Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98182
標題: 臺灣常見花胡瓜品種之耐寒性評估及水楊酸預處理種子對幼苗耐寒性之影響
Evaluation of Cold Tolerance Among Common Cucumber (Cucumis sativus L.) Varieties in Taiwan and Effect of Cucumber Seeds Pretreated with Salicylic Acid on Cold Tolerance of Seedlings
作者: 石盛文
Sheng-Wen Shih
關鍵字: 水楊酸
花胡瓜
幼苗
耐寒性
Cucumber
Salicylic Acid
Seedling
Cold Tolerance
引用: 1. 王永健、張海英、張峰、許勇、曹婉虹、康國斌。2001。低溫弱光對不同黃瓜品種幼苗光合作用的影響。園藝學報28(3):230-234. 2. 王紀忠、周青。2010。外源水楊酸對持續低溫脅迫下黃瓜幼苗生長和細胞膜穩定性的影響。長江蔬菜 2010(16):29-32。 3. 王瑞、馬鳳鳴、李彩鳳、陳勝勇、侯靜。2008。低溫脅迫對玉米幼苗脯氨酸、丙二醛含量及電導率的影響。東北農業大學學報 39(5)20-23。 4. 方媛、張亞紅、王麗慧、白祥。2016。低溫脅迫對三個黃瓜品種幼苗生理生化特性的影響。北方園藝 2016(17):30-36。 5. 石玉蘭、陳宣、岳君、安黎哲、李新榮、陳國雄。2010。水楊酸通過提高抗氧化酶系統活力增強擬南芥懸浮細胞的耐寒性。冰川凍土 32(6):1175-1179。 6. 白桂芳、蕭政弘。2016。花胡瓜健康管理對策。行政院農業委員會臺中區農業改良場技術專刊195:1-6。 7. 行政院農業委員會。2017。農業生產。105年農業統計年報p.23-116。http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx 8. 交通部中央氣象局。2011。氣候統計。氣候。http://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_tx.htm 9. 李文南、張喜寧。2012。蝴蝶蘭耐寒性之快速檢測與水楊酸及過氧化氫預處理提升耐寒性。臺東區農業改良場研究彙報 22:79-96。 10. 李永華、蘇志國、李洪濤、田彥彥、楊秋生。2010。水楊酸預處理對低溫脅迫下菊花葉片生理活性的影響。河南農業科學 12:99-106。 11. 李珍珍、韓陽。2000。抗壞血酸對小麥種子老化及幼苗脂質過氧化的影響。遼寧大學學報 27(2):170-172。 12. 吳俊偉。2015。應用非破壞性技術評估繁星花氮素狀態、灌溉指標與種苗活力。國立臺灣大學生物資源暨農學院園藝暨景觀學系博士論文。臺灣臺北。115pp。 13. 周利民、陳惠萍。2009。水楊酸對冷脅迫下香蕉幼苗抗冷性的效應。亞熱帶植物科學 38(1):19-22。 14. 林鈴娜。2011。水楊酸對提升花卉作物溫度逆境耐受性之研究。國立臺灣大學生物資源暨農學院園藝暨景觀學系博士論文。臺灣臺北。176pp。 15. 姜麗娜、張黛靜、宋飛、劉佩、樊婷婷、余海波、李春喜。2014。不同品種小麥葉片對拔節期低溫的生理響應及抗寒性評價。生態學報 34(15):4251-4261。 16. 施驊倫、宋好。2011。溫湯處理、流水浸種、發芽溫度、發芽介質及化學處理對苦瓜種子發芽的影響。植物種苗。13(4):47-60。 17. 馬占青、李新旭、孫國鈞、任紅旭。2013。水楊酸在誘導番茄抗冷性中的作用。蘭州大學學報 49(4):515-524。 18. 徐偉慧、周蘭娟、王志剛。2013。外源水楊酸緩解西葫蘆幼苗低溫脅迫的效應。浙江農業學報 25(4):764-767。 19. 陳愛葵、韓瑞宏、李東洋、凌連蓮、羅惠霞、唐上劍。2010。植物葉片相對電導率測定方法比較研究。廣東教育學院學報 30(5):88-91。 20. 孫艷、崔鴻文、胡榮。2000。水楊酸對黃瓜幼苗壯苗的形成及抗低溫脅迫能力的生理效應。西北植物學報 20(4):616-620。 21. 張帆、李景富、姜景彬、張賀、陳秀玲、許向陽。2017。外源水楊酸誘導對番茄幼苗抗冷性的影響。江蘇農業科學 45(3):91-94。 22. 張倚瓏。2016。光皮洋香瓜以越瓜或南瓜為砧木之嫁接方式及嫁接植株生育之研究。國立中興大學園藝學系碩士論文。臺灣臺中。69pp。 23. 張琳、王甲辰、左強、肖強。2010。低溫脅迫下噴施水楊酸對西紅柿幼苗抗寒性的影響。現代農業科技 10:96-100。 24. 張碧芳。2004。溫度對作物的影響及熱休克蛋白質的功能。植物重要防疫檢疫病害診斷鑑定技術研習會專刊(三) p.119-156。 25. 張劍俠、吳行昶、楊亞州。2014。葡萄種間雜種的抗寒性評價。北方園藝 2014(13):1-6。 26. 逯明輝、婁群峰、陳勁楓。2004。黄瓜的冷害及耐冷性。植物學通報 21(5):578-586。 27. 許桂芳、張朝陽、向佐湘。2009。利用隸屬函數法對4種珍珠菜屬植物的抗寒性綜合評價。西北林學院學報 24(3):24-26。 28. 黃肇家、黃慧穗、蔡金玉。2013。火鶴花切花低溫貯運寒害生理之研究。