Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98178
標題: 番茄及瓜類莖葉製成快速堆肥於雜草抑制及蔥 (Allium fistulosum L.) 栽培上的應用
The application of fast compost made from tomato and melon residues on weed inhibition and welsh onion (Allium fistulosum L.) cultivation
作者: 吳立烽
Ling-Feng Wu
關鍵字: 番茄
瓜類
快速堆肥
雜草
tomato
melon
fast compost
weeds
welsh onion
引用: 丁文彥。1993。蘭陽地區蔥栽培土壤酸化及連作障礙之改進方法。花蓮區農業專訊 6:2-4。 王裕文。2000。草坪草之生態、分佈與利用。中華民國雜草學會會刊 21(1):1-16。 王茂勝、李明、楊秀祥、汪漢成、邱忠智、蔣選利。2014。酚酸對煙苗根系生長及葉片光合特性的影響。廣東農業科學 2:14-18。 行政院農業試驗所。2013。技術服務組常見問題。<https://www.tari.gov.tw/faq/index-1.asp?Parser=27,5,30,,,,3735,86,,,12> 吳鳳芝。1998。大棚蔬菜連作年限對土壤主要理化性狀的影響。中國蔬菜 4:5-8。 吳容儀、賴彥旭。2010。栽培介質對大彗星風蘭植株生育之研究。台灣農業研究 59(4):219-227。 李麗。1999。腐殖酸磷肥的開發及其作用機理研究進展。磷肥和複合 3:58-61。 李丁丁。2008。蔗糖、腐植酸對平邑甜茶氮素吸收利用和分配影響研究。山東農業大學碩士論文。中國山東。 林鴻淇。1999。堆肥製造原理。農業試驗所特刊 88:49-57。 林學詩。2000。蔥有機栽培。臺東區農技報導 4:1-3。 林永鴻。2007。有機酸對蔬菜園土壤理化性質的影響。高雄區農業改良場研究彙 報 18(1):65-79。 蔥主題館。2018。蔥秘訣栽培<https://kmweb.coa.gov.tw/subject/ct.asp?xItem= 1052540&ctNode=3854&mp=273&kpi=0&hashid=>。 施劍鎣。2008。功能性有機資材之綜合利用及其對永續有機作物生產的重要性。有機作物栽培技術研討會專刊 p.27-28。 胡舉偉、朱文旭、許楠、鄭桂英、孫廣玉。2013。外源酚酸對桑樹幼苗生長和光合特性的影響。草業科學 30(9):1394-1400。 倪禮豐。2010。水稻廢棄資材之利用。花蓮區農業專訊 43:21-24。 徐甯、王超、魏瑉、時偉、王秀峰。2012。大蔥根系分泌物對黃瓜種子萌芽和枯 萎病病原菌的化感作用及其GC–MS 分析。園藝學報 39(8):1511-1520。 陳仁炫、林正錺、郭惠千。1993。土壤肥力因數之分級標準彙集。國立中興大學土壤研究所。台中。 陳仁炫。2015。土壤簡易檢康檢測手冊。國立中興大學土壤環境科學系。台中。 陳可薇。2015。番茄副產物資源化再利用於蔬菜栽培之研究。國立中興大學園藝 系碩士論文。台中。 陳嘉雯。2016。葫蘆科莖葉經堆積處理於蔬菜栽培可利用性之研究。國立中興大學園藝系碩士論文。台中。 張爽、潘偉。2006。植物化感作用研究進展。現代化農業 8:16-17。 張耀輝、張麗華、周娜娜、陳忠蔭、呂能標。2011。葫蘆瓜葉水浸液對蔬菜種子的化感作用 1:54-57。 黃鵬。2009。農業經營專區技術叢書-蔥栽培管理手冊。行政院農業委員會花蓮區農業改良場。花蓮。 陸欣、王申貴。1996。應用腐殖酸改善石灰性土壤磷素供應狀況的研究。土壤通報 27(6):265-267。 程扶玖、楊道麒、吳慶生。1995。腐殖酸對小麥抗旱性的生理效應。應用生態學報 6(4):363-367。 湯江武、朱利中。2008。不同堆肥條件對種子發芽指數影響的研究。浙江農業 科學 5:583-585。 靳志麗、劉國順、聶新柏。2002。腐殖酸對土壤環境和烤煙礦質吸收影響的研究。 中國煙草科學 3:15-18。 楊秋忠、陳立夫。1995。特殊有機質肥料(泥炭及腐植酸)之功效。有機質肥料合 理施用技術研討會專刊 p.150。 楊秋忠、黃裕銘、郭錳德、陳仁炫、曾慶平、楊盛行、李文汕。2011。快速處理的生產製造。台灣有機廢棄物的再利用有機質肥料之生產及應用研究。中正基金會專題研究報告 p.127-132。 楊國庭。2003。農業有機廢棄物產業發展現況與展望<http://www.green188.com.tw/news/shownews.asp?num=121&page=&lan=%B7%A8%B0%EA%A7%CA%B1M%C4%E6>。 鄭健雄、蔡宜峰。1995。農村廢棄物堆肥化處理與利用。台中區農推專訊 145:1-13。 蔡永曍。2001。以市售堆肥及填充資材研製育苗介質。高雄區農業改良場研究彙報 13(1):39-53。 劉秀芬、胡曉軍。2001。化感物質阿魏酸對小麥苗內源激素水準的影響。中國農業生態學報 9(1):86-88。 潘瑞熾。2006。植物生理學。藝軒圖書出版社。p.152-158。台北。 邊文驊。2000。腐植酸形成的生物學機理研究概況。河北師範大學學報 24(4):526-530。 Akemo, M. C., E. E. Regnier, and M. A. Bennett. 2000. Weed suppression in spring-sown rye Secale cereale-pea (Pisum sativum) cover crop mix. Weed Technol. 14:545–549. Albayrak, S. and N. Camas. 2005. Effects of different levels and application times of humic acid on root and leaf yield and yield components of forage turnip (Brassica rapa L.). J. Agro. 4(2):130-133. Albrecht, R., J. L. Petit, G. Terrom, and C. Perissol, 2011. Comparison between UV spectroscopy and nirs to assess humification process during sewage sludge and green wastes co-composting. Bioresour. Technol. 102:4495–4500. Bazivamakenga, R. R., G. D. Leroux, and R. R. Simard. 