Please use this identifier to cite or link to this item:
標題: 拮抗性鏈黴菌S2菌株在十字花科細菌性斑點病防治應用之發展研究
Development of Antagonistic Streptomyces sp. S2 for Controlling Bacterial Leaf Spot Disease of Crucifers Caused by Xanthomonas campestris pv. raphani
作者: 吳昱陞
Yu-Sheng Wu
關鍵字: 鏈黴菌
bacterial leaf spot disease
submerge culture
biological control
引用: 吳雅芳、陳紹崇、黃淑惠、鄭安秀。2007。台灣首次報導引起十字花科蔬菜細菌性斑點病之Xanthomonas campestris pv. raphani。植物病理學會刊16(2): 87-90。 呂昀陞。2011。台灣茄科與十字花科作物Xanthomonas病原細菌之特性分析與檢測。臺中:國立中興大學植物病理所博士學位論文。85pp。 林雅涵。2015。茶與百香果炭疽病之拮抗微生物鑑定及其於病害防治應用潛力。 臺中:國立中興大學植物病理所碩士學位論文。90pp。 邱家鈺。2014。十字花科黑腐病菌及葉斑病菌之檢測及鑑別研究。新北:輔仁大學生命科學系碩士學位論文。88pp。 陳品儒。2014。種傳十字花科黑腐病菌檢測流程之改良。臺中: 國立中興大學植物病理所碩士學位論文。78pp。 陳俊位。2014。拮抗性枯草桿菌在甘藍黑腐病防治之應用。臺中: 國立中興大學植物病理所博士學位論文。114pp。 陳俊良。2015。鏈黴菌Streptomyces sp. S1菌株作為木瓜疫病Phytophthora palmivora防治生物製劑之應用潛力。臺中: 國立中興大學植物病理所碩士學位論文。69pp。 曾曉慈。2016。鏈黴Streptomyces sp. S1菌株生物製劑於強化殺菌劑防治荔枝露疫病Peronophythora litchii之應用性。臺中: 國立中興大學植物病理所碩士學位論文。74pp。 黃巧雯。2008。台灣由Streptomyces scabies所引起之馬鈴薯瘡痂病—病原菌生物特性及應用拮抗性枯草桿菌於其生物防治之初探。臺中:國立中興大學植物病理所碩士學位論文。92pp。 黃棨揚。2016。應用兩種鏈黴菌綜合防治南方根瘤線蟲病害與茄科細菌性斑點病之潛力探討。臺中:國立中興大學植物病理所碩士學位論文。60pp。 劉書妤。2016。發展鏈黴菌Streptomyces griseobrunneus SGS3可濕性粉劑以防治青椒疫Phytophthora capsici。臺中:國立中興大學植物病理所碩士學位論文。88pp。 蔡凱榮。2014。以Streptomyces sp. C6菌株防治番茄青枯病之研究。臺中:國立中興大學植物病理所碩士學位論文。85pp。 蕭政弘。2017。甘藍台中2號品種特性介紹。臺中區農業專訊96:12-13。 蕭政弘、郭俊毅。2008。甘藍台中一號之育成。台中區農業改良場研究彙報100: 39-54。 賴文瑞。2003。鏈黴菌Streptomyces griseobrunneus S3菌株作為植物真菌性病害應用生物防治製劑之發展。臺中:國立中興大學植物病理所碩士學位論文。114pp。 謝明憲、林棟樑、王仕賢。2008。甘藍新品種台南1號之育成。台南區農業改良場研究彙報52: 45-51。 謝明憲、林棟樑、王仕賢。2010。甘藍台南2號之育成。台南區農業改良場研究彙報54: 47-53。 Akanuma, G., Ueki, M., Ishizuka, M., Ohnishi, Y., and Horinouchi, S. 2011. Control of aerial mycelium formation by the BldK oligopeptide ABC transporter in Streptomyces griseus. FEMS Microbiol. Lett. 315(1): 54-62. Alvarez, A. M., Benedict, A. A., Mizumoto, C. Y., Hunter, J. E., and Gabriel, D. W. 1994. Serological, pathological, and genetic diversity among strains of Xanthomonas campestris infecting crucifers. Phytopathology 84: 1449-1457. Amaresan, N., Kumar, K., Naik, J. H., Bapatla, K. G., and Mishra, R. K. 2018. Streptomyces in Plant Growth Promotion: Mechanisms and Role. In : Singh, B. P., Gupta, V. K., and Passari, A. K. 2018. New and Future Developments in Microbial Biotechnology and Bioengineering. USA: Academic Press, Elsevier. 125-135. Arias, R. S., Nelson, S. C., and Alvarez, A. M. 2000. Effect of soil–matric potential and phylloplanes of rotation-crops on the survival of a bioluminescent Xanthomonas campestris pv. campestris. Eur. J. Plant Pathol. 106(2): 109-116. Bertram, R., Schlicht, M., Mahr, K., Nothaft, H., Saier, M. H., and Titgemeyer, F. 2004. In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3 (2). J. Bacteriol. 186(5): 1362-1373. Bukhalid, R. A., Chung, S. Y., and Loria, R. 1998. nec1, a gene conferring a necrogenic phenotype, is conserved in plant-pathogenic Streptomyces spp. and linked to a transposase pseudogene. Mol. Plant Microbe Interact. 11(10): 960-967. Bushell, M. E. 1988. Growth, product formation and fermentation technology. In M. Goodfellow (Ed.). Actinomycetes in biotechnology. London: Academic Press. 185-217. Byng, J. W., Chase, M. W., Christenhusz, M. J., Fay, M. F., Judd, W. S., Mabberley, D. J., . . . Stevens, P. F. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181(1): 1-20. Centore, P. 2016. sRGB Centroids for the ISCC-NBS Colour System. Colson, S., van Wezel, G. P., Craig, M., Noens, E. E., Nothaft, H., Mommaas, A. M., . . . Rigali, S. 2008. The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiology 154(2): 373-382. Corti, G. 1954. A new method of staining spores of Streptomycetaceae. J. Bacteriol. 