Please use this identifier to cite or link to this item:
標題: 滲透預處理及熱風乾燥對鳳梨果乾品質的影響
Effects of Osmotic Pretreatment and Hot Air Drying on Quality of Drying Pineapple.
作者: 林敬恩
Jing-En Lin
關鍵字: 熱風乾燥
Hot air drying
enzyme activity
osmotic dehydration
引用: 吳寶芬。2015。臺灣鳳梨外銷現況與未來展望。農政與農情。272:54-59。 官青杉、唐佳惠、李柔誼。2017。鳳梨產期調節研究發展與產業調適。果樹產期 調節研究發展與產業調適研討會論文輯。P:111-127。 施明智、蕭思玉、蔡敏郎。2014。食品加工學。五南出版社。 徐惠玲、王子慶、吳明昌、楊淑宜。2005。國產鳳梨酒釀製之研究。中國園藝。 51 : 63-76。 徐永鑫、胡永輝、黃裕文、田欽仁、李景謹、皇湞鈺。2014。蔬菜種類及殺菁對 蔬菜冷凍品質之影響。華醫學報。40:13-28。 黃士晃。2012。鳳梨開花抑制調節技術之介紹。農業新知與技術。80:5-9。 台灣農業統計年報。2016。行政院農業委員會農糧署編印。 張鈺驩。1990。基礎食品化學。藝軒圖書出版社。 Adak, N., N. Heybeli and C. Ertekin. 2017. Infrared drying of strawberry. Food Chem. 219:109-116. Ade-Omowaye, B.I. O., A. Angersbach., K. A. Taiwo, and D. Knorr, 2001.Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends in food sci. and technol. 12:285-295. Aguilera, J. M., A. Chiralt and P. Fito. 2003. Food dehydration and product structure. Trends in Food Sci. and Technol. 14:432-437. Ahmed, I., I. M. Qazi, and S. Jamal. 2016. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov. Food Sci. and Emerg. Technol. 34:29-43. Akgun, N. and I. Doymaz, 2005. Modelling of olive cake thin-layer drying process. J. Food Eng. 68:455-461. Aktas, T., S. Fujii., Y. Kawano and S. Yamanoto. 2007. Effect of pretreatments of sliced vegetables with trehalose on drying characteristics and quality of dried products. Food and Bioprod Process 85:178-183. Ali, H. M., A. M. El-Gizawy., R. E.I. El-Bassiouny and M. A. Saleh. 2016. The role of various amino acids in enzymatic browning process in potato tubers, and identifying the browning products. Food Chem. 192:879-885. Almeida, M.E.M. and J.N. Nogueira 1995. The control of polyphenol oxidase activity in fruits and vegetables. Plant Foods for Hum Nutr. 47:245–256. Asami, D. K., Y.J. Hong., D. M. Barrett and A. E. Mitchell. 2003.Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic and sustainable agricultural practices. J. Agric. Food Chem. 51:1237-1241. Barat, A., J. M. Spiess, and D. Behsnilian (eds.), Osmotic dehydration and vacuum impregnation: Applications in food industries USA: Technomic Publ. Co.Behsnilian, D. and W. E. L. Spiess. 2006.Osmotic dehydration of fruits and vegetable. Food Sci. IUFoST. 1857-1869. Bekele, Y. and H. Ramaswamy. 2010. Going beyond conventional osmotic dehydration for quality advantage and energy savings. EJAST. 1 : 1-15. Beveridge, T. and J. E. Harrison. 1984. Nonenzymatic browning in pear juice conce- ntrate at elevated temperatures. J. Food Sci. 49:1335-1340. Bico, S.L.S., M.F.J. Raposon., R.M.S.C. Morais, and A.M.M.B. Morais 2009. Combined effects of chemical dip and/or carragenan coating and/or controlled atmosphere on quality of fresh-cut banana. Food Control, 20: 508–514. Borrelli, R.C. and V. Fogliano. 2005. Bread crust melanoidins as potential prebiotic ingredients. Mol Nutr Food Res. 49 : 673-678. Botha G. E., J. C. Oliveira and L. Ahrne. 2012. Quality optimization of combined osmotic dehydration and microwave assisted air drying of pineapple using constant power emission. Food and Bioprod Process. 