Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98177
標題: 生物炭混合介質培育之甘藍及番茄幼苗移植後之生育評估及碎化稻稈於甘藍栽培之應用
Post-transplanting Growth Evaluation of Cabbage (Brassica oleracea L. var. capitata) and Tomato (Solanum lycopersicum) Transplants Cultivated on Biochar Mixed Substrate and Application of Chopped Rice Straw on Cabbage Cultivation
作者: 陳奕君
Yi-Jun Chen
關鍵字: 稻稈生物炭
番茄生物炭
碎化稻稈
甘藍
番茄
rice straw biochar
tomato biochar
chopped rice straw
cabbage
tomato
引用: 1.王广龙、夏冬、杨泽恩、蒋芳玲、吴震。2014。幼苗質量對番茄植株生長發育和產量品質的影響。江蘇農業科學 42:140-144。 2.王昭敏編。1993。土壤學。國立中興大學教務處出版組。台灣。台中。 3.王新傳。1980。土壤質地之識別。作物需肥診斷技術 13: 105-108。 4.王鐘和。2009。善用稻稈資源(下)-稻草掩埋的意義及好處。豐年 59:44-46。 5.古明萱。2018。作物與水。國立屏東科技大學推廣教育處。< http://cec.npust.edu.tw/e-learning/agronomy/%B2%C4%A4%BB%B3%B9.pdf>。 6.司亚平、何伟明。1999。番茄穴盤育苗技術規範。農村實用工程技術 1:8-9。 7.行政院農業委員會。2017。綠色國民所得帳農業固體廢棄物歷年表。農業統計資料查詢。< http://agrstat.coa.gov.tw/sdweb/public/common/Download.aspx >。 8.向為民、劉禎祺。2005。合理化施肥之土壤水分管理。合理化施肥專刊。行政院農業委員會農業試驗所編印. p. 87-101。 9.向為民、葉明智。2009。土壤構造,p. 25-49。刊於 : 陳仁炫、鄒裕民主編。土壤與肥料分析手冊(二)土壤物理與生物性質。中華土壤肥料學會。台北。 10.朱海鵬。2001。農業廢棄物共同清除處理機構管理輔導辦法簡介。農政與農情 109:26-27。 11.呂昀陞、陳美杏、李偉崧、吳寬澤、簡宣裕。2011。菇類栽培後介質之再利用。菇類產業發展研討會專刊。台中區農業試驗所編印. p. 59-69。 12.吳錫家。2003。稻草應用為水稻育苗介質之研究。國立中興大學農藝系碩士論文。台中。 13.吳添益、陳仁炫。2004。不同禽畜糞堆肥的施用對土壤肥力及苦瓜生育的影響。台灣農業化學與食品科學 42:242-250。 14.林財得、謝清祿、謝欽城。2004。不同前處理對稻稈吸水性之影響及以稻稈與禽畜糞製作堆肥可行性探討。農業機械學刊 13:1-12。 15.耿曾超、戴伟主編。2011。土壤學。科學出版社。中國。北京。 16.倪禮豐。2003。水稻廢棄資材之利用。花蓮區農業專訊 43:21-24。 17.徐華盛。1995。施用雞豬糞堆肥對甘藍生長及收量之效應。桃園區農業改良場研究彙報 20:36-40。 18.徐華盛。1997。微生物發酵堆肥對甘藍產量及品質之影響。桃園區農業改良場研究彙報 30:34-45。 19.張仲民譯。1997。土壤與肥料學。徐氏基金會。台灣。台北。 20.張志因、黃鵬。1994。浸水逆境對小胡瓜及甘藍生長及產量之影響。花蓮區農業改良場研究彙報 10:69-84。 21.郭孚燿。2002。番茄栽培技術。臺中區農業專訊 38:12-18。 22.梁志欽、黃仕政、吳秋曄、蔡淑瑤、梁志弘、吳寬澤、毛正倫。2011。菇類栽培替代性資材之開發。菇類產業發展研討會專刊。台中區農業試驗所編印.p. 47-57。 23.陳正次。2000。番茄栽培管理,果菜類蔬菜栽培斑課程講義。行政院農業試驗所。 24.陳琦玲、廖崇億、楊晴晴、林佩勳。2017。農地施用生物炭對作物生長的影響與碳匯潛量概估。農業世界雜誌 404:8-13。 25.陳仁炫、郭惠千、林正錺。1993。作物養分需求及植體分析之分級標準彙集。國立中興大學土壤環境科學系。 26.許榮華。2012。缺氧逆境對植物根部生育之影響。台中區農業改良場一○○年專題討論專集。台中區農業改良場編印. p. 222-226。 27.許謙信。2004。菊花葉片之可溶性固形物之變化與老化之關係。台中區農業改良場研究彙報 84:11-28。 28.郭濰如。2009。小白菜穴盤苗移植栽培中穴格容積與苗齡對種苗品質和植株生長影響與栽培模式之建立。國立中興大學園藝系博士論文。台中。 29.曾俊偉、陳明杰。2016。淺談土壤孔隙與水資源涵養之關係。林業研究專訊 23:84-87。 30.黃琇晶。2005。稻草固態錠型燃料螺桿擠製之成形性分析研究。國立交通大學機械工程系碩士論文。新竹。 31.葛曉光。1987。果菜壯苗指標研究的概況。中國蔬菜 1:87。 32.楊秋忠。2004。土壤與肥料。農世股份有限公司。台灣。台中。 33.楊秀珠。2011。十字花科蔬菜病蟲害之發生與管理。行政院農委會農業藥物毒物試驗所編印。台中。pp. 1-58。 34.楊佳晏。2017。稻稈替代育苗介質對甘藍及番茄穴盤苗之影響。國立中興大學園藝系碩士論文。台中。 35.楊盈。2018。番茄生物炭混合介質對甘藍及番茄幼苗生長及對番茄萎凋病防治之影響。國立中興大學園藝系碩士論文。台中。 36.廖芳心。1993。溫度對甘藍結球生理之效應。桃園區農業改良場研究彙報 15:16-23。 37.廖靖華、李清華、方信雄、洪基恩。2012。廢稻草回收產醣及產醇之研究。科學與工程技術期刊 8:21-26。 38.廖乾華、莊浚釗。2000。有機質肥料對結球白菜生育之影響。桃園區農業改良場研究彙報 42:28-36。 39.萬鑫森。1968。土壤水分及其移動。水土保持學報 1:19-25。 40.萬鑫森譯。1987。基礎土壤物理學。國立編譯館。台灣。台北。 41.薛佑光、李文汕、張武男。2000。介質對番茄台中亞蔬四號穴盤苗及其定植後初期生育之影響。興大園藝 25:59-72。 42.戴振洋。2000。蔬菜育苗穴盤之探討。台中區農業專訊 31:12-15。 43.蕭政弘、賴文龍。2010。甘藍合理化施肥技術。臺中區農業專訊 69:21-24。 44.蘇博信。2011。稻殼、稻稈再利用,農業廢棄物展生機。高雄區農情月刊 170:4-4。 45. Alam, M.N. 2007. Effect of boron levels on growth and yield of cabbage in calcareous soils of Bangladesh. Res J Agr Biol Sci 3:858-865. 46. Ahmad, M., A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, and Y.S. Ok. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99:19-33. 47. Akhtar, M. and A. Malik. 2000. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour. Technol. 74:35-47. 48. Anderson, C.R., L.M. Condron, T.J. Clough, M. Fiers, and A. Stewart. 2011. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia Int. J. Soil Biol. 54:309-320. 49. Beckles, D.M. 2012. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 63:129-140. 50. Bending, G.D. and M.K. Turner. 1999. Interaction of biochemical quality and particle size of crop residues and its effect on the microbial biomass and nitrogen dynamics following incorporation into soil. Biol. Fertil. Soils 29:319-327. 51. Bending, G.D., M.K. Turner, and J.E. Jones. 2002. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol. Biochem. 34:1073-1082. 52. Bronick, C.J. and R. Lal. 2005. Soil structure and management: a review. Geoderma 124:3-22. 53. Burrell, R.C., H.D. Brown, and V.R. Ebright. 1939. Ascorbic acid content of cabbage as influenced by variety, season, and soil fertility. J. Food Sci. 5:247-252. 54. Caravaca, F., A. Lax, and J. Albaladejo. 1999. Organic matter, nutrient contents and cation exchange capacity in fine fractions from semiarid calcareous soils. Geoderma 93:161-176. 55. Chen, L., J. Zhang, B. Zhao, and P. Yan. 2014. Effects of straw amendment and moisture on microbial communities in Chinese fluvo-aquic soil. J Soils Sediments 14:1829-1840. 56. Ciska, E., B.M. Przybyszewska, and H. Kozlowska. 2000. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J. Food Sci. 48:2862-2867. 57. Dexter, A.R. 2004. Soil physical quality Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120:201-214. 58. Dobermann, A. and T.H. Fairhurst. 2002. Rice straw management. Int. 16:7-11. 59. Denyes, M.J., V.S. Langlois, A. Rutter, and B.A. Zeeb. 2012. The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Sci. Total Environ. 437:76-82. 60. Drzal, M.S., D. Keith Cassel, and W.C. Fonteno. 1999. Pore fraction analysis: A new tool for substrate testing. Acta Hort. 481:43-54. 61. Ersahin, S., H. Gunal, T. Kutlu, B. Yetgin, S. Coban. 2006. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma 136:588-597. 62. Gao, S., K.K. Tanji, and S.C. Scardaci. 2004. Impact of Rice Straw Incorporation on Soil Redox Status and Sulfide Toxicity. Agron. J. 96:70-76. 63. Hara, T. and Y. Sonoda. 1979. The role of macronutrients for cabbage-head formation (preliminary report) Growth performance of a cabbage plant, and potassium nutrition in the plant. Soil Sci. Plant Nutr. 25:103-111. 64. Hajiboland, R. and F. Amirazad. 2010. Growth, photosynthesis and antioxidant defense system in Zn-deficient red cabbage plants. Plant Soil Environ. 56:209-217. 65. Hara, T., A. Nakagwa, and Y. Sonoda. 1982. Effects of nitrogen supply and removal of outer leaves on the head development of cabbage plants. J. Jpn. Soc. Hortic. Sci. 50:481-486. 66. Hara, T., Y. Sonoda, and I. Iwai. 1976. Growth response of cabbage plants to transition elements under water culture conditions: I Titanium, Vanadium, Chromium, Manganese, and Iron. Soil Sci. Plant Nutr. 22:307-315. 67. Henriksen, T.M. and T.A. Breland. 2002. Carbon mineralization, fungal and bacterial growth, and enzyme activities as affected by contact between crop residues and soil. Biol Fertil. Soils 35:41-48. 