1995. Effects of benzonic and cinnamic on membrane permeability of soybean roots. Chem. Ecol. 21:1271-1285. Barkosky, R. R., F. A. Einhellig, and J. L. Butler. 2000. Caffeic acid induced changes in plant•water relationships and photosynthesis in leaf spurge Euphorbia esula. Chem. Ecol. 26:2095-2109. Bastida, F., K. Jindo, J. L. Moreno, T. Hernández, and C. García. 2012. Effects of organic amendments on soil carbon fractions, enzyme activity and humuse enzyme complexes under semi-arid conditions. Eur. J. Soil Bio. 53:94-102. Booker, F. L. 1992. Short term of ferulic acids on ion uptake and water relations on cucumber seedlings. J. Exp. Bot. 43(250):149-655. Christine, Z. 1995. Differential inhibition by ferulic acid of nitrate and ammonium uptake in Zee mays L. Plant Physiol. 98:639-645. Creamer, N. G., M. A. Bennett, B. R. Stinner, J. Cardina, and E. E. Regnier. 1996. Mechanisms of weed suppression in cover crop-based production systems. Hort. Sci. 31:410–413. Clark, A. 2007. Managing cover crops profitably. Sustainable Agriculture Research and Education. 3rd edition. Maryland. p.526-530. Davey, H. M. and D. B. Kell. 1996. Flow cytometry and cell sorting of heterogeneous microbial populations:the importance of single-cell analyses. Microbial Rev. 60:641-696. De Boodt, M. and O. Verdonck. 1972. The physical properties of their subst rates in horticulture. Acta Hort. 26:37-44. Demarco, A. and C. Desimone. 1995. Influence of soil characteristics on the clastogenic activity of maleic hydrazide root tips of Vicia faba. Mut. Res. 344:5-12. Earl, K. D., J. K. Syers, and J. R. McLauglin. 1979. Origin of the effe cts of citrate, tartarate and acetate on phosphate sorption by soils and synthetic gels. Soil Sci. Soc. Am. J. 43:674- 678. Eftoda, G. and McCartney, D. 2002. Correlating bench-scale FAS test to full scale windrow composting performance. In: Michel, F.C., Rynk, R.F., Hoiting, H.A.J.(Eds.), Proc. Intl. Symp. Composting and Compost Utilization, Columbus, OH. USA, p.204-220. Einhelling, F. 1986. The science of allelopathy. John Wiley Sons publishing. New York. Folin, O. and W. Denis. 1915. A colormetric method for the determination of phenols ( and phenol derivates) in urine. J. Bio. Chem. 2:22. Glass, D. K. 1997. Influence of phenolic acids on ion uptake. Plant Physiol. 54:855-858. Hollapa, L. D. 1991. Effects of exogenously applied ferulic acid, a potential allelopat hic compound on leaf growth, water utilization and enclogenous abscisic acid levels of tomato, cucumber and bean. Soil Sci. Plant Nut. 39(4):691-700. Harrison, R. B. 2008. Composting and formation of humic substances. Eco. Pro. p.713-719. He, H. Q., and W. X. Lin. 2001. Studies on allelopathic physiobiochemical characteristics of rice. Chin. J. Eco-Agric. 9(3):56-57. Kong, C. H., P. Wang, H. Zhao, X. H. Xu, and Y.D. Zhu. 2008 Impact of allelochemical exuded from allelopathic rice on soil microbial community. Soil Biol. Biochem. 40: 1862-1869. Landon, J. R. 1984. Booker tropical soil manual. Longman Inc., New York. Leslie, C. A. and R. J. Romani. 