台灣農業研究。62(2):157-164。 29. 曾夢蛟。1990。溫度逆境生理在園藝育種上之應用。園藝作物育種講習會專刊31:69-79。 30. 曾顯皓、林慧玲。2009。低溫對'台農十七號'鳳梨植株發育之影響。興大園藝 34(2):1-14。 31. 楊嘉凌、曾勝雄、張林仁、戴振洋、魏芳明。2000。台中區農業改良場轄區重要作物低溫寒害預防及災後復育措施。台中區農業專訊 29:21-24。 32. 齊曉花、張萍、徐強、陳定好。2011。黃瓜種子及幼苗期耐冷性鑑定。中國蔬菜(16):34-38。 33. 劉敏莉。2008。高屏地區小胡瓜生產管理技術。高雄區農技報導 90:3-15。 34. 劉敏莉。2012。葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報21(1):1-15。 35. 蔡漢、李衛東、陳穎、趙梁軍。2007。水楊酸預處理對低溫脅迫下茉莉幼苗光合作用及相關生理特性的影響。中國農業大學學報 12(5):29-33。 36. 蕭吉雄、楊偉正。1990。瓜類育種。園藝作物育種講習會專刊31:203-221。 37. 錢昌聖、蕭政弘。2016。花胡瓜栽培管理技術。行政院農業委員會臺中區農業改良場技術專刊195:7-20。 38. 謝明憲。2001。花胡瓜設施栽培。臺南區農業專訊35:4-10。 39. 韓瑞宏、盧欣石、高桂娟、楊秀娟。2006。紫花苜蓿抗旱性主成分及隸屬函數分析。草地學報 14(2)142-146。 40. 戴振洋。2000。蔬菜防寒及寒害後復育措施。台中區農情月刊 15(12):3。 41. 魏永勝、梁宗鎖、山崙、張辰露。2005。利用隸屬函數值法評價苜蓿抗旱性。草業科學 22(6):33-36。 42. 譚艷玲、張艷嫣、高冬冬、陳丹、沈偉橋、周建華、黃冲平。2012。低溫脅迫對鐵皮石斛抗壞血酸過氧化物酶活性及丙二醛和脯氨酸含量的影響。浙江大學學報 38(4):400-406。 43. 顧少涵、潘俏、李子昂、陳潔、陳勁楓、婁群峰。2017。黃瓜耐低溫突變體材料的篩選與鑑定。南京農業大學學報 40(2):219-224。 44. Alam, B. and J. Jacob. 2002. Overproduction of photosynthetic electrons is associated with chilling injury in green leaves. Photosynthetica 40:91-95. 45. Ali, A., E.M. Yang, S.W. Bang, S.M. Chung, and J. E. Staub. 2014. Assessment of chilling injury and molecular marker analysis in cucumber cultivars (Cucumis sativus L.). Kor. J. Hort. Sci. Technol. 32(2):227-234. 46. Allen, D. J. and D. R. Ort. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6:36-42. 47. Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399. 48. Atkin, O. K., D. Bruhn, V. M. Hurry, M. G. Tjoelker. 2005. The hot and the cold: unravelling the variable response of plant respiration to temperature. Funct. Plant Biol. 32:87-105. 49. Bai, T. H., C. Y. Li, F. W. Ma, H. R. Shu, and M. Y. Han. 2009. Exogenous salicylic acid alleviates growth inhibition and oxidative stress induced by hypoxia stress in Malus robusta Rehd. J. Plant Growth Regul. 28:358-366. 50. Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44(1):276-287. 51. Bolhàr-Nordenkampf, H. R. and G. Öquist. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. p. 193-205. In: D. O. Hall, J. M. O. Scurlock, H. R. Bolhär-Nordenkampf, R. C. Leegood, and S. P. Long. (eds.). Photosynthesis and production in a changing environment : a field and laboratory manual. Springer Netherlands, Netherlands. 