68. Kaewpradit, W., B. Toomsan, G. Cadisch, P. Vityakon, and V. Limpinuntana. 2009. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency. Field Crops Res. 110:130-138. 69. Kuisma, E., P. Palonen, and M. Yli-Halla. 2014. Reed canary grass straw as a substrate in soilless cultivation of strawberry. Sci. Hortic. 178:217-223. 70. Kusznierewicz, B., R. Bączek‐Kwinta, A. Bartoszek, A. Piekarska, A. Huk, A. Manikowska, J. Antonkiewicz, J. Namieśnik, and P. Konieczka. 2012. The dose‐dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Environ.Toxicol. Chem. 31:2482-2489. 71. Lee, S.K. and A.A. Kader. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 20:207-220. 72. Leskovar, D.I. and D.J. Cantliffe. 1991. Growth and Yield of Tomato Plants in Response to Age of Transplants. J. Amer. Soc. Hort. Sci. 116:416-420. 73. Liao, S., B. Pan, H. Li, D. Zhang, and B. Xing. 2014. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environ. Sci. Technol. 48:8581-8587. 74. Linweber, P., G. Reuter, and K. Brozio. 1993. Cation exchange capacities of organo-mineral particle-size fractions in soils from long-term experiments. J. Soil Sci. 44:111-119. 75. Lipiec, J., J. Kus´, A. Słowin´ska-Jurkiewicz, and A. Nosalewicz. 2006. Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res. 89:210-220. 76. Maggio, A., G. Raimondi, A. Martino, and S. De Pascale. 2007. Salt stress response in tomato beyond the salinity tolerance threshold. Environ. Exp. Bot. 59:276-282. 77. Markovic, V., M. Djurovka, and Z. Ilin. 1996. The effect of seedling quality on tomato yield, plant and fruit characteristics. Acta Hort. 462:163-170. 78. Pal, D. and F.E. Broadbent. 1975. Influence of Moisture on Rice Straw Decomposition in Soils. Soil Sci. Soc. Amer. J. 39:59-63. 79. Pardo, A., M. Amato, and F.Q. Chiaranda`. 2000. Relationships between soil structure, root distribution and water uptake of chickpea (Cicer arietinum L.). Plant growth and water distribution. Eur. J. Agron. 13:39-45. 80. Pires, L.F., J.A.R. Borges, J.A. Rosa, M. Cooper, R.J. Heck, S. Passoni, and W.L. Roque. 2017. Soil structure changes induced by tillage systems. Soil Tillage Res. 165:66-79. 81. Sarıkamış, G. 2009. Glucosinolates in crucifers and their potential effects against cancer: Review. Can. J. Plant Sci. 89:953-959. 82. Shannon, M.C. and C.M. Grieve. 1999. Tolerance of vegetable crops to salinity. Sci. Hortic. 78:5-38. 83. Sasal, M.C., A.E. Andriulo, and M.A. Taboada. 2006. Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas. Soil Tillage Res. 87:9-18. 84. Schonhof, I., D. Blankenburg, S. Müller, and A. Krumbein. 2007. Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. J. Plant Nutr. Soil Sci. 170:65-72. 85. Singh, J., A.K. Upadhyay, A. Bahadur, B. Singh, K.P. Singh, and M. Rai. 2006. Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Sci. Hortic. 108:233-237. 86. Singh, Y., B. Singh, J.K. Ladha, C.S. Khind, T.S. Khera, and C.S. Bueno. 2004. Effects of Residue Decomposition on Productivity and Soil Fertility in Rice–Wheat Rotation. Soil Sci. Soc. Amer. 68:854-864. 87. Sumner, M.E. and W.P. Miller. 1996. Cation exchange capacity and exchange coefficients, p. 1201-1229. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner. (eds.). Methods of Soil Analysis Part3-Chemical Methods. SSSA, Wisconsin, USA. 88. Thongjoo, C., S. Miyagawa, and N. Kawakubo. 2005. Effects of Soil Moisture and Temperature on Decomposition Rates of Some Waste Materials from Agriculture and Agro-industry. Plant Prod. Sci. 8:475-481. 89. Vavrina, C.S., S. Olson, and J.A. Cornell. 1993. Watermelon Transplant Age: Influence on Fruit Yield. Hortscience 28:789-790. 90. Weisskopf, P., R. Reiser, J. Rek, and H.R. Oberholzer. 2010. Effect of different compaction impacts and varying subsequent management practices on soil structure, air regime and microbiological parameters. Soil Tillage Res. 111:65-74. 91. Yao, Y., B. Gao, M. Zhang, M. Inyang, and A.R. Zimmerman. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467-1471. 92. Yazdanpanah, N., M. Mahmoodabadi, and A. Cerdà. 2016. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma 266:58-65. 93. ŽnidarČiČ, D., N. Kacjan-MarŠiĆ, J. Osvald, T. Požrl, and S. Trdan. 2007. Yield and quality of early cabbage (Brassica oleracea L. var. capitata) in response to within-row plant spacing. Acta agric 89:15-23.
摘要: 本試驗分別以不同比例之稻稈或番茄生物炭取代泥炭土作為甘藍及番茄育苗介質,並以與對照組無顯著差異之最大替代比例育成幼苗定植,於採收期調查作物生長性狀、產量及品質;另外以不同比例之碎化稻稈混合田土作為甘藍栽培介質,以盆栽栽培至採收,調查甘藍生長及結球性狀以及品質,以評估農業廢棄物於育苗及栽培介質之利用性。 在育苗試驗中,稻稈及番茄生物炭皆可取代25%泥炭土作為甘藍育苗介質,取代50%作為番茄育苗介質。後續定植試驗之結果顯示,由稻稈生物炭育成之苗所培育之甘藍在採收時生長性狀與由泥炭土育成之苗所培育之甘藍無顯著差異,且結球性狀、硫代葡萄糖苷、抗壞血酸及總可溶性固形物含量皆無顯著差異,僅有鋅及硼元素濃度顯著提升,由稻稈生物炭育成之苗所培育之番茄在採收時平均果重顯著低於由泥炭土育成之苗所培育之番茄,植株生長性狀、產量及果實品質皆與由泥炭土育成之苗所培育之番茄無顯著差異。由番茄生物炭育成之苗所培育之甘藍在採收時外葉數、葉球鐵元素濃度顯著高於由泥炭土育成之苗所培育之甘藍,鉀元素濃度則顯著低於由泥炭土育成之苗所培育之甘藍,由番茄生物炭育成之苗所培育之番茄的生長性狀、產量和果實品質,與由泥炭土育成之苗所培育之番茄無顯著差異。此結果說明稻稈及番茄生物炭可以部分取代泥炭土作為甘藍及番茄之育苗介質,且不影響幼苗定植後植株之生育、產量及品質。 另一方面,分別以5%(5S)及15%(15S) 碎化稻稈與田土混合進行甘藍盆栽試驗。結果顯示,處理組之總孔隙度、容器含水量及空氣孔隙率增加,總體密度則顯著降低。田土(對照組)及5S處理組於栽培後粗顆粒減少,小顆粒增加。相較於對照組,pH值在添加碎化稻稈的處理中顯著降低,EC值顯著提升,陽離子交換能力則無顯著差異,添加碎化稻稈的處理顯著提升土壤鉀、鎂及鋅元素濃度。甘藍生長性狀方面,以田土栽培之甘藍有較大之葉寬,結球性狀也以田土栽培之甘藍顯著高於添加碎化稻稈的處理,硫代葡萄糖苷含量以5S處理組顯著高於田土,各供試組之葉球營養元素濃度除鐵之外,皆有某組或各組均低於適當範圍之情形。此外,研究結果亦顯示以碎化稻稈混合田土作為栽培介質,可能會因為添加稻稈的處理組在硼元素利用的不足,造成產量減少,未來應用碎化稻稈混合田土之介質時可能需要改變施肥方式,或在種植前數週預先混入稻稈,避免稻稈在分解過程中介質微生物與甘藍產生養分競爭,而抑制甘藍生長。
In this study, different proportions of rice or tomato biochar were used to replace peat moss as transplant growth substrates for cabbage and tomato, respectively. The growth phenotype, yield and head or fruit quality of cabbage and tomato plants derived from the above-mentioned transplants were investigated at harvesting stage. Furthermore, chopped rice straw was mixed with field soil at different ratios as growth substrates for cultivation of cabbage in containers, cabbage growth phenotype, head phenotype, and head quality were evaluated to determine the potential of utilizing crop wastes as growth substrates. Results from transplant growth analysis indicated that rice and tomato biochar both may replace 25% peat moss as growth substrate for cabbage transplants and replace 50% peat moss as growth substrate for tomato transplants. The growth and head phenotypes, the contents of glucosinolate, ascorbic acid and total soluble solid of cabbage plants derived from transplants grown in the rice straw biochar mixed substrate showed no