90:171-179. Chaisakdanugull, C., C. Theerakulkait and R.E. Wrolstad, 2007. Pineapple juice and its fractions in enzymatic browning inhibition of banana [Musa (AAA Group) Gros Michel]. J. Agric. Food Chem. 55: 4252–4257. Chauhan, O. P., A. Singh., A. Singh., P.S. Raju and A. S. Bawa. 2011. Effects of osmotic agents on colour, textural, structural, thermal, and sensory properties of apple slices. Int. J. Food pro. 14: 1037-1048. Chisari, M., R. N. Barbagallo, and G. Spagna. 2007. Characterization of polyphenol oxidase and peroxidase and influence on browning of cold stored strawberry fruit. J. Agri. and Food Chem. 55:3469-3476. Chiralt, A. and P. Talens. 2004. Physical and chemical changes induced by osmotic dehydration in plant tissues. J. Food Eng. 67:167-177. Chong, C. H., C. L. Law, A. Figiel, A. Wojdylo and M. Oziemblowski.2013. Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chem. 141:3889-3896. Chong, C. H., A. Figiel and C. L. Law. 2014. Combined drying of apple cubes by using of heat pump, vacuum-microwave, and intermittent techniques. Food Bio. Technol. 7:975-989. Chou, S. K., K. J. Chua, A. S. Mujumdar, M. N. A. Hawlader and J. C. Ho.2000. On the intermittent drying of an agricultural product. Food and Bioprod Process. 78: 193-203. Chutintrasri, B. and A. Noomhorm. 2006. Thermal inactivation of polyphenoloxidase in pineapple puree. LWT. 39:492-495. Contreras, C., M. E. Martín-Esparza., A. Chiralt and N. Martínez-Navarrete. 2008. Influence of microwave application on convective drying: effects on drying kinetics, and optical and mechanical properties of apple and strawberry.  Journal of Food Engineering. 88: 55–64. Cornwell, C. J. and R. E. Wrolstad. 1981. Causes of browning in pear juice concentrate during storage. J. Food Sci. 46: 515-518. Cortellino, G., P. Pani and D. Torreggiani. 2011.Crispy air-dried pineapple rings: optim- ization of processing parameters. Pro. Food Sci. 1:1324-1330. Cosovic, B., V. Vojvodic., N. Boskovic., M. Plavsic and C. Lee. 2010. Characterization of natural and synthetic humic substances (melanoidins) by chemical composition and adsorption measurements. Org Geochem. 41:200-205. Dincer, B.  A. Çolak., N. Aydin, A. Kadioglu and S. Güner. 2002. Characterization of polyphenoloxidase from medlar fruits (Mespilus germanica L., Rosaceae). Food Chem. 77 :1-7. Doymaz, I. and M. Pala. 2003. The thin-layer drying characteristics of corn. J. Food Eng. 60:125-130. Duangmal, K.  and R.K. Owusu Apenten. 1999. A comparative study of polyphen- oloxidase from taro (Colocasia esculenta) and potato (Solanum tuberosum var. Romano). Food Chem. 64: 351-359. Duan, X., X. Su., Y. You., H. Qu., Y. Li., and Y. Jiang. 2007. Effect of nitric oxide on pericarp browning of harvested longan fruit in relation to phenolic metabolism. Food Chem. 104: 571–576. Erenturk, S., M. S. Gulaboglu and S. Gultekin 2004. The thin-layer drying charac- teristics of rosehip. Biosystem Eng. 89: 159–166. Ertekin, C., S. Gozlekci., N. Heybeli, , A. Gencer., N. Adak and B.S. Oksal. 2014. Drying of Strawberries with Infrared Dryer. Proceedings Int Conference of Agric Eng. 1-7. Escobara, M. P., F. G. Gómez, and L. Wadsöc. 2007. Effect of long-term storage and blanching pre-treatments on the osmotic dehydration kinetics of carrots (Daucus carota L. cv. Nerac). J. Food Eng. 81 : 313–317. Eteraf-Oskouei, T. and M. Najafi, 2013. Traditional and modern uses of natural honey in human diseases: A review. Iran J Basic Med Sci, 16 : 731-742. Fernandes, F. A. N., F. E. Linhares J. and S. Rodrigues. 