1998. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol. 88:833-837. Mehlich, A. 1953. Determination of P, Ca, Mg, K, Na, and NH4. North Carolina Soil Test Division. Memie, W. and M. Singh. 1993. Phenolic acid affect photosynthesis and protein synthesis by isolated leaf cells of volvet-leaf. Chem. Ecol. 19:1293-1301. Moghimi, A., D. G. Lewis, and J. M. Oades, 1978. Release of phosphate from calcium phosphates by rhizosphere products. Soil Biol Biochem. 10:277-281. Oglesbyr, R. T., F. Christman, and C. H. Driver. 1968. The biotransformation of lignin to humus-facts and postulates. Adv. Appl. Microbio. 9:171-184. Peoples, M. B., D. F. Herridge, and J. K. Ladha. 1995. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production. Plant Soil 174:3–28. Piccolo, A., G. Pietramellara, and J. S. G. Mbagwu. 1997. Reduction soil loss from erosion-susceptibles soils amended with humic substances from oxidized coal. Soil Tech. 10:235-245. Price, A. J. and J. K. Norsworthy. 2013. Cover crops for weed management in southern reduced tillage vegetable cropping systems. Weed Technol. 27: 212-217. Ritchie, G. S. P. and P. J. Dolling. 1985. The role of organic matter in soil acidification. Aust. J. Soil Res. 23(4):569–576. Roshchina, V. V. and V. D Roshchina. 1993. The excretory function of higher plant. Springerling. New York. p.213-215. Selim, E. M., A. S. Neklawy, and S. M. Ashry. 2010. Beneficial effects of humic substances on soil fertility to fertigate potato grown on sandy soil. Agr. Res. 1:255-262. Senesi, N., T.M. Miano, and G. Brunetti. 1996. Humic-like substances in organic amendments and effects on native soil humic substances. Piccolo, A. (Ed.), Humic Substances in Terrestrial Ecosystems. Elsevier Science, New York, p. 531–593. Song, S. K. and P. M. Huang. 1988. Dynamics of potassium release from potassium bearing minerals as influenced by oxalic and citric acids. Soil Sci Soc Am J. 52:383-390. Stevenson, F. J. 1967. Organic acids in soil. In: Soil biochemistry, A. D. McLaren     and G. H. Peterson(Ed), Marcel Dekker Inc. New York. p.119-146. Tayler, H. M., G. M. Roberson, and J. J. parker. 1966. Soil strength-root penetration relations for medium to coarse textured soil materials. Soil Sci. 102:18-22. Tan, K. H. 2003. Humic matter in soil and the environment, principles and controversies. Marcel Dekker Inc. New York. Wang, T. S. C., S. W. Li, and Y. L. Feng. 1978. Catalytic polymerization of phenolic compounds by clay minerals. Soil Sci. 126:15–21. Wang, K., R. McSorley, R. N. Gallaher, and N. Kokalis-Burelle. 2008. Covercrops and organic mulches for nematode, weed and plant health management. Nematology 10:231–242. Whitehead, D. C. 1964. Identification of p-hydroxybenzoic vanillic, p-coumaric and ferulic acids in soils. Nature 202:417. Wu, J., Y. Zhao, W. Zhao, T. Yang, X. Zhang, X. Xie, H. Cui, and Z. Wei. 2017. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting. Bioresour Technol. 