68(3): 389. Crawford, D. L., Lynch, J. M., Whipps, J. M., and Ousley, M. A. 1993. Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl. Environ. Microbiol. 59(11): 3899-3905. Cruz, J., Tenreiro, R., and Cruz, L. 2015. First Report of Xanthomonas campestris pv. raphani Causing Leaf Spot Disease of Brassica oleracea in Portugal. Plant Dis. 99(2): 282-282. Dane, F., and Shaw, J. 1996. Survival and persistence of bioluminescent Xanthomonas campestris pv. campestris on host and non‐host plants in the field environment. J. Appl. Microbiol. 80(1): 73-80. Daza, A., Martin, J. F., Dominguez, A., andGil, J. A. 1989. Sporulation of several species of Streptomyces in submerged cultures after nutritional downshift. Microbiology 135(9): 2483-2491. de Jesus Sousa, J. A., andOlivares, F. L. 2016. Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem Biol Technol Agric. 3(1): 24. de Lima Procópio, R. E., da Silva, I. R., Martins, M. K., de Azevedo, J. L., and de Araújo, J. M. 2012. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 16(5): 466-471. Dye, D., Bradbury, J., Goto, M., Hayward, A., Lelliott, R., and Schroth, M. 1980. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev. Plant Pathol. 59(4): 153-168. Fargier, E., and Manceau, C. 2007. Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol. 56(5): 805-818. Fyans, J. K., Bown, L., and Bignell, D. R. 2016. Isolation and characterization of plant-pathogenic Streptomyces species associated with common scab-infected potato tubers in Newfoundland. Phytopathology 106(2): 123-131. Glazebrook, M., Vining, L., and White, R. 1992. Growth morphology of Streptomyces akiyoshiensis in submerged culture: influence of pH, inoculum, and nutrients. Can. J. Microbiol. 38(2): 98-103. Glazebrook, M. A., Doull, J. L., Stuttard, C., and Vining, L. C. 1990. Sporulation of Streptomyces venezuelae in submerged cultures. Microbiology 136(3): 581-588. Hillerich, B., and Westpheling, J. 2006. A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J. Bacteriol. 188(21): 7477-7487. Huber, F. M., Pieper, R. L., and Mertz, F. P. 1987. Sporulation of Streptomyces roseosporus in submerged culture. J. Ind. Microbiol. 2(4): 235-241. Jonsbu, E., McIntyre, M., and Nielsen, J. 2002. The influence of carbon sources and morphology on nystatin production by Streptomyces noursei. J. Bacteriol. 95(2): 133-144. Kendrick, K. E., and Ensign, J. C. 1983. Sporulation of Streptomyces griseus in submerged culture. J. Bacteriol. 155(1): 357-366. Kontro, M., Lignell, U., Hirvonen, M. R., and Nevalainen, A. 2005. pH effects on 10 Streptomyces spp. growth and sporulation depend on nutrients. Lett. Appl. Microbiol. 41(1): 32-38. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7): 1870-1874. Leiner, R. H., Fry, B. A., Carling, D. E., and Loria, R. 1996. Probable involvement of thaxtomin A in pathogenicity of Streptomyces scabies on seedlings. Phytopathology 86: 709-713. Leyns, F., De Cleene, M., Swings, J.-G., and De Ley, J. 1984. The host range of the genus Xanthomonas. Bot. Rev. 50(3): 308-356. Loreti, S., Gallelli, A., Perez, G., and Schiappa, A. 2011. Occurrence of a leaf spot disease of radish caused by Xanthomonas campestris pv. raphani in Italy. New Dis. Rep. 23: 17-17. Loria, R., Bukhalid, R. A., Creath, R., Leiner, R., Olivier, M., and Steffens, J. 1995. Differential production of thaxtomins by pathogenic Streptomyces species in vitro. Phytopathology 85(5): 537-541. Loria, R., Kers, J., and Joshi, M. 2006. Evolution of plant pathogenicity in Streptomyces. Annu. Rev. Phytopathol. 