletotrichum complex in Florida. Plant Disease 76: 976-981. Hsieh, F. C., Li, M. C., Lin, T. C., and Kao, S. S. 2004. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Current Microbiology 49: 186-191. Hsieh, F. C., Lin, T. C., Meng, M., and Kao, S. S. 2008. Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Current Microbiology 56: 1-5. Hsieh, T. F., Chen, C. H., and Chang, J. Y. 2016. Screening model of plant extracts for control of cruciferous vegetable anthracnose caused by Colletotrichum higginsianum. Journal of Plant Medicine 58: 59-68. Köberl, M., Ramadan, E. M., Adam, M., Cardinale, M., Hallmann, J., Heuer, H., Smalla, K., and Berg, G. 2013. Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiology Letters 342: 168-178. Karimi, K., Arzanlou, M., and Pertot, I. 2016. Antifungal activity of the dill (Anethum graveolens L.) seed essential oil against strawberry anthracnose under in vitro and in vivo conditions. Archives of Phytopathology and Plant Protection 49: 554-566. Kefialew, Y., and Ayalew, A. 2008. Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biology and Technology 50: 8-11. Kim, H. J., Lee, E. J., Park, S. H., Lee, H. S., and Chung, N. 2014. Biological control of anthracnose (Colletotrichum gloeosporioides) in pepper and cherry tomato by Streptomyces sp. A1022. Journal of Agricultural Science 6: 54-62. Kim, J. D., Jeon, B. J., Han, J. W., Park, M. Y., Kang, S. A., and Kim, B. S. 2016. Evaluation of the endophytic nature of Bacillus amyloliquefaciens strain GYL4 and its efficacy in the control of anthracnose. Pest Management Science 72: 1529-1536. Kloepper, J. W., Ryu, C. M., and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266. Koenraadt, H., Somerville, S. C., and Jones, A. L. 1992. Characteristics of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology 82: 1348-1354. Krober, M., Verwaaijen, B., Wibberg, D., Winkler, A., Puhler, A., and Schluter, A. 2016. Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing. Journal of Biotechnology 231: 212-223. Kumvinit, A., and Akarapisan, A. 2016. Identification of Colletotrichum acutatum and screening of antagonistic bacteria isolated from strawberry in Chiang Mai. Thailand International Journal of Agricultural Technology 12: 693-706. Latoud, C., Peypoux, F., and Michel, G. 1990. Interaction of iturin A, a lipopeptide antibiotic, with Saccharomyces cerevisiae cells: influence of the sterol membrane composition. Canadian Journal of Microbiology 36: 384-389. Lin, C. L. 2001. Biological characteristics and control of the causal agent of Cruciferous vegetable anthracnose. Taichung: Master Thesis of National Chung Hsing University. 66 pp. Lin, C. L., and Huang, J. W. 2002. The occurrence of cruciferous vegetable anthracnose in Taiwan and identification of its pathogen. Plant Pathology Bulletin 11: 173-178. Maget-Dana, R., and Peypoux, F. 1994. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87: 151-174. Malfanova, N. V. 2013. Endophytic bacteria with plant growth promoting and biocontrol abilities. Leiden, Netherlands: Doctoral Thesis of Leiden University. 166 pp. Mcspadden Gardener, B. B. