Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98161
標題: 番茄黃化捲葉泰國病毒移動蛋白基因定點突變對機械接種特性之影響
Study of the point mutations on movement protein genes for mechanical transmissibility of tomato yellow leaf curl Thailand virus
作者: 康昀婷
Yun-Ting Kang
關鍵字: 雙生病毒
番茄黃化捲葉泰國病毒
機械接種
寄主因子
Geminiviridae
tomato yellow leaf curl Thailand virus
mechanical transmission
host factor
引用: 郭曜維。2014。新德里番茄捲葉病毒寄主適應特性關鍵因子之研究。國立中興大學植物病理學系。碩士論文。台中。 詹富智。2018。植物基因工程學技術實驗操作手冊。國立中興大學植物病理學系植物基因工程教學核心實驗室。台中。 詹欽翔。2011。新德里番茄捲葉病毒機械接種傳播特性關鍵因子之研究。國立中興大學農藝學系。碩士論文。台中。 鄭櫻慧、林漢釗、林鳳琪。2015。檢測銀葉粉蝨 (squash leaf curl Philippines virus) 專一性引子開發。台灣農業研究64: 135-144。 蔡文錫。2008。南亞及東南亞辣椒脈斑駁病毒與台灣及菲律賓番茄Begomovirus分子特性之研究及番茄捲葉病毒轉基因抗性之研發。博士論文。台中。 Ajlan, A., Ghanem, G., and Abdulsalam, K. 2007. Tomato yellow leaf curl virus (TYLCV) in Saudi Arabia: identification, partial characterization and virus–vector relationship. Arab J. Biotech. 10: 179-192. Anbinder, I., Reuveni, M., Azari, R., Paran, I., Nahon, S., Shlomo, H., Chen, L., Lapidot, M., and Levin, I. 2009. Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor. Appl. Genet. 119: 519-30. Bock, K., and Guthrie, E. 1978. Transmission of African cassava mosaic by mechanical inoculation. Plant Dis. Rep. 62: 580-581. Bosque-Pérez, N., Olojede, S., and Buddenhagen, I. 1998. Effect of maize streak virus disease on the growth and yield of maize as influenced by varietal resistance levels and plant stage at time of challenge. Euphytica 101: 307-317. Böttcher, B., Unseld, S., Ceulemans, H., Russell, R. B., and Jeske, H. 2004. Geminate structures of African cassava mosaic virus. J. Virol. 78: 6758-6765. Briddon, R., and Stanley, J. 2006. Subviral agents associated with plant single-stranded DNA viruses. Virology 344: 198-210. Briddon, R. W., Patil, B. L., Bagewadi, B., Nawaz-ul-Rehman, M. S., and Fauquet, C. M. 2010. Distinct evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses. BMC Evol. Biol. 10: 97. Monga, D., Raj, S., and Verma, S. K. (1998, February). Preliminary investigation on reaction of cotton germplasm to leaf curl and losses caused by the disease. In National Symposium on present scenario in diseases of oil seeds and pulses, Aurangabad, India. p. 59. Brown, J., Frohlich, D., and Rosell, R. 1995. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex. Annu. Rev. Entomol. 40: 511-534. Brown, J., Chapman, M., and Nelson, M. 1990. Bean calico mosaic, a new disease of common bean caused by a whitefly-transmitted geminivirus. Plant Dis. 74: 81 Brown, J., and Nelson, M. 1986. Whitefly-borne viruses of melons and lettuce in Arizona. Phytopathol. 76: 236-239. Brown, J. K., Zerbini, F. M., Navas-Castillo, J., Moriones, E., Ramos-Sobrinho, R., Silva, J. C., Fiallo-Olivé, E., Briddon, R. W., Hernández-Zepeda, C., Idris, A., Malathi, V. G., Martin, D. P., Rivera-Bustamante, R., Ueda, S., and Varsani, A. 2015. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch. Virol. 160: 1593-1619. Blawid, R., Van, D. T., and Maiss, E. 2008. Transreplication of a tomato yellow leaf curl Thailand virus DNA-B and replication of a DNAß component by tomato leaf curl Vietnam virus and tomato yellow leaf curl Vietnam virus. Virus Res. 136: 107-117. Caplan, J. L., Kumar, A. S., Park, E., Padmanabhan, M. S., Hoban, K., Modla, S., and Dinesh-Kumar, S. P. 2015. Chloroplast stromules function during innate immunity. Dev. Cell 34: 45-57. Carvalho, M. F., Turgeon, R., and Lazarowitz, S. G. 2006. The geminivirus nuclear shuttle protein NSP inhibits the activity of AtNSI, a vascular-expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition. Plant Physiol. 