44: 469-487. Mahadevan, B., and Crawford, D. L. 1997. Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme Microb. Technol. 20(7): 489-493. McCormick, J. R., and Flärdh, K. 2012. Signals and regulators that govern Streptomyces development. FEMS Microbiol. Rev. 36(1): 206-231. Mingma, R., Pathom-aree, W., Trakulnaleamsai, S., Thamchaipenet, A., and Duangmal, K. 2014. Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J. Microbiol. Biotechnol. 30: 271-280. Miyoshi, T., Sawada, H., Tachibana, Y., and Matsuda, I. 1998. Detection of Xanthomonas campestris pv. citri by PCR using primers from the spacer region between the 16S and 23S rRNA genes. Ann. Phytopathol. Soc. Japan. 64(4). 249-254. Mohamed, Z. 1982. Physiological and antagonistic activities of streptomycetes in rhizosphere of some plants. Egypt. J. Phytopathol. 14: 121-128. Monteiro, L., Mariano, R. d. L. R., and Souto-Maior, A. M. 2005. Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Braz. Arch. Biol. Technol. 48(1): 23-29. Novella, I. S., Barbés, C., and Sánchez, J. 1992. Sporulation of Streptomyces antibioticus ETHZ 7451 in submerged culture. Can. J. Microbiol. 38(8): 769-773. Punina, N. V., Ignatov, A. N., Pekhtereva, E. Sh., Kornev, K. P., Matveeva, E. V., Polityko, V. A., Budenkov, N. I., and Schaad, N. W. 2009. Occurrence of Xanthomonas campestris pv. raphani on tomato plants in the Russian Federation. Acta Horticulturae 808: 287-290. Rho, Y. T., andLee, K. J. 1994. Kinetic characterization of sporulation in Streptomyces albidoflavus SMF301 during submerged culture. Microbiology 140(8): 2061-2065. Roberts, S. 2009. Transmission and spread of Xanthomonas campestris pv. campestris in brassica transplants: implications for seed health standards. Roberts, S., Brough, J., and Hunter, P. 2007. Modelling the spread of Xanthomonas campestris pv. campestris in module‐raised brassica transplants. Plant Pathol. 56(3): 391-401. Rueda, B., Miguélez, E. M., Hardisson, C., and Manzanal, M. B. 2001. Mycelial differentiation and spore formation by Streptomyces brasiliensis in submerged culture. Can. J. Microbiol. 47(11): 1042-1047. Sabaratnam, S., and Traquair, J. A. 2002. Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol. Control 23(3): 245-253. Sanchez, S., Chavez, A., Forero, A., Garcia-Huante, Y., Romero, A., Sanchez, M., Rocha, D., Sanchez, B., Avalos, M., Guzman-Trampe, S., RodriguezSanoja, R., Langley, E., Ruiz, B. 2010. Carbon source regulation of antibiotic production. J. Antibiot. 63(8): 442-459. Schaad, N., Sitterly, W., and Humaydan, H. 1980. Relationship of incidence of seedborne Xanthomonas campestris to black rot of crucifers. Plant Dis. 64(1): 91. Schaad, N. W., and White, W. C. 1974. Survival of Xanthomonas campestris in soil. Phytopathology 64(12): 1518-1520. Seo, J.-W., Ohnishi, Y., Hirata, A., and Horinouchi, S. 2002. ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J. Bacteriol. 184(1): 91-103. Shirling, E. B., and Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Evol. Microbiol. 