significant difference, but zinc and boron concentrations in the leaves of cabbage head were significantly higher compared to those of cabbage plants derived from transplants grown in peat moss. Tomato plants derived from transplants grown in the rice straw biochar mixed substrate had significantly lower average fruit weight, whereas no significant difference was observed in growth phenotype, yield and fruit quality compared to those of tomato plants derived from transplants grown in peat moss. Outer leaf number and iron concentration of cabbage head were higher but potassium concentration of cabbage head was lower in cabbage plants derived from transplants grown in the tomato biochar mixed substrate relative to those of cabbage plants derived from transplants grown in peat moss. No significant difference was observed in growth phenotype, yield and fruit quality of tomato plants derived from transplants grown in tomato biochar mixed substrate compared to those of tomato plants derived from transplants grown in peat moss. These results suggested that rice straw biochar and tomato biochar may partially replace peat moss as growth substrate for cabbage and tomato transplant growth without negative effect on subsequent transplant growth, yield and head or fruit quality. In another experiment, 5% (5S) and 15% (15S) chopped rice straw were applied to mixed with field soil for cultivation of cabbage. Our results indicated that total porosity, container capacity and air space were higher in 5S and 15S treatment group relative to the control group (0S, 100% field soil) but bulk density was significantly lower relative to the control group. As to the substrates after cultivation, the proportion of coarse particles decreased but the proportions of fine particles increased in the control and 5S treatment group compared to those before cultivation. Comparing to raw field soil, pH values were significantly lower, EC values were significantly higher and CEC was not significantly altered after addition of chopped rice straw in the raw field soil, furthermore, potassium, magnesium and zinc concentrations were all significantly increased in the chopped rice straw mixed substrates. Larger leaf width and better head phenotypes were noticed in field soil grown cabbages relative to those grown in the chopped rice straw mixed substrates. The content of glucosinolate was significantly higher in 5S treatment group compared to the control group. Besides iron concentration in the cabbage head, the concentrations of the rest nutrient elements tested were below the suitable range in some of all groups tested. In addition, results from this study demonstrated that utilization of chopped rice straw mixed substrates for cultivation of cabbage may have yield reduction due to insufficient supply of boron. It is therefore important to change fertilization strategy or allow the chopped rice straw to be degraded in the field soil before cultivation of cabbage to prevent nutrient competition between soil microbes and cabbage that may inhibit cabbage growth.
URI: http://hdl.handle.net/11455/98177
文章公開時間: 2021-08-29
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.