2008. Ultrasound as pre – treatment for drying of pineapple. Ultrason Sonochem. 15: 1049-1054. Fernandes, F. A. N., M. I. Gallao and S. Rodrigues. 2009. Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. J. Food Eng. 90: 186-190. Flink, J. M. 1980. Dehydrated carrot slices: influence of osmotic concentration on drying behavior and product quality. In Food Process Engineering. Vol. 1, eds. P. Linko, Y. Malkki, J. Olkku, and J. Larinkari, Elsevier Applied Science, London, pp. 412-418. Gamboa-Santos, J.,  R. Megiaz-Perez., A.C. Soria., A. Olano., A. Montilla and M.Villamiel. 2014. Impact of processing conditions on the kinetic of vitamin C degradation and 2-furoylmethyl amino acid formation in dried strawberries.Food Chem. 153:164-170. Guerout, R. 1975. Nematodes of Pineapple: a Reviw. PANS. 21: 123-140. Hassan, A. and Z. Othman. 2011. Pineapple(Annans comosus L. Merr.), p. 194-217. In: E.M. Yahia (ed.). Postharvest biology and technology of tropical and subtropical fruits. Vol 4. Woodhead. Cambridge. Hawkes, J. and J. M. Flink. 1978. Osmotic concentration of fruit slices prior to freeze dehydration. J. Food Proc. Preserv., 2:265-284. Hofmann, T. 1988. Studies on the influence of the solvent on the contribution of single Maillard reaction products to the total colour of browned pentose/alanine solutions-A quantitative correlation using the colour activity concept. J. Agric. Food Chem. 46:3912-3917 Huang, L. L., M. Zhang, , L. P. Wang, , A. S. Mujumdar, and D. F. Sun, 2012. Influence of combination drying methods on composition, texture, aroma and microstructure of apple slices. LWT-Food Sci and Technol. 47, 183– 188. İspir, A. and İ.T. Toğrul. 2009. Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chem. Eng. Res. and Design. 87:166-180. Janovitz-Klapp, A. H.; Richard, F. C.; Goupy, P. M.; Nicolas, J. J. 1990.Kinetic studies on apple polyphenol oxidase. J. Agric. Food Chem., 38, 1437-1441. Janovitz-Klapp, A. H., F. C. Richard., P. M. Goupy, and J. J. Nicolas, 1990. Inhibition studies on apple polyphenol oxidase. J. Agric. Food Chem. 38, 926-931. Jayaraman, K. S. and D. K. Das Gupta, 1995. Drying of fruits and vegetables. In: Handbook of Industrial Drying. Mujumdar, A. S. ed. Marcel Dekker Inc., New York, pp. 643-690. Kahn, V. 1985. Effect of proteins, protein hydrolysates and amino acids on o-dihydr- oxyphenolase activity of polyphenol oxidase of mushroom, avocado, and banana. J. Food Sci. 50, 111–115. Kaya, A., O. Aydin, and C. Demirtas. 2007. Drying kinetics of red delicious apple. Biosyst Eng. 96:517-524. Khan, M.R. 2012. osmotic dehydration technique for fruits preservation – a review. Pakistan J. Food Sci. 22:71-85. Khoyi, M. R. and J. Hesari. 2007. Osmotic dehydration kinetics of apricot using sucrose solution. J. Food Eng. 78:1355-1360. Kim, M. H. and R. T. Toledo. 1987. Effect of osmotic dehydration and high temperature fluidized bed drying on properties of dehydrated rabbiteye blueberries. J. Food. Sci.50:980-984. Kim, M.J., Kim, C.Y., & Park, I. 2005. Prevention of enzymatic browning of pear by onion extract. Food Chem. 89:181–184 Kim, J.