140: 1317-1330. Carsner, E. 1927. Sugar beet disease called curly top limits production. Pages 603-605 in: Yearbook of Agriculture. USDA, Washington, District of Columbia. Chakraborty, S., Pandey, P. K., Banerjee, M. K., Kalloo, G., and Fauquet, C. M. 2003. Tomato leaf curl Gujarat virus, a new begomovirus species causing a severe leaf curl disease of tomato in Varanasi, India. Phytopathol. 93: 1485-1495. Chang, L. S., Lee, Y. S., Su, H. J., and Hung, T. H. 2003. First report of papaya leaf curl virus infecting papaya plants in Taiwan. Plant Dis. 87: 204-204. Chang, H. H., Ku, H. M., Tsai, W. S., Chien, R. C., Jan, F.-J. 2010. Identification and characterization of a mechanical transmissible begomovirus causing leaf curl on oriental melon. Eur. J. Plant Pathol. 127: 219-228 Chatchawankanphanich, O., and Maxwell, D. P. 2002. Tomato leaf curl Karnataka virus from Bangalore, India, appears to be a recombinant begomovirus. Phytopathol. 92: 637-645. Chauhan, T., Choudhary, A., Kumar, D., and Singh, K. 2018. Assessment of different methods for sap transmission of chilli leaf curl virus in Capsicum annuum L. and its validation through PCR amplification of AV1 coat protein gene. Int. J. Curr. Microbiol. Appl. Sci. 7: 2697-2703. Chen, Y. K., Chao, H.Y., Shih, P.J., Tsai, W.Y., and Chao C. H.2016. First report of papaya leaf curl Guangdong virus infecting Lisianthus in Taiwan. Plant Dis. 100: 2342. Cheng, Y. H., Deng, T. C., Chen, C. C., Chiang, C. H., and Chang, C. A. 2014. First report of euphorbia leaf curl virus and papaya leaf curl Guangdong virus on passion fruit in Taiwan. Plant Dis. 98: 1746. Chen W., Hasegawa D. K., Kaur N., Kliot A., Pinheiro P. V., Luan J., Stensmyr M. C., Zheng Y., Liu W., Sun H., Xu Y., Luo Y., Kruse A., Yang X., Kontsedalov S., Lebedev G., Fisher T. W., Nelson D. R., Hunter W. B., Brown J. K., Jander G., Cilia M., Douglas A. E., Ghanim M., Simmons A. M., Wintermantel W. M., Ling K. S., and Fei Z. 2016b. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 14: 110. Chowda-Reddy, R., Achenjang, F., Felton, C., Etarock, M. T., Anangfac, M. T., Nugent, P., and Fondong, V. N. 2008. Role of a geminivirus AV2 protein putative protein kinase C motif on subcellular localization and pathogenicity. Virus Res. 135: 115-124. Colariccio, A., Eiras, M., Chaves, A., Bergmann, J., Zerbini, F., Harakava, R., and Chagas, C. 2007. Tomato yellow vein streak virus, a new begomovirus on tomato from brazil: complete DNA-A sequence and some molecular and biological features. J. Plant Pathol. 89: 385-390. Costa, H., Brown, J., Sivasupramaniam, S., and Bird, J. 1993. Regional distribution, insecticide resistance, and reciprocal crosses between the A and B biotypes of Bemisia tabaci. Int. J. Trop Insect Sci. 14: 255-266. Czosnek, H., Hariton-Shalev, A., Sobol, I., Gorovits, R., and Ghanim, M. 2017. The incredible journey of Begomoviruses in their whitefly vector. Viruses 9: 1-19. Dinsdale A., Cook L., Riginos C., Buckley Y. M., and De Barro P. J. 2010. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann. Entomol. Soc. Am. 103:196-208. Dyson, H. J., and Wright, P. E. 2005. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6: 197. Dry, I. B., Krake, L. R., Rigden, J. E., and Rezaian, M. A. 1997. A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc. Natl. Acad. Sci. U. S. A. 94: 7088-7093. Fondong, V. N. 2013. Geminivirus protein structure and function. Mol. Plant Pathol. 14: 635-649. Fondong, V. N., Reddy, R. C., Lu, C., Hankoua, B., Felton, C., Czymmek, K., and Achenjang, F. 2007. The consensus N-myristoylation motif of a geminivirus AC4 protein is required for membrane binding and pathogenicity. Mol. Plant Microbe Interact. 20: 380-391. Fulton, T. M., Chunwongse, J., and Tanksley, S. D. 1995. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant. Mol. Biol. Report. 