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94: 1252-1258. Mochizuki, M., Yamamoto, S., Aoki, Y., and Suzuki, S. 2012. Isolation and characterisation of Bacillus amyloliquefaciens S13-3 as a biological control agent for anthracnose caused by Colletotrichum gloeosporioides. Biocontrol Science and Technology 22: 697-709. O'toole, G. A. 2011. Microtiter dish biofilm formation assay. Journal of Visualized Experiments 47: 2437. Ongena, M., and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology 16: 115-125. Pérez-García, A., Romero, D., and De Vicente, A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22: 187-193. Pal, K. K. and McSpadden Gardener, B. 2006. Biological control of plant pathogens. The Plant Health Instructor. doi: 10.1094/PHI-A-2006-1117-02. Palaniyandi, S. A., Yang, S. H., Cheng, J. H., Meng, L., and Suh, J. W. 2011. Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. Journal of Applied Microbiology 111: 443-455. Pandin, C., Le Coq, D., Canette, A., Aymerich, S., and Briandet, R. 2017. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microbial Biotechnology 10: 719-734. Park, J. W., Kotnala, B., Kim, J. W., Lee, S. W., and Park, K. 2013. Systemic resistance and growth promotion of chili pepper induced by an antibiotic producing Bacillus vallismortis strain BS07. Biological Control 65: 246-257. Park, K. S., Paul, D. B., Kim, Y. K., Nam, K. W., Lee, Y. K., Choi, H. W., and Lee, S. Y. 2007. Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. The Plant Pathology Journal 23: 22-25. Paulus, A. O. 1990. Fungal diseases of strawberry. HortScience 25: 885-889. Peres, N. A. R., Souza, N. L., Peever, T. L., and Timmer, L. W. 2004. Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Disease 88: 125-130. Podile, A. R., and Prakash, A. P. 1996. Lysis and biological control of Aspergillus niger by Bacillus subtilis AF1. Canadian Journal Microbiology 42: 533-538. Poling, E. B. 2008. Anthracnose on strawberry: its etiology, epidemiology, and pathology, together with management strategies for strawberry nurseries: introduction to the Workshop. HortScience 43: 59-65. Raaijmakers, J. M., Leeman, M., Van Oorschot, M. M. P., Van Der Sluis, I., Schippers, B., and Bakker, P. A. H. M. 1995. Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85: 1075-1081. Rahman, M. M. E., Hossain, D. M., Suzuki, K., Shiiya, A., Suzuki, K., Dey, T. K., Nonaka, M., and Harada, N. 2016. Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathology 45: 103-117. Ramey, B. E., Koutsoudis, M., Von Bodman, S. B., and Fuqua, C. 2004. Biofilm formation in plant-microbe associations. Current Opinion in Microbiology 7: 602-609. Raupach, G. S., and Kloepper, J. W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88: 1158-1164. Salazar, S. M., Castagnaro, A. P., Arias, M. E., Chalfoun, N., Tonello, U., and Díaz Ricci, J. C. 2007. Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. European Journal of Plant Pathology 117: 109-122. Shafi, J., Tian, H., and Ji, M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology and Biotechnological Equipment 31: 446-459. Shahzad, R., Khan, A. L., Bilal, S., Asaf, S., and Lee, I. J. 2017. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. PeerJ 5: e3107. doi: 10.7717/peerj.3107. Shternshis, M. V., Belyaev, A. A., Shpatova, T. V., and Lelyak, A. A. 2015. Influence of Bacillus spp. on strawberry gray-mold causing agent and host plant resistance to disease. Contemporary Problems of Ecology 8: 390-396. Sikora, R. A., Schäfer, K., and Dababat, A. A. 2007. Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australasian Plant Pathology 36: 124-134. Singh, U. S., Doughty, K. J., Nashaat, N. I., Bennett, R. N., and Kolte, S. J. 1999. Induction of systemic resistance to Albugo candida in Brassica juncea by pre- or coinoculation with an incompatible isolate. Phytopathology 89: 1226-1232. Steffens, J. J., Pell, E. J., and Tien, M. 1996. Mechanisms of fungicide resistance in phytopathogenic fungi. Current Opinion in Biotechnology 7: 348-355. Sumi, C. D., Yang, B. W., Yeo, I. C., and Hahm, Y. T. 2015. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Canadian Journal Microbiology 61: 93-103. Sun, S. K., and Pei, C. L. 1981. Investigations on fungicide tolerant strains of pathogenic fungi in Taiwan. (1) Occurrence of benomyl-resistant strains of Glomerella cingulata. Plant Protection Bulletin 23: 207-220. Tendulkar, S. R., Saikumari, Y. K., Patel, V., Raghotama, S., Munshi, T. K., Balaram, P., and Chattoo, B. B. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. Journal of Applied Microbiology 103: 2331-2339. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature 418: 671-677. Torres, M. J., Brandan, C. P., Petroselli, G., Erra-Balsells, R., and Audisio, M. C. 2016. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiological Research 182: 31-39. Turnbull, P. C. B. 1996. Bacillus. In: Baron, S., ed. Medical Microbiology, 4th edition, Chapter 15. Galveston, Texas: University of Texas Medical Branch at Galveston. 1273 pp. Utkhede, R. S. 1984. Antagonism of isolates of Bacillus subtilis to Phytophthora cactorum. Canadian Journal of Botany 62: 1032-1035. Van Loon, L. C., Bakker, P. A., and Pieterse, C. M. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopatholgy 36: 453-483. Walters, D. R., Ratsep, J., and Havis, N. D. 2013. Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany 64: 1263-1280. Wang, S. T., and Lin, Z. K. 2005. Taiwan agriculture encyclopedia (Crop II): Chinese mustard. Taipei: Council of Agriculture, Executive Yuan. 926 pp. Wei, G., Kloepper, J. W., and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508-1512. Yamagiwa, Y., Inagaki, Y., Ichinose, Y., Toyoda, K., Hyakumachi, M., and Shiraishi, T. 2011. Talaromyces wortmannii FS2 emits β-caryphyllene, which promotes plant growth and induces resistance. Journal of General Plant Pathology 77: 336-341. Yamamoto, S., Shiraishi, S., and Suzuki, S. 2015. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Letters in Applied Microbiology 60: 379-386. Yang, H. C. 2011. Occurrence and management of cruciferous vegetable diseases and insect pests. Taichung: Taiwan Agricultural Chemicals and Toxic Substances Research Institute. 60 pp. Yang, J. Y. 2016. Efficacy evaluation for tobacco debris combined with microorganisms on control of cruciferous vegetable anthracnose. Taichung: Master Thesis of National Chung Hsing University. 51 pp. Zalila-Kolsi, I., Ben Mahmoud, A., Ali, H., Sellami, S., Nasfi, Z., Tounsi, S., and Jamoussi, K. 2016. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiological Research 192: 148-158. Zhao, Y., Selvaraj, J. N., Xing, F., Zhou, L., Wang, Y., Song, H., Tan, X., Sun, L., Sangare, L., Folly, Y. M. E., and Liu, Y. 2014. Antagonistic action of Bacillus subtilis Strain SG6 on Fusarium graminearum. PLOS ONE 9: e92486. doi: 10.1371/journal.pone.0092486.
摘要: 大部分的Bacillus屬細菌被認為對環境與植物是安全且有益的,於防治作物病害,因具拮抗能力、促進植物生長、競爭及誘導抗病的能力,被視為極具發展潛力的生物防治菌;而含兩個以上防治機制的Bacillus屬菌株,陸續被證實具較佳防治炭疽病效果。對峙試驗結果顯示,自香蕉植體內所得108株Bacillus屬菌株中,有12個菌株具有較佳抑制4種真菌病原菌絲生長的效果。以定量方式測試此12株菌株抑制炭疽病菌菌絲生長的能力,結果顯示,抑制白菜炭疽病菌效果均較草莓炭疽病菌佳。觀察具拮抗性Bacillus屬菌株對炭疽病菌的菌絲形態影響,指出接觸到拮抗菌株之白菜炭疽病菌菌絲變粗且尖端呈現膨大之情形。此外,12株拮抗性菌株中,8株菌株可被檢測到產生伊枯草菌素 (iturinA) 的ituD與lpa-14基因,另有6株可被檢測到產生表面素 (surfactin) 的sfp基因。於生物膜形成測試,12株具拮抗能力菌株皆可形成濃度高的生物膜,唯具形成生物膜濃度與拮抗能力並無明顯正相關。溫室試驗中,連續3週施用108 cfu/ml之12株菌株懸浮液後,有4株菌株可顯著提高白菜地上部鮮重達26%至100%,地下部鮮重則無顯著差異。於誘導抗病試驗結果指出,接種白菜炭疽病菌5天前,分別澆灌108 cfu/ml之Bacillus菌株發酵液於土壤中,其中有3株菌株可顯著降低罹病度34.9%至60.0%;於接種草莓炭疽病菌3天前,分別噴施108 cfu/ml之Bacillus菌株發酵液於第4葉上,其中有5株菌株病斑直徑可從15.5 mm顯著降低為3.6至6.9 mm。評估多功能菌株防治白菜炭疽病菌之效果,顯示經具拮抗與誘導抗病特性R8-25菌株處理白菜植株後,白菜炭疽病罹病度較處理只具拮抗能力之PS6-5菌株低。評估多功能菌株防治草莓炭疽病效果,顯示處理具拮抗與誘導抗病能力菌株之防治效果與具單一拮抗能力菌株無差異,且防治效果皆不穩定。以16S rDNA與rpoB gene對12株具拮抗性Bacillus屬菌株鑑定,9株屬於B. amyloliquefaciens,另3株則屬於B. subtilis。本研究證實,多功能Bacillus屬菌株於白菜炭疽病的防治效果確實較單一功能菌株佳,雖在草莓防治上不明顯,未來可進一步探討最適接種平台,並分析多功能菌株誘導植物抗病性產生之相關反應。