-S. and Y. S. Lee. 2008.Effect of reaction pH on enolization and racemization reactions of glucose and fructose on heating with amino acid enantiomers and formation of melanoidins as result of the Maillard reaction. Food Chem. 108:582-592. Krokida, M.K., and D. Marinos-Kouris. 2003. Rehydration kinetics of dehydrated products. J. Food Eng. Vol. 57:1-7 Kwak, E.J.  Y.S. Lee, M. Murata, and S. Homma. 2005.Effect of pH control on theintermediates and melanoidins of nonenzymatic browning reaction. LWT. 38:1-6. Lazarides, H. N. 2001. Reasons and possibilities to control solids uptake duing osmotic treatment of fruits and vegetables. Pp. 33-42. In Fito, P. Chiralt, Lee, C. Y. 1984. Interaction of honey protein and tannic acid. J. Apic. Res. 23:106-109. Lee, C. Y. and R. W. Kime. 1984. The use of honey for clarification of apple juice. J. Apic. Res. 23:45-49. Lee, M.Y., Lee, M.K., & Park, I. 2007. Inhibitory effect of onion extract on polyphenol oxidase and enzymatic browning of taro (Colocasia antiquorum var. esculenta). Food Chem. 105, 528–532. Lemus, R., E. lara., N. betoret , and A. vega. 2008 dehydration characteristics of payaya carica pubenscens: determination of equilibrium moisture content and diffusion coefficient. J. Food pro. eng. 32:645-663. Lenart, A. 1996. Osmo-convective drying of fruits and vegetables technology and application. Drying Technol. 14:391-413. Lerici, C. R., G. Pinnavaia., M. D. Rosa. And L. Bartolucci. 1985. Osmotic dehydration of fruit: Influence of osmotic agents on drying behavior and product quality. J. Food Sci. 50:1217-1226. Lin, T. M., T. D. Durance and C. H. Scaman. 1998. Characterization of vacuum micro- wave, air and freeze dried carrot slices. Food Res. Int. 31:111-117. Lombard G. E., J. C. Oliveira., P. Fito and A. Andres. 2008. Osmotic dehydration of pineapple as a pre-treatment for futher drying. J.Food Eng. 85:277-284. Lozano-de-Gonzalez, P.G., D.M. Barrett. , R.E. Wrolstad, and R.W. Durst, 1993. Enzymatic browning inhibited in fresh and dried apple rings by pineapples juice. J. Food Sci. 58, 339–404. Lu, S., Y. Luo., E. Tunner, and H. Feng, 2007. Efficacy of sodium chloride as an inhibitor of enzymatic browning in apple slices. Food Chem. 104: 824–829. Luo, Y., & G.V. Barbosa-Canovas, 1996. Preservation of apple slices using ascorbic acid and 4-hexylresorcinol. Food Sci. Technol. Int. 2: 315–321. Maestrelli, A., R. Lo-Scalzo,. D. Lupi,. G. Bertolo, and D. Torreggiani. 2001. Partial removal of water before freezing:Cultivars and pre-treatments as quality factors of frozen muskmelon (Cucumis melo,cv reticulates Naud.) J. Food Eng.49:225-260. Maltini, E., D. Torreggiani, E. Venir and G. Bertolo.2003. Water activity and the preservation of plant foods. Food Chem. 82:79-86. Mandala, I. G., E.F. Anagnostaras and C.K. Oikonomou.2005. Influence of osmotic dehydration conditions onapple air-drying kinetics and their quality characteristics.J. Food Eng.69: 307-316. Mayer, A. M. and E. Harel, 1979. Polyphenol oxidases in plants. Phytochemistry 18, 193-215. McBean, D.McG., M.A. Joslyn and F.S. Nury. 1971. Dehydrated fruit. A.C. Hulme  (Ed.), The biochemistry of fruit and their products, Vol. 