13: 207-209. Gardiner, W. E., Sunter, G., Brand, L., Elmer, J. S., Rogers, S. G., and Bisaro, D. M. 1988. Genetic analysis of tomato golden mosaic virus: the coat protein is not required for systemic spread or symptom development. EMBO J. 7: 899-904. Garrido-Ramirez, E., Sudarshana, M., and Gilbertson, R. L. 2000. Bean golden yellow mosaic virus from Chiapas, Mexico: Characterization, pseudorecombination with other bean-infecting geminiviruses and germ plasm screening. Phytopathol. 90: 1224-1232. Ghanim, M. 2014. A review of the mechanisms and components that determine the transmission efficiency of tomato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Res. 186: 47-54. Gilbertson, R. L., Hidayat, S. H., Paplomatas, E. J., Rojas, M. R., Hou, Y.-M., and Maxwell, D. P. 1993. Pseudorecombination between infectious cloned DNA components of tomato mottle and bean dwarf mosaic geminiviruses. J. Gen. Virol. 74: 23-31. Gilbertson, R. L., Rojas, M. R., Russell, D. R., and Maxwell, D. P. 1991. Use of the asymmetric polymerase chain reaction and DNA sequencing to determine genetic variability of bean golden mosaic geminivirus in the Dominican Republic. J. Gen. Virol. 72: 2843-2848. Gould C. M., Diella F., Via A., Puntervoll P., Gemünd C., Chabanis-Davidson S., Michael S., Sayadi A., Bryne J. C., Chica C., Seiler M., Davey N.E., Haslam N., Weatheritt R.J., Budd A., Hughes T., Pas J., Rychlewski L., Travé G., Aasland R., Helmer-Citterich M., Linding R., and Gibson T. J. 2010. ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res. 38: 167-180. Green, S. K., Sulyo, Y., and Lesemann, D. E. 1987. Outbreaks and new records. Leaf curl virus on tomato in Taiwan Province. FAO Plant Protection Bulletin 35 Green, S.K., Tsai, W. S., Shih, S. L., Black, L.L, Rezaian, A., Rashid, H., Mohd noor, M.R., Myint, Y. Y., and Hong, L. T. A. 2001. Molecular characterization of begomoviruses associated with leafcurl diseases of tomato in Bangladesh, Laos, Malaysia, Myanmar, and Vietnam. Plant Dis. 85: 1286-1286. Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S, Robertson, D. 1999. Geminviruses: models for plant DNA replication, transcription, and cell cycle regulation. CRC Crit. Rev. Plant Sci. 18: 71-106. Hamilton, W., Sanders, R., Coutts, R. H., and Buck, K. 1981. Characterisation of tomato golden mosaic virus as a geminivirus. FEMS Microbiol. Lett. 11: 263-267. Hanson, P. M., Bernacchi, D., Green, S., Tanksley, S. D., Muniyappa, V., Padmaja, A. S., Chen, H. M., Kuo, G., Fang, D., and Chen, J. T. 2000. Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J. Am. Soc. Hortic. Sci. 125: 15–20. Hanson, P., Green, S.K., and Kuo, G. 2006. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Rep. Tomato Genet. Coop. 56: 17-18. Harrison, B. D., Swanson, M. M, and Fargette, D. 2002. Begomovirus coat protein: serology, variation and functions. Physiol. Mol. Plant Pathol. 60: 257-271. Honda, Y., Iwaki, M., Saito, Y., Thongmeearkom, P., Kittisak, K., and Deema, N. 1983. Mechanical transmission, purification, and some properties of whitefly-borne mung bean yellow mosaic virus in Thailand. Plant Dis. 67: 801-804. Horowitz, A. R., and Ishaaya, I. 2014. Dynamics of biotypes B and Q of the whitefly Bemisia tabaci and its impact on insecticide resistance. Pest Manag. Sci. 70: 1568-1572. Hou, Y. M., Sanders, R., Ursin, V. M., and Gilbertson, R. L. 2000. Transgenic plants expressing geminivirus movement proteins: abnormal phenotypes and delayed infection by tomato mottle virus in transgenic tomatoes expressing the bean dwarf mosaic virus BV1 or BC1 proteins. Mol. Plant Microbe Interact. 