16(3): 313-340. Slack, S. M., Zeng, Q., Outwater, C. A., and Sundin, G. W. 2017. Microbiological examination of Erwinia amylovora exopolysaccharide ooze. Phytopathology 107(4): 403-411. Sripreechasak, P., Tamura, T., Shibata, C., Suwanborirux, K., and Tanasupawat, S. 2016. Streptomyces andamanensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 66(5): 2030-2034. Stead, D., Parkinson, N., Aspin, A., Heeney, J., Crump, S., and Vicente, J. 2016. First occurrence of Xanthomonas campestris pv. raphani on wallflower (Erysimum cheiri) in the United Kingdom. New Dis. Rep. 34: 14-14. Strunk, C. 1978. Sporogenesis in Streptomyces melanochromogenes. Arch. Microbiol. 118(3): 309-316. Tamura, K., Takikawa, Y., Tsuyumu, S., and Goto, M. 1994. Bacterial spot of crucifers caused by Xanthomonas campestris pv. raphani. Ann. Phytopathol. Soc. Jpn. 60(3): 281-287. Tarkka, M. T., Lehr, N. A., Hampp, R., and Schrey, S. D. 2008. Plant behavior upon contact with Streptomycetes. Plant Signal Behav. 3(11): 917-919. Taylor, J., Conway, J., Roberts, S., Astley, D., and Vicente, J. 2002. Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92(1): 105-111. Tu, J. C. 1986. Hyperparasitism of Streptomyces albus on a destructive mycoparasite Nectria inventa. J. Phytopathol. 117(1): 71-76. Uesugi, Y. 1987. Combination of Pesticides with Biological Technologies in Agriculture. Japan Pesticide Information 50: 5-6. Van Hop, D., Hoa, P. T. P., Quang, N. D., Ton, P. H., Ha, T. H., Van Hung, N., Van, N. T., Quy, N. T. K., and Dao, N. T. A. 2014. Biological control of Xanthomonas oryzae pv. oryzae causing rice bacterial blight disease by Streptomyces toxytricini VN08-A-12, isolated from soil and leaf-litter samples in Vietnam. Biocontrol Sci. 19(3): 103-111. Vauterin, L., Hoste, B., Kersters, K., and Swings, J. 1995. Reclassification of Xanthomonas. Int. J. Syst. Evol. Microbiol. 45(3): 472-489. Vicente, J. G., Conway, J., Roberts, S., and Taylor, J. 2001. Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91(5): 492-499. Vicente, J. G., Everett, B., and Roberts, S. 2006. Identification of isolates that cause a leaf spot disease of brassicas as Xanthomonas campestris pv. raphani and pathogenic and genetic comparison with related pathovars. Phytopathology 96(7): 735-745. Vurukonda, S. S. K. P., Giovanardi, D., and Stefani, E. 2018. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 19(4): 952. Wanner, L. A. 2004. Field isolates of Streptomyces differ in pathogenicity and virulence on radish. Plant Dis. 88(8): 785-796. Wanner, L. A. 2006. A survey of genetic variation in Streptomyces isolates causing potato common scab in the United States. Phytopathology 96(12): 1363-1371. Watve, M. G., Tickoo, R., Jog, M. M., and Bhole, B. D. 2001. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 176(5): 386-390. Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J. 1991. 16s ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173(2): 697-703. White, H. E. 1930. Bacterial spot of radish and turnip. Phytopathology 20(8). Williams, P. 1980. Black rot: a continuing threat to world crucifers. Plant Dis. 64(8): 736-742. Wulff, E. G., Mguni, C. M., Mortensen, C. N., Keswani, C. L., and Hockenhull, J. 2002. Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. Eur. J. Plant Pathol. 108(4): 317-325. Zeng, X., and Huang, Q. 1994. Identification on the pathogenic bacteria of a new tabacco disease-black rot. Journal of South China Agricultural University 15(1): 46-49. Zhao, Y., Damicone, J. P., Demezas, D. H., and Bender, C. L. 2000. Bacterial leaf spot diseases of leafy crucifers in Oklahoma caused by pathovars of Xanthomonas campestris. Plant Dis. 84(9): 1008-1014.