226:191-199. Xu, X. and J. Liu. 2013. Function mechanism of humic acid and its application in forestry. World Fore. Res. 26(1):48-52. Yeager, A., R. Michael, H. Yitzhak, C. Roni, W. Shmuel, G. Lidor, and K. Jaacov. 2010. Induced resistance as putative component of compost suppressiveness. Biol. 54:46-51. Y u, J. Q. 1991. Extraction and identification of phytotoxic substances accumulated in nutrient solution for the hydroponic culture of tomato. J. Chem. Eco. 17:865-866. Yu, J. Q. 1993. P-thiocyanate phenol as a novel allelopathic compound in exudates from root of cucumber. Chem. Express. 8(8):577-580.
摘要: 農業副產物常被回收製成有機資材後再利用,國立中興大學楊秋忠教授研發快速堆肥技術,解決製作堆肥耗時、需空間及費力等問題。 本試驗利用瓜類、番茄、蔗渣、玉米穗軸的植株為原料進行快速堆肥化,快速堆肥總孔隙度介於68-92%,介質含水率於77%以上,含氮磷鉀等營養元素,瓜類者氮含量約2%。瓜類和番茄快速堆肥具有較高的總酚含量,於土中酚類化合物可轉換成腐植質,以總酚含量最高的甜瓜者提升最為顯著。甜瓜快速堆肥覆蓋於田土盆栽蔥上,第60天的類腐植質含量約含0.08-0.15 g/g,泥炭介質盆栽蔥約有0.03-0.06 g/g,施加於有田土者能增加較多腐植質含量。 快速堆肥具高總酚含量與EC值的特性,甜瓜總酚含量3953 μg/g與EC1:5值21.3 dS/m最高,酚類物質可抑制雜草生長,為減少對蔥生長的影響,瓜類與番茄快速堆肥需混合總酚含量與EC值較低的蔗渣和玉米穗軸者,降低對蔥根系的傷害,同時達到抑草效用。在培養皿施加混合快速堆肥濾液,對類地毯草、假儉草與龍鳳草的種子均抑制發芽。龍鳳草較耐堆肥濾液,冬瓜與蔗渣混合濾液對種子發芽率無顯著差異,類地毯草發芽率影響最顯著,各處理皆降至10%以下。部分處理使假儉草及龍鳳草根細胞分裂受影響產生四倍體 (4C),以番茄與蔗渣混合處理四倍體細胞數目較多。以600 μg/g以上的沒食子酸或香草酸處理類地毯草、假儉草與龍鳳草種子,三草種的發芽率、胚根長與鮮重皆顯著較低。覆蓋單質快速堆肥於田土上,雜草乾重顯著與無覆蓋對照組的152 g少,其中以覆蓋番茄與玉米穗軸快速堆肥的31 g與21 g顯著較少。蔥種子以冬瓜混合者濾液處理無顯著抑制生長,表示蔥育苗條件需在總酚含量1500 μg/g及EC1:5值5以下較為合適。育苗上除蔗渣外其餘快速堆肥皆先以10倍水淋洗,冬瓜、蔗渣與玉米穗軸分別和椰纖土以1:1(v:v)混合,南瓜、番茄與甜瓜個別和椰纖土以1:3(v:v)混合,蔥苗地上部鮮重約為254-305 mg,與椰纖土處理無顯著差異,可利用於蔥穴盤介質。 將混合快速堆肥覆蓋於蔥盆栽與田間栽培,在栽培第60天採收時,盆栽蔥的產量上以南瓜和蔗渣與玉米混合者產量高,地上部鮮重各為98與86 g。田間栽培上以冬瓜和蔗渣與玉米混合者蔥產量較佳,分別為36和31 g,抑制雜草以甜瓜與玉米混合者較佳,雜草乾重約11.45 g。快速堆肥若以單質快速堆肥覆蓋於栽培蔥盆栽上,對周圍雜草生長具較強抑制作用,處理組皆顯著較對照組佳,在覆蓋單質堆肥的蔥採收產量上與對照組無顯著差異。
Agricultural by-products are often recycled into organic materials and then returned to the field. The most common method by which to achieve this is composting, but compost production is limited by time and space constrains. Professor Yang of National Chung Hsing University invented fast-composting technology to solve this problem. In the experiment, the residues of Cucurbitaceae (melon, pumpkin and wax gourd) tomatoes, sugar canes bagasse and corn cobs were used as raw materials for fast composting. The total porosity following fast composting was 68-92%, and the medium moisture content was above 77%, demonstrating increased soil permeability and improve moisture content, which contribute to crop root growth. The compost also contained nutrients such as nitrogen, phosphorus and potassium. The nitrogen content of residue from Cucurbitaceae was approximately 2%, which was also helpful for crop growth. Fast composting of Cucurbitaceae and tomatos resulted in a higher total phenolic content. After application to soil, phenolic compounds were converted into humic substances, which increased the content of soil humus. Melon compost had the highest total phenol content, and was the most significant source of phenolic compounds. When residues were applied to potted welsh onions with field