13: 297-308. Hutton, S. F. and Scott, J. W., and Schuster, D. J. 2012. Recessive resistance to tomato yellow leaf curl virus from the tomato cultivar tyking is located in the same region as Ty-5 on chromosome 4. HortScience 47: 324–327 Hutton, S. F., and Scott, J. W. 2013. Fine-mapping and cloning of Ty-1 and Ty-3, and mapping of a new TYLCV resistance locus, Ty-6. In: Tomato breeders round table proceedings 2013, Chiang Mai, Thailand. Hsieh, C. H., Wang, C. H., and Ko, C. C. 2005. Identification of biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) in Taiwan based on mitochondrial 16S rDNA sequences. Formosan Entomol. 25: 255-267. Idris, A., Hiebert, E., Bird, J., and Brown, J. 2003. Two newly described begomoviruses of Macroptilium lathyroides and common bean. Phytopathol. 93: 774-783. Jan, F.-J., Green, S. K., Shih, S. L., Lee, L. M., Ito, H., Kimbara, J., and Tsai, W. S. 2007. First report of tomato yellow leaf curl Thailand virus in Taiwan. Plant Dis. 91: 1363-1363. Ji, Y., Schuster, D. J. and Scott, J. W. 2007a. Ty-3, a begomovirus resistance locus near the tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breeding 20: 271-284. Ji, Y., Salus, M. S., van Betteray, B., Smeets, J., Jensen, K. S., Martin, C. T., Mejía, L., Scott, J. W., Havey, M. J., and Maxwell, D. P. 2007b. Co-dominant SCAR markers for detection of the Ty-3 and Ty-3a loci from Solanum chilense at 25 cM of chromosome 6 of tomato. Rep. Tomato Genet. Coop. 57: 25-28. Ji, Y., Scott, J.W., and Schuster, D.J. 2009a. Toward fine mapping of the Tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. — HortScience 44: 614-618. Ji, Y., Scott, J.W., Schuster, D.J., and Maxwell, D.P. 2009b. Molecular mapping of Ty-4, a new tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J. Am. Soc. Hortic. Sci. 134: 281-288. Jones, R. A. 2016. Future scenarios for plant virus pathogens as climate change progresses. Adv. Virus Res. 95: 87- 147. Kenyon, L., Tsai, W. S., Shih, S. L., and Lee L. M. 2014. Emergence and diversity of begomoviruses infecting solanaceous crops in East and Southeast Asia. Virus Res. 186: 104-133. Kim, K. S., K. W. Lee. 1992: Geminivirus-induced macrotubules and their suggested role in cell-to-cell movement. Phytopathol. 82: 664-669. Kontsedalov, S., Abu-Moch, F., Lebedev, G., Czosnek, H., Horowitz, A. R., and Ghanim, M. 2012. Bemisia tabaci biotype dynamics and resistance to insecticides in Israel during the years 2008–2010. J. Integr. Agr. 11: 312-320. Lastra, R., and Gil, F. 1981. Ultrastructural host cell changes associated with tomato yellow mosaic. Phytopathol. 71: 524-528. Lefeuvre P., Martin D. P., Harkins G., Lemey P., Gray A. J., Meredith S., Lakay F., Monjane A., Lett J. M., Varsani A., Heydarnejad J. 2010. The spread of tomato yellow leaf curl virus from the Middle East to the world. PLoS Pathog. 6: 1-12. Levy, A., and Czosnek, H. 2003. The DNA-B of the non-phloem-limited bean dwarf mosaic virus (BDMV) is able to move the phloem-limited abutilon mosaic virus (AbMV) out of the phloem, but DNA-B of AbMV is unable to confine BDMV to the phloem. Plant Mol. Biol. 53: 789-803. Levy, A., Zheng, J. Y., and Lazarowitz, S. G. 2015. Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement. Curr. Biol. 25: 2018-2025. Lewis, J. D., and Lazarowitz, S. G. 2010. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc. Natl. Acad. Sci. U. S. A. 107: 2491-2496 Li, F., Xu, X., Huang, C., Gu, Z., Cao, L., Hu, T., Ding, M. Li Z. and Zhou, X. 2015. The AC5 protein encoded by Mungbean yellow mosaic India virus is a pathogenicity determinant that suppresses RNA silencing‐based antiviral defenses. New Phytol. 208: 555-569. Li, Z. H., Zhou, X.P., Zhang, X., Xie, Y. 2004. Molecular characterization of tomatoinfecting begomoviruses in Yunnan, China. Arch. Virol. 