摘要: 十字花科細菌性斑點病由Xanthomonas campestris pv. raphani (Xcr)所引起,近年來已陸續在許多國家報導於十字花科、茄科以及葫蘆科等作物上發現。本次研究將由罹病甘藍上所分離到的分離株,經過柯霍氏法則回接、16S-23S rRNA區間序列分析及病原型檢測,證實病原菌為X. campestris pv. campestris (Xcc)與Xcr。為了選出有潛力的拮抗性鏈黴菌,以Xcr和多種細菌與真菌病原為拮抗標靶,經由拮抗對峙篩選後,結果顯示鏈黴菌S2的拮抗圖譜最廣泛,在對峙試驗中可抑制細菌、卵菌、子囊菌與擔子菌等所有供試病原菌。生物防治菌必須對植物與人類具安全性,因此將鏈黴菌S2利用16S rRNA基因序列分析,S2與S. andamanensis strain KC-112的16S rDNA序列相似度達99.8%,同時與造成馬鈴薯瘡痂病的鏈黴菌類群(scab-causing strains)在親緣關係樹分析中可以明確的分在不同類群。為了更進一步證實S2菌株的生物安全性,使用專一性引子對TxtA1/TxtA2、Nf/Nr及Tom3/Tom4檢測,鏈黴菌S2不帶有致病相關基因txtA (thaxtomin synthetase A)、nec1 (necrotic protein),以及tomA (tomatinase)。此外,利用串聯式液相層析質譜儀,以及甘藍和蘿蔔幼苗來檢測S2培養液,證實S2不產生thaxtomin A並且對植物無毒害影響。綜合分子生物技術檢測方法與發酵液代謝物分析的結果,證實鏈黴菌S2對於植物沒有毒性,符合生物防治菌的安全性。為了能有效進行生物防治試驗,必須先調整適合S2的液態培養配方。在鏈黴菌培養常用的ISP培養基之中,S2在ISP2固態培養基上生長速度最佳且產孢良好。接著在S2的碳氮源利用性分析中,S2對發酵常用原料葡萄糖、木糖、麥芽糖及乳糖的利用性佳,對蔗糖的利用性較差,而對澱粉幾乎不利用。S2除了對硝酸鈉的利用性較差之外,對其餘測試的氮源皆生長良好。綜合ISP與碳氮源分析的結果,將ISP2配方的葡萄糖以其他糖類置換後,測試對於生長的影響。S2於添加麥芽糖的ISP2培養基(mISP2)能夠在液態培養下產孢。以mISP2為基礎進行一系列配方調整測試,如麥芽糖的濃度、酵母抽出物與麥芽抽出物的比例、鈣離子含量、磷酸緩衝液的濃度以及初始pH值等條件,目前結果仍以mIPS2為最佳的配方。當鈣離子濃度高於100 ppm或磷酸鹽濃度高於0.005 M,對S2的液態產孢都有不良影響。S2在mISP2液態培養液中產生的孢子,也經由穿透式電子顯微鏡觀察孢子構造,證實與在固態培養的成熟孢子一樣具有加厚的細胞壁。在細菌性斑點病的防治試驗中,使用S2培養於mISP2養液5天的培養液,以10倍稀釋的S2培養液浸泡能有效降低帶菌種子(105 CFU/ml Xcr PC9)的發病率;噴施100倍稀釋的S2培養液能有效降低接種106 CFU/ml Xcr PC9的葉片罹病度。在種子與葉面防治試驗中,S2能夠與歐索林酸混合使用而沒有不良的影響。本研究顯示,鏈黴菌S2具安全性與拮抗廣譜性。在mISP2液態中培養能夠正常生長與產孢,並能夠在溫室試驗中有效的防治甘藍細菌性斑點病,S2還對多種藥劑低敏感性,極具有潛力開發成為生物製劑,未來能應用於綜合病害管理體系,藉此降低化學藥劑的使用與輔助抗藥性管理等,減少對環境的衝擊。
Bacterial leaf spot disease of crucifers is caused by Xanthomonas campestris pv. raphani (Xcr). In recent years, it has been reported on crucifers, solanaceous crops, and cucurbits in many countries. In this study, we had found and collected diseased cabbage seedlings from the nursery. According to the results of re-inoculation, 16S-23S rRNA spacer sequence analysis, and detection of Xanthomonas campestris pathovars, the isolates from diseased seedlings were identified as Xanthomonas campestris pv. campestris (Xcc) and Xcr. To develop potential biocontrol agents, screening antagonistic Streptomyces species against with Xcr, other bacterial and fungal pathogens had done by dual culture. Streptomyces sp. S2 was selected as a broad-spectrum antagonist against with tested bacteria, oomycetes, ascomycetes and basidiomycetes. It's important that potential biocontrol agents have to be harmless for plants and humans. Therefore, Streptomyces sp. S2 was identified by 16S rRNA gene sequence analysis and S2 showed 99.8% 16S rDNA sequence identity to that of S. andamanensis strain KC-112 which appeared to be phylogenetically distinct from scab-causing strains. Furthermore, pathogenicity factors such as thaxtomin synthetase A (txtA), necrotic protein (nec1), and tomatinase (tomA) had not detected in S2 genome by using specific primers TxtA1/TxtA2, Nf/Nr, and Tom3/Tom4 respectively. In addition, S2 cultured broth was analyzed for thaxtomin A by using