Most of Bacillus species are often considered to be ecofriendly and beneficial to the environment and plants. They are thought to be the most potential candidates as biological control agents due to their capability to reduce crop diseases, including production of antimicroorganism compounds, plant growth promoting activity, resistance-induced activity and competition. Moreover, multiple function Bacillus strains have been reported and showed the potential to control anthracnose diseases. The dual culture test showed that 12 of 108 Bacillus strains from banana plants have ability against 4 plant fungal pathogens. For evaluation of antagonistic Bacillus strains on inhibition of mycelial growth, 12 antagonistic Bacillus strains showed better inhibition ability to C. higginsianum PA-01 than C. gloeosporioides CSG8-2 and E3. Scanning electronic microscopy observation of C. higginsianum PA-01 treated by antagonistic Bacillus strain revealed significant morphological alternation in hyphae, such as bulging and tip swelling. Moreover, 8 of 12 antagonistic Bacillus strains contained iturin A producing gene (ituD and lpa-14 gene), and 6 of them contained surfactin producing gene (sfp gene) by PCR detections. For biofilm formation, all 12 antagonistic strains exhibited strong activity to produce biofilm, while concentration of biofilm seemed not associated with antagonistic ability. Under greenhouse condition, among these 12 antagonistic Bacillus strains, 4 strains significantly increased the shoot fresh weight of pak-choi after soil drench treatment continued 3 weeks, but no difference in root fresh weight. The resistance-induced test showed 3 strains have ability to induce pak-choi against anthracnose by drenching 108 cfu/ml of fermentation broth 5 days before inoculation of C. higginsianum PA-01, which could significantly reduce disease severity 34.9 to 60.0%; and 5 strains have ability of inducing strawberry against anthracnose by spraying 108 cfu/ml of fermentation broth on the forth leaf 3 days before inoculation of C. gloeosporioides E3, which could significantly reduce diameter of lesion from 15.5 mm to 3.6 ~ 6.9 mm. For evaluation efficacy of multiple function Bacillus strain on control of Pak-choi anthracnose, Bacillus strain with antifungal and resistance inducing activity showed better control efficacy than Bacillus strain with antifungal activity only on Pak-choi. Efficacy of control on strawberry treated with Bacillus strain with antifungal and resistance inducing or antifungal only was not significant and not stable. Furthermore, 12 antagonistic strains were identified as B. amyloliquefaciens (9 strains), and the others were B. subtilis (3 strains) based on 16S rDNA and rpoB gene. In this study, multiple function Bacillus strains exactly showed better efficacy on control of Pak-choi anthracnose, though it was not stable on strawberry. Further, develop a stable inoculation platform and defense responses activated by multiple function Bacillus strain on Pak-choi will be carried out in the future.
URI: http://hdl.handle.net/11455/98158
文章公開時間: 2020-08-23
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.