149: 1721-1732. Lima, A. T. M., Silva, J. C. F., Silva, F. N., Castillo-Urquiza, G. P., Silva, F. F., Seah, Y. M., Mizubuti E.S.G., Duffy S., and Zerbini, F. M. 2017. The diversification of begomovirus populations is predominantly driven by mutational dynamics. Virus Evol. 3: 1-14. Liu S. S., Colvin J., and De Barro P. J. 2012. Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? J. Integr. Agric. 11:176- 86. Lozano, G., Trenado, H. P., Fiallo-Olivé, E., Chirinos, D., Geraud-Pouey, F., Briddon, R. W., and Navas-Castillo, J. 2016. Characterization of non-coding DNA satellites associated with sweepoviruses (genus Begomovirus, Geminiviridae)–definition of a distinct class of begomovirus-associated satellites. Front. Microbiol. 7: 1-13. Mandal, B., Langston D.B., Jr., Pappu H. R., Beard, G. H., Kucharek, T. A., Flanders, J. T., Whiddon, J. P., Smith, J. E., and Kelley, W.T. 2001. First report of cabbage leaf curl virus (Family Geminiviridae) in Georgia. Plant Dis. 85: 561. McGarry, R. C., Barron, Y. D., Carvalho, M. F., Hill, J. E., Gold, D., Cheung, E., Kraus, W. L. and Lazarowitz, S. G. 2003. A novel Arabidopsis acetyltransferase interacts with the geminivirus movement protein NSP. Plant Cell 15, 1605-1618. Melgarejo, T. A., Kon, T., Rojas, M. R., Paz-Carrasco, L., Zerbini, F. M., and Gilbertson, R. L. 2013 Characterization of a new world monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J. Virol. 87: 5397–5413. Morin, S., Ghanim, M., Zeidan, M., Czosnek, H., Verbeek, M., and van den Heuvel, J. F. 1999. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology 256: 75-84. Morra, M. R., and Petty, I. T. 2000. Tissue specificity of geminivirus infection is genetically determined. Plant Cell 12: 2259-2270. Morales, F., Niessen, A., Ramirez, B. t., and Castano, M. 1990. Isolation and partial characterization of a geminivirus causing bean dwarf mosaic. Phytopathol. 80: 96-101. Muhire, B., Martin, D. P., Brown, J. K., Navas-Castillo J., Moriones, E., Zerbini, F.M. Rivera-Bustamante R., Malathi, V. G., Briddon, R.W., Varsani, A. 2013. A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Arch. Virol. 158: 1411-1424. Nawaz-ul-Rehman, M. S., Mansoor, S., Briddon, R. W., and Fauquet, C. M. 2009. Maintenance of an Old World betasatellite by a New World helper begomovirus and possible rapid adaptation of the betasatellite. J. Virol. 83: 9347-9355. Ndunguru, J., and Rajabu, A. 2004. Effect of okra mosaic virus disease on the above-ground morphological yield components of okra in Tanzania. Scientia Horticulturae 99: 225-235. Noueiry, A. O., Lucas, W. J., and Gilbertson, R. L. 1994. Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76: 925-932. Onozato, A., Ito, H., Tan, C. W., Lu, S. F., and Hanson, P. 2013. Breeding processing tomato hybrids tolerant to tomato yellow leaf curl disease in Chinese Taipei. Acta horticulturae 971: 107-110. Padidam, M., Beachy, R. N., and Fauquet, C. M. 1996. The role of AV2 ('precoat') and coat protein in viral replication and movement in tomato leaf curl geminivirus. Virology 224: 390-404. Pasumarthy, K. K., Mukherjee, S. K., and Choudhury, N. R. 2011. The presence of tomato leaf curl Kerala virus AC3 protein enhances viral DNA replication and modulates virus induced gene-silencing mechanism in tomato plants. J. Virol. 8: 178. Paplomatas, E. J., Patel, V. P., Hou, Y.-M., Noueiry, A. O., and Gilbertson, R. L. 1994. Molecular characterization of a new sap-transmissible bipartite genome geminivirus infecting tomatoes in Mexico. Phytopathol. 