2, Academic Press, London. pp. 623-652. McEvily, A.J. 1991. Method of preventing browning in food utilizing protease free latex extracts particularly from figs. U. S. Patent 4,981,708. Washington, DC: U.S. Patent and Trademark Office. McEvily, A. J.; Iyengar, R.; Gross, A. T. 1992. Inhibition of polyphenol oxidase by phenolic compounds. In Phenolic compounds in food and their effects on health I: analysis, occurrence, and chemistry; ACS Symposium Series 506; American Chemical Society: Washington, DC, pp 318-325 Mishra, B. B., S. Gautam, and A. Sharma. 2013. Free phenolics and polyphenol oxidase(PPO) : The factors affecting post-cut browning in eggplant (Solanum melongena). Food Chem. 139:105-114. Mongpraneet, S., T. Abe and A. Tsurusaki. 2002. Accelerated drying of welsh onion by far infrared radiation under vacuum conditions. J. Food Eng. 55:147-156. Monsalve-Gonzalez, A., G.V. Barbosa-Csnovas., A.J. McEvily and R. Iyengar, 1995. Inhibition of enzymatic browning in apple products by 4-hexylresorcinol. Food Technol, 49, 110–118. Moundoi, M.A., O.I. Padilla-Zakour, and R.W. Worobo. 2004. Growth inhibition of foodborne pathogens and food spoilage organisms by select raw honeys. Int J. Food Microbio. 97 : 1-8. Mrad, N. D., N. Boudhrioua., N. Kechaou., F. Courtois and C. Bonazzi. 2012. Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food and Bioprod Process. 90:433-441. Nadia, D. M., B. M. Nourhene, K. Nabil, C. Francis and B. Catherine. 2013. Effect of osmo-dehydration conditions on the quality attributes of pears. J. Food Pro and Technol. 4:256. Nahimana, H., M. Zhang., A. S. Mujumdar and Z. Ding. 2011.Mass transfer modeling and shrinkage consideration during osmotic dehydration of fruits and vegetables. Food Res Int. 27:331-356. Oszmianski, J.and C.Y. Lee, 1990. Inhibition of polyphenol oxidase activity and browning by honey. Journal of Agricultural and Food Chem. 38, 1892–1895. Ozawa, T.; Lilley, T. H.; Haslam, E. 1987. Polyphenol interaction and the loss of astringency in ripening fruit. Phytochemistry, 26:2937-2942. Pan Y. K., L. J. Zhao., Y. Zhang., G. Chan and A. S. Mujumdar. 2003. Osmotic dehydration pretreatment in drying of fruits and vegetables. Drying technol. 21:1101-1114. Park, K. J., A. Bin., F. P. R. Brod and T. H. K. B. Park. 2002. Osmotic dehydration kinetics of pear D' anjou (Pyrus communis L.). J. Food Eng. 52:293-298. Pizzocaro, F. D. Torreggiani, and G. Gilardi. 1993. Inhibition of apple polypheoloxidase (PPO) by ascorbic acid, citric acid and sodium chloride. J. Food Preserv. 17:21-30. Ponting, J.D. 1973. Osmotic dehydration of fruits-recent modifications and applications. Process Biochem. 8:18-20. Ponting, J.D., G. G. Watters., R. B. Forrey., R. Jackson and W. L. Stanley. 1996. Osmotic dehydration of fruits. Food Technol. 20:1365-1368. Qi, H., M. Le Maguer, and S. K. Sharma. 1998. Design and selection of processing conditions of a pilot scale contactor for continuous osmotic dehydration of carrots. J. Food Pro and Eng. 21:75-88. Rahman M. S. 2007. Drying and food preservation. In R. M.S. (Ed.), Handbook of food preservation.(pp.142)(2nd ed.).CRC Press. Ratti, C. 2001. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 49:311-319. Ribeiro A. S. D. C., E. Aguiar-Oliveira and R. R. Maldonado. 