soil, which has a low organic matter content, and with peat medium, the content of soil humus was 0.08-0.15 g/g and 0.03-0.06 g/g, respectively, on the 60th day. This indicated that application to soil with less organic matter increased the humus content. The total phenolic content and high EC value following fast composting were highest with melon residue, with a total phenol content of 3953 μg/g and EC1:5 value of 21.3 dS/m. Phenolic substances inhibit weed growth. To reduc the inhibition effect of growth on welsh onion, fast-composting residues of Cucurbitaceae and tomatoes must be mix with bagasse and corn cob, which lowers the total phenolic content and EC value, reducing the damage to the root system of the welsh onion and achieveing a grass-suppressing effect. The mixed fast-composting filtrate was applied to seeds of carpet-like grass, centipede grass and tall fescue grass on petri dishes, and was observed to inhibit the germination rate and radicle length. The germination rate of carpet-like grass was decreased to less than 10%, and the centipede grass turned to the tetraploid genotype. Tall fescue grass was more resistant to composting filtrate, and the increased total phenolic content and EC value demonstrated inhibited germination. A compost of melons mixed with wax gourds did not significantly inhibit the growth of welsh onion seeds, indicating the welsh onion seedling conditions were more suitable at a the total phenolic content below 1500 μg/g and the EC1:5 value of 5. For use in seedling culture, fast-compost materials, except bagasse, were washed 10 times with water. Wax gourds, bagasse and corn cobs were mixed with the coconut fiber soil at a 1:1 (v:v) ratio, and pumpkins, tomatos and melons were mixed with coconut fiber at a 1:3 (v:v) ratio to reduce the total phenolic content and EC value, resulting in a medium that could be used for the seedling of welsh onions on plug trays. The mixed fast compost was used to cover potted welsh onions and those grown in the field. When harvested on the 60th day of cultivation, the yields of potted welsh onions were higher for those treated with mixtures of pumpkin/bagasse and pumpkin/cobs, the fresh weights of the shoot being 98 and 86 g, respectively. In the field cultivation experiment, the yield of welsh onion covered with mixtures of wax gourds/bagasse and wax gourds/cobs were higher, at 36 and 31 g, respectively. A better to suppression effect was observed for compost of a mixture of melons and cobs, and the dry weight of weeds was approximately 11.45 g. When the fast compost was used to cover potted welsh onions, it had a strong inhibitory effect on the growth of surrounding weeds, which was significantly better than the control compost;however, the yield of welsh onion covered with simple compost was not significantly reduced as compared with the control.
URI: http://hdl.handle.net/11455/98178
文章公開時間: 2021-08-28
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.