84: 1215-1223. Péréfarres, F., Thierry, M., Becker, N., Lefeuvre, P., Reynaud, B., Delatte, H., and Lett, J.M. 2012. Biological invasions of geminiviruses: case study of TYLCV and Bemisia tabaci in Reunion Island. Viruses 4: 3665-3688. Priyadarshini, C. P., Ambika, M. V., Tippeswamy, R., and Savithri, and H. S. 2011. Functional characterization of coat protein and V2 involved in cell to cell movement of Cotton leaf curl Kokhran virus-Dabawali. PLos One 6: 1-12 Qin, Y., and Petty, I. T. 2001. Genetic analysis of bipartite geminivirus tissue tropism. Virology 291: 311-323. Ramesh, S. V., Sahu, P. P., Prasad, M., Praveen, S., and Pappu, H. R. 2017. Geminiviruses and plant hosts: A closer examination of the molecular arms race. Viruses 9: 256. Ribeiro, S. G., Martin, D. P., Lacorte, C., Simões, I. C., Orlandini, D. R., and Inoue-Nagata, A. K. 2007. Molecular and biological characterization of tomato chlorotic mottle virus suggests that recombination underlies the evolution and diversity of Brazilian tomato begomoviruses. Phytopathol. 97: 702-711. Rochester, D. E., DePaulo, J. J., Fauquet, C. M., and Beachy, R. N. 1994. Complete nucleotide sequence of the geminivirus tomato yellow leaf curl virus, Thailand isolate. J. Gen.Virol. 75: 477-485. Rojas, M. R., Hagen, C., Lucas, W. J., and Gilbertson, R. L. 2005. Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annual Review Phytopathol. 43: 361-394. Rojas, M. R., Jiang, H., Salati, R., Xoconostle-Cázares, B., Sudarshana, M., Lucas, W. J., and Gilbertson, R. L. 2001. Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology 291: 110-125. Romay, G., Lecoq, H., and Desbiez, C. 2015. Melon chlorotic mosaic virus and associated alphasatellite from Venezuela: genetic variation and sap transmission of a begomovirus–satellite complex. Plant Pathol. 64: 1224-1234. Saunders, K., Salim, N., Mali, V. R., Malathi, V. G., Briddon, R., Markham, P. G., and Stanley, J. 2002. Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293: 63-74. Saunders, K., and Stanley, J. 1999. A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264, 142-152. Sawangjit, S., Chatchawankanphanich, O., Chiemsombat, P., Attathom, T., Dale, J., and Attathom, S. 2005. Molecular characterization of tomato-infecting begomoviruses in Thailand. Virus Res. 109: 1-8. Settlage, S. B., See, R. G., and Hanley-Bowdoin, L. 2005. Geminivirus C3 protein: replication enhancement and protein interactions. J. Virol. 79: 9885-9895. Shih, S. L., Tsai, W. S., Lee, L. M., Wang, J. T., Green, S. K., & Kenyon, L. 2010. First report of tomato yellow leaf curl Thailand virus associated with pepper leaf curl disease in Taiwan. Plant Dis. 94: 637-637. Singh, J., Sohi, A. S., Mann, H. S. and Kapoor S. P. 1995. Studies on whitefly Bemisia tabaci (Genn) transmitted cotton leaf curl disease in north india. Int. J. Insect Sci. 7:194-198. Stein, V., Coutts, R., and Buck, K. 1983. Serological studies on tomato golden mosaic virus, a geminivirus. J. Gen. Virol. 64: 2493-2498. Stenger, D., Duffus, J., and Villalon, B. 1990. Biological and genomic properties of a geminivirus isolated from pepper. Pathogenesis 14: 18. Sunter, G. and Bisaro, D. M. 1992. Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4: 1321-1331. Toloy, R. S., Mituti, T., Freitas, D. M. S., Maluta, N. K. P., Silva, T. N. Z., Lopes, J. R. S., and Rezende, J. A. M. 2018. Features of the relationship between tomato severe rugose begomovirus and Bemisa tabaci MEAM1 reveal that the virus is acquired during a probe lasting only one minute. Eur. J. Plant Pathol. 151: 541-547. Tompa, P. 2012. Intrinsically disordered proteins: a 10-year recap. Trends Biochem. Sci. 37: 509-516. Tsai, W. S., Shih, S. L., Kenyon, L., Green, S.K., and Jan, F.-J. 2011a. Temporal distribution and pathogenicity of the predominant tomato‐infecting begomoviruses in Taiwan. Plant Pathol. 