2016. Optimization of osmotic dehydration of pear followed by conventional drying and their sensory quality. LWT- Food Sci and Technol. 72:407-415. Rodriguez O., W. Gomes., S. Rodrigues and F. A. N. Fernandes. 2017. Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrason Sonochem. 35:92-102. Sacilk, K. and A. K. Elicin, 2006. The thin layer drying characteristics of organic apple slices. J Food Eng. 73: 281-289. Saisung, P. and C. Theerakulkait. 2009. Inhibitory effect of pineapple shell extract and its ultrafiltered fractions on polyphenol oxidase activity and browning in fresh-cut banana slices. CyTA- Journal of Food. 9:37-42. Sharma, G.P., R.C. Verma and P.B. Pathare. 2005. Thin-layer infrared radiation drying of onion slices. J. Food Eng., 67:361-366. Sharon, M. and A. M. Mayer. 1967. The effect of sodium chloride on catechol oxidase from apples. Isr. J. Chem. 5:275-280. Shi, J. M. Lemaquer., Y. Kakuda., A. Liptay and F. Niekamp. 1999. Lycopene degradation and isomerization in tomato dehydration. Food Res. Int. 32:15-21. Shi, J. and M. L. Maguer, 2003. Mass transfer in cellular material at solid-liquid contacting interface. Lebensm.-Wiss. U.-Technol. 36:3-11. Silveira, E. T. F., M. S. Rahman, and K. A. Buckle. 1996. Osmotic dehydration of pineapple : kinetics and product quality. Food Res Int. 29:227-233. Singh, P. H. M., M. A. Souza Neto, G. A. Maia, M.S.M. Souza Filho and R. W. Figueiredo. 2008. Desidratacao osmotica de frutos. Boletim da Sociedade Brasileira de Ciencia e Tecnologia de Alimentos. 37:94-100. Sliva, K. S., M. A. Fernandes and M. A.Mauro. 2014. Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. J. Food Eng. 134: 37-44. Sliva, K. S., M. A. Fernandes and M. A.Mauro. 2014.Osmotic dehydration of pineapple with impregnation of sucrose, calcium, and ascorbic acid. Food Bioprocess Technol. 7: 385-397. Sliva, K. S., C. C. Garcia., L. R. Amado and M. A. Mauro. 2015. Effects of edible cotaings on convective drying and characteristics of the dried pineapple. Food Bioprocess Technol. 8:1465-1475. Son, S.M., Moon, K.D., & Lee, C.Y. 2000. Rhubarb juice as a natural antibrowning Agent. J. Food Quality, 65(7), 1288–1289. Taylor, S.L., Higley, N.A., & Bush, R.K. 1986. Sulfites in foods: Uses, analytical methods, sulfur-containing residues, fate, exposure assessment, metabolism, toxicity and hypersensitivity. Adv Food Res. 30, 1–76. Torreggiani, D. and G. Bertolo. 2001. Osmotic pre-treatment in fruit processing: chemical, physical and structure effects. J. Food Eng. 49:247-253. Tortoe, C. 2010. A review of osmodehydration for food industry. African J. Food Sci.4:303-324. Vamos-Vigyazo, L. 1981. Polyphenol oxidase and peroxidase in fruits and vegetables. Crit. ReV. Food Sci. 15: 49- 127. Vega-Galvez, A., K. Di Scala, K. Rodriguez, R. Lemus-Mondaca, M. Miranda and J. Lopez. 2009. Effects of air-drying temperature on physico-chemical properties, antioxidant capacity and total phenolic content of red pepper(Capsicum annuum, L. var. Hungarian). Food Chem. 117:647-653. Vega-Galvez, A., K. Ah-Hen, M. Cahacana, J. Vergara, J. Martinez-Monzo, P. Garcia- Segovia, R. Lemus-Mondaca and K. Di Scala. 