LC/MS/MS and seedling assay. As a result, S2 didn't produce thaxtomin A, and no phytotoxicity symptom was observed on the cabbage and radish seedlings treated with S2 cultured broth. In brief, Streptomyces sp. S2 as a potential biocontrol agent is safety for application. To control bacterial leaf spot disease effectively, culture condition of S2 had established. The characteristic of S2 grown on ISP medium were analyzed, in consequence, the growth and sporulation of S2 was best on ISP2 medium. Following utilization of carbon and nitrogen source analysis, S2 has good utilization of glucose, xylose, maltose and lactose, poor utilization of sucrose, and no utilization of starch among materials commonly used to fermentation. All of nitrogen sources tested could be utilized well by S2, but sodium nitrate. Furthermore, the effect on replacement of glucose in ISP2 medium with different carbohydrates was evaluated. The sporulation of S2 in submerged ISP2 medium modified by replacing glucose with maltose (mISP2) could be observed under microscopy. Based on mISP2 medium, different concentration of maltose in mISP2, different ratio of yeast extract to malt extract, different concentration of calcium and phosphate buffer, and initial pH value were evaluated. The result so far, mISP2 medium has been the best recipe for sporulation of S2 in submerged culture with initial pH 6.0-7.0; it was negative effect on growth and sporulation when the amount of calcium ion more than 100 ppm and phosphate buffer more than 0.005M in mISP2. To confirm the spores produced in submerged mISP2 were mature and intact, spores collected from submerged culture were compared with spores from agar plates by using electron transmission microscopy. The thick spore cell wall and nozzles could be observed in solid and submerged culture. Finally, 5-dsy mISP2 cultured broth of S2 was used to control disease caused by Xcr on cabbage seeds and leaf. The disease incidence of contaminated seeds(105 CFU/ml) was significantly reduced by treating with the 10×-diluted S2 cultured broth. As well as, the disease severity of cabbage leaves inoculated with Xcr(106 CFU/ml) was significantly reduced by spreading the 100×-diluted S2 cultured broth on leaf surface. In addition, S2 cultured broth could be mixed with bactericide oxolinic acid 100 ppm without negative effect on disease control. In conclusion, Streptomyces sp. S2 is a safe and broad-spectrum antagonist against phytopathogens. Streptomyces sp. S2 grew well and formed spores in mISP2 submerged culture. In greenhouse trial, bacterial leaf spot disease was significantly controlled by S2 cultured broth. Low sensitivity to several bactericides. S2 as a potential strain that is ready to process scale-up production and apply for integrated pest management.
文章公開時間: 2021-08-27
Appears in Collections:植物病理學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.