60: 787-799. Tsai, W. S., Hu, C. J., Shung, D. P., Lee, L. M., Wang, J.T., and Kenyon, L. 2011b. First report of Squash leaf curl Philippines virus infecting chayote (Sechiumedule) in Taiwan. Plant Dis. 95: 1197 Tsai, W. S., Shih, S. L., Green, S. K., and Jan, F.-J. 2007. Occurrence and molecular characterization of squash leaf curl Philippines begomovirus in Taiwan. Plant Dis. 91: 907. Tsai, W. S., and Huang, C. J. 2017. Begomovirus in Taiwan. Pages 187-205 in: Begomoviruses: Occurrence and Management in Asia and Africa. Sangeeta S. and A. K. Tiwari eds. Springer, Berlin, Germany. Tu, Y. C., Tsai, W. S., Wei, J. Y., Chang, K. Y., Tien, C. C., Hsiao, H. Y., and Fu, S. F. 2017. The C2 protein of tomato leaf curl Taiwan virus is a pathogenicity determinant that interferes with expression of host genes encoding chromomethylases. Physiol. Plant. 161: 515-531. Urbino, C., Polston, J. E., Patte, C., and Caruana, M. L. 2004. Characterization and genetic diversity of potato yellow mosaic virus from the Caribbean. Arch. Virol. 149: 417-424. Usharani, K., Surendranath, B., Paul‐Khurana, S., Garg, I., and Malathi, V. 2004. Potato leaf curl–a new disease of potato in northern India caused by a strain of tomato leaf curl New Delhi virus. Plant Pathol. 53: 235-235. Van Der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., Dunker, A. K., and Jones, D. T. 2014. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114: 6589-6631. Varsani, A., Roumagnac, P., Fuchs, M., Navas-Castillo, J., Moriones, E., Idris, A., and Martin, D. P. 2017. Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Arch. Virol. 162: 1819-1831. Wege, C., Saunders, K., Stanley, J., and Jeske, H. 2001. Comparative analysis of tissue tropism of bipartite geminiviruses. J. Phytopathol. 149: 359-368. Wege, C., and Pohl, D. 2007. Abutilon mosaic virus DNA B component supports mechanical virus transmission, but does not counteract begomoviral phloem limitation in transgenic plants. Virology 365: 173-186. Wu, J., Zulfiqar, A., and Huang, C. 2011. Infectivity of euphorbia leaf curl virus and interaction with Tomato yellow leaf curl China betasatellite. Archives of Virology 156: 517-521. Zamir, D., Ekstein Michelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M., Eshed, Y., Harel, E., Pleban, T., and van Oss, H. 1994. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88: 141-146. Zerbini, F. M., Briddon, R. W., Idris, A., Martin, D. P., Moriones, E., Navas-Castillo, and J., Varsani, A. 2017. ICTV Virus Taxonomy Profile: Geminiviridae. J. Gen.Virol. 98: 131-133. Zhang, S., Ghosh, R., and Jeske, H. 2002. Subcellular targeting domains of abutilon mosaic geminivirus movement protein BC1. Arch.Virol. 147: 2349-2363. Zhang, W., Olson, N. H., Baker, T. S., Faulkner, L., Agbandje-McKenna, M., Boulton, M. I., and McKenna, R. 2001. Structure of the maize streak virus geminate particle. Virology 279: 471-477. Zhang, S. C., Ghosh, R., and Jeske, H. 2002. Subcellular targeting domains of abutilon mosaic geminivirus movement protein BC1. Arch.Virol. 147: 2349-2363. Zhou, Y., Rojas, M. R., Park, M. R., Seo, Y. S., Lucas, W. J., and Gilbertson, R. L. 2011. Histone H3 interacts and co-localizes with the nuclear shuttle protein and movement protein of a geminivirus. J. Virol. 85: 11821-11832. Zhou X. P., Xie Y., Tao X. R., Zhang Z. K., Li Z. H.and Fauquet C. M. 2003. Characterization of DNAβ associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. 2003. J. Gen. Virol. 84: 237–247. Zheng Y. X., Lee C. H., Lin Y. T., Chan C. H. and Jan F.-J. 2014, Agust. A single amino acid substitution in the movement protein alters the mechanical transmissibility of tomato leaf curl New Delhi begomovirus. Poster session presented at American Phytopathological Society and the Canadian Phytopathological Society Joint Meeting, Minneapolis, Minnesota.