2012. Effect of temperature and air velocity ohn drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chem. 132:51-59. Verzelloni, E., D.  Tagliazucchi, and A. Conte. 2010. Changes in major antioxidant compounds during aging of traditional balsamic vinegar. J. Food Bio.  34  pp. 152-171 Vial, C., S. Guilbert,. and J. L. Cuq. 1991. Osmotic dehydration of kiwi fruits : influence of process variables on the colour and ascorbic acid content. Sci. Des Aliments. 11:63-84. Wedzicha, B. L. 1981. Sulfur dioxide: The reaction of sulfite species with food components. Nutrition and Food Sci. 14:11-12. Williams, A. H. Enzyme inhibition by phenolic compounds. In Enzyme chemistry of phenolic compounds; Pridham, J. B., Ed.; Pergamon Press: London, 1962; pp 87-95. Wojdylo, A., A. Figiel and J. Oszmianski. 2009. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, colour, and antioxidant activity of strawberry fruits. J. Agric. Food Chem. 57:1337-1343. Zheng, X. and S. Tian, 2006. Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chem. 96:519-523. Zielinska, M., P. Zapotoczny, O. Alves-Filho, T.M. Eikevik, and W. Błaszczak. 2013. Microwave vacuum-assisted drying of green peas using heat pump and fluidized bed: A comparative study between atmospheric freeze drying and hot air convective drying. Drying Technol. 31 : 633-642 Zielinska, M.  P. Sadowski, and W. Błaszczak. 2015. Freezing/thawing and microwave assisted drying of blueberries (Vaccinium corymbosum L.).LWT – Food Sci. and Technol. 62 :555-563 Zielinska, M. and A. Michalska. 2016. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chem. 212:617-680.
摘要: 近年來鳳梨年平均產量約在44萬公噸之間,且有逐漸增加之趨勢,雖然近5年外銷量有逐年增加之情形,但僅約年產量的5.5%,因此仍以內銷為主。鳳梨屬於熱帶水果不耐低溫貯存,長期貯藏在低溫下,易導致寒害現象,即內部褐化,嚴重影響消費者觀感。因此需要進一步加工以改善不耐長期貯存之問題。乾燥為最常用之加工方法,乾燥速率及感燥後品質為生產者加工利用及消費者決定購買之因素,因此本試驗分別進行不同溫度(45、55、65、75℃)及厚度(0.5、1.0、1.5、2.0 cm)的組合乾燥實驗。由試驗結果可以獲得,鳳梨採用65℃熱風乾燥能有效縮短乾燥時間至一天,在加工後有輕微褐變之現象,相較於65℃,以75℃加工有較差之外觀顏色,由於高溫或低溫長時加工有褐變之現象因此必須調查乾燥過程中褐變之原因。 為了瞭解酵素在不同溫度下之活性變化,分別將鳳梨果肉浸泡於40、50、60、70、80℃蒸餾水中水浴30分,隨後調查酵素活性。其酵素活性不論是POD 或是 PPO皆隨溫度增加而下降,在70℃以達相對低之活性。此外經由80℃高溫殺菁後,在置於75℃下乾燥,其外觀顏色仍呈現黑褐色,因此推斷鳳梨於熱風乾燥過程中褐化可能屬於非酵素褐化。 為減少褐化現象,於乾燥前需進行預處理,滲透脫水為最常用之預處理,藉由滲透過程阻隔氧氣,以防止酵素及非酵素性之反應,而保留乾燥品之外觀顏色,同時也有縮短乾燥時間之作用。本試驗先以不同蔗糖(黑糖、二號砂糖、冰糖、精緻砂糖)作為滲透劑,調查不同蔗糖對乾燥後外觀之影響,由試驗結果獲得以精製砂糖及冰糖有較佳之外觀顏色,考慮成本問題以精製砂糖作為後續滲透劑。滲透液濃度影響後續加工所需時間,因此本試驗以30°、40°、50°、60°、70°不同蔗糖濃度進行滲透脫水4小時,由試驗結果獲得以50%蔗糖溶液作為滲透液,在室溫下進行脫水4小時能有較佳之加工效益。由於糖於滲透過程中進入產品,導致食用品質不佳,因此本試驗另外添加不同添加劑2%食鹽、2%維他命C、0.75%SD、10%蜂蜜,以其增加風味並調查其對乾燥後外觀之影響。試驗結果可以獲得添加0.75%SD、10%蜂蜜及2%食鹽有較佳之外觀,在風味方面10 %蜂蜜作為鳳梨滲透預處理,能生產出食用品質較佳之鳳梨乾。由試驗結果可以獲得,以含有10%蜂蜜之蔗糖滲透液,於常溫下滲透脫水4小時,在於65℃熱風乾燥,可獲得較佳之乾燥外觀及食用品質。
In recent years, the average annual output of pineapple is about 440,000 metric tons, and there is a gradual increase. Although the sales volume has increased year by year in the past five years, it is only 5.5% of the annual output, so it is still mainly domestic sales. Pineapple is a tropical fruit that is not resistant to low temperature storage. Long-term storage at low temperatures can easily lead to cold damage, that is, internal browning, which seriously affects consumers' perception. Therefore, further processing is required to improve the problem of not being able to withstand long-term storage. Drying is the most commonly used processing