摘要: 雙生病毒科 (Geminiviridae) 是植物病毒中最大的一科,Begomovirus是其中最重要的病毒屬,具有單條或兩條單股環狀 DNA 兩種基因體形式,主要是以銀葉粉蝨作為傳播媒介,鮮少可藉由機械摩擦或汁液接種方式傳播。本研究室先前的研究,經由番茄捲葉新德里病毒 (tomato leaf curl New Delhi virus, ToLCNDV) 可機械接種之東方型甜瓜分離株 (ToLCNDV-OM) 及無法機械傳播之胡瓜分離株 (ToLCNDV-CB) 基因互換相對照下已直接證實雙基因體 (bipartite) 的ToLCNDV 其機械傳播能力決定於 DNA-B 上的移動蛋白 (movement protein, MP) 基因,此研究為全球首例解開雙生病毒可以被機械接種之迷的成果。亞蔬中心自1998至2009年間於臺灣所做的番茄捲葉病害田間調查研究中顯示,2005年才出現在臺灣的可機械傳播之番茄黃化捲葉泰國病毒 (tomato yellow leaf curl Thailand virus, TYLCTHV) 於 2007年的田間發生率已超過無法機械傳播的番茄捲葉臺灣病毒 (tomato leaf curl Taiwan virus, ToLCTV),造成TYLCTHV成為優勢病毒的關鍵性因素在於原普遍存在田間之 ToLCTV 僅能經由粉蝨傳播,而TYCTHV除了利用粉蝨傳播,還可藉由機械方式感染植物。因此,本計畫將以目前在臺灣感染番茄嚴重,且同樣具機械傳播特性、bipartite 的番茄黃化捲葉泰國病毒TYLCTHV為主要研究對象,去了解TYLCTHV的機械傳播特性的決定因子是在哪一個基因上及寄主植物之協力因子。根據實驗室前人對於ToLCNDV的實驗結果,先從 TYLCTHV MP (MPTYLCTHV) 進行點突變及接種測試,研究結果顯示其MPTYLCTHV的第17個及第23個原為帶負電荷之 Glutamate (E),當此兩個胺基酸任一突變為不帶電荷之 Alanine (A) 後,將失去機械機種能力,故 MP 亦是 TYLCTHV 的機械傳播能力的關鍵主因,目前我們能嘗試以互補試驗給予MPTYLCTHV (E17A) 及MPTYLCTHV (E23A) 兩病毒突變株之原始MPTYLCTHV,來回復其機械接種能力。後續將試圖找出協助 MP 蛋白參與機械接種過程的寄主因子,以了解begomoviruses可以被機械接種的分子機制。 關鍵詞:雙生病毒、番茄黃化捲葉泰國病毒、機械接種、寄主因子
Geminiviridae is the largest family of plant viruses. The genus Begomovirus, which is the most important genus of geminiviridae, has one or two circular single stranded- DNA genome. Begomoviruses are usually transmitted by whitefly (Bemisia tabaci). Very few begomoviruses are mechanically transmissible by sap-inoculation on leaves. Previous studies in our lab have shown that tomato leaf curl New Delhi virus oriental melon isolate (ToLCNDV-OM) is an isolate of bipartite begomovirus and can infect cucurbits via mechanical transmission. Genome reassortment assay of ToLCNDV-OM and a non-mechanically transmissible ToLCNDV-CB isolate showed that the movement protein (MP) of ToLCNDV-OM plays the key role in mechanical transmission. This is the first identification of a specific geminiviral movement protein as a determinant of mechanical transmissibility. Tomato leaf curl Taiwan virus (ToLCTV) was first detected in Taiwan in 1981 and was endemic throughout the island by the early 1990's. tomato yellow leaf curl Thailand virus (TYLCTHV), which was first detected in 2005, is now widespread throughout Taiwan. TYLCTHV is a bipartite and mechanically transmissible begomovirus, whereas ToLCTV is a monopartite and not mechanically transmissible. Through monitoring the begomoviruses in Taiwan during 1998-2009, it becomes apparent that the introduced TYLCTHV is now the predominant strain in the most tomato production areas. Based on the result of ToLCNDV study, we first focused on the MP of TYLCTHV and constructed four mutants, each carrying a point mutation within MP. When the 17th or 23rd amino acid (Glutamate, E) was mutated to Alanine (A), the mutants cannot be mechanically transmitted to Nicotiana benthamiana. This result showed that TYLCTHV MP is also the critical viral factor for mechanical transmissibility. Future studies will focus on the identification and isolation of host factors that may play crucial roles in the viral infection process by interacting with MP and assisting mechanical transmissibility of TYLCTHV.
URI: http://hdl.handle.net/11455/98161
文章公開時間: 10000-01-01
Appears in Collections:植物病理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.