method. The drying rate and the quality after drying are factors that the producers use and consumers decide to purchase. Therefore, the test is carried out at different temperatures (45, 55, 65, 75 ° C) and thick- ness (0.5, respectively). Combined drying experiment of 1.0, 1.5, 2.0 cm). It can be obtained from the test results. The hot air drying of pineapple at 65 °C can effectively shorten the drying time to one day, and it has a slight browning phenomenon after proc- essing. Compared with 65 °C, it has a poor appearance color at 75 °C, due to high temperature or low temperature. Long-term processing has a browning phenomenon, so it is necessary to investigate the cause of browning during drying. In order to understand the activity changes of the enzyme at different temperatures, the pineapple pulp was soaked in 40, 50, 60, 70, 80 ° C distilled water for 30 minutes, and then the enzyme activity was investigated. Its enzyme activity, whether it is POD or PPO, decreases with increasing temperature and reaches a relatively low activity at 70 °C. In addition, after killing the cyanine at a high temperature of 80 ° C, it is dried at 75 ° C, and its appearance color is still dark brown. Therefore, it is inferred that browning of pineapple during hot air drying may belong to non-enzymatic browning. In order to reduce browning, pretreatment is required before drying, and osmotic dehydration is the most common pretreatment. Oxygen is blocked by the osmotic process to prevent enzymes and non-enzymatic reactions, while retaining the appe- arance color of the dried product. Shorten the effect of drying time. In this experiment, different sucrose (black sugar, granulated sugar, rock sugar, fine granulated sugar) was used as a penetrating agent to investigate the effect of different sucrose on the appea- rance after drying. From the test results, the refined granulated sugar and rock sugar have better appearance color, considering the cost problem. Refined sugar is used as a follow-up penetrant. The permeate concentration affects the time required for subse- quent processing. Therefore, the test is carried out by osmotic dehydration at 30°, 40°, 50°, 60°, 70° different sucrose concentrations for 4 hours. From the test results, 50% sucrose solution is obtained as the permeate. Dewatering at room temperature for 4 hours provides better processing benefits. Because the sugar enters the product during the osmotic process, resulting in poor food quality, this experiment additionally adds different additives( 2% salt, 2% vitamin C, 0.75% SD and 10% honey) to increase the flavor and investigate impact of its at appearance after drying. The test results can be obtained by adding 0.75% SD, 10% honey and 2% salt to have a better appearance. In terms of flavor, 10% honey is used as an infiltration pretreatment of pineapple to produce a pineapple with better eating quality. It can be obtained from the test results, and the sucrose permeate containing 10% honey is permeated and dehydrated at room temperature for 4 hours, and dried by hot air at 65 ° C to obtain a better dry appearance and edible quality.
文章公開時間: 2018-08-30
Appears in Collections:園藝學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.