52. Cao, X., F. Jiang, X. Wang, Y. Zang, and Z. Wu. 2015. Comprehensive evaluation and screening for chilling tolerance in tomato lines at the seedling stage. Euphytica. (5):569-584. 53. Chen, S., L. Zimei, J. Cui, D. Jiangang, X. Xia, D. Liu, and J. Yu. 2011. Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings. Plant Growth Regul. 65:101-108. 54. Dempsey, D. A., A. C. Vlot, M. C. Wildermuth, and D. F. Klessig. 2011. Salicylic Acid Biosynthesis and Metabolism. Arabidopsis Book. 9:1-24. 55. Dias, M. C., G. Pinto, and C. Santos. 2011. Acclimatization of micropropagated plantlets induces an antioxidative burst: a case study with Ulmus minor Mill. Photosynthetica 49(2):259-266. 56. Dolstra, O., S. R. Haalstra, P. E. L. van der Putten, and A. H. C. M. Schapendonk. 1994. Genetic variation for resistance to low-temperature photoinhibition of photosynthesis in maize (Zea mays L.). Euphytica 80:85-93. 57. Dong, C. J., L. Li, Q. M. Shang, X. Y. Liu, and Z. G. Zhang. 2014. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta 240:687-700. 58. Eaks, I. L. and L. L. Morris. 1956. Respiration of cucumber fruits associated with physiological injury at chilling temperatures. Plant Physiol. 31(4):308-314. 59. Edelstein, M., R. Corbineau, J. Kigel, and H. Nerson. 1995. Seed coat structure and oxygen availability control low temperature germination of melon (Cucumis melo) seeds. Physiol. Plant. 93:451-456. 60. Farooq, M., T. Aziz, S. M. A. Basra, M. A. Cheema, and H. Rehman. 2008. Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J. Agron. Crop Sci. 194:161-168. 61. Fork, D. C. 1979. The influence of changes in the physical phase of thylakoid membrane lipids on photosynthetic activity. p. 215-229. In: J. M. Lyons, D. Graham, and J. K. Raison. (eds.). Low temperature in Crop Plants: The Role of the Membrane. Oxford University Press, New York, U.S.A. 62. Foyer, C. H. and G. Noctor. 2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155(1):2-18. 63. Fracheboud, Y., P. Haldimann, J. Leipner, and P. Stamp. 1999. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J. Exp. Bot. 50(338):1533-1540. 64. Fridovich, I. 1986. Biological Effects of the superoxide radical. Arch. Biochem. Biophys. 247(1):1-11. 65. Fu, Z. Q., S. Yan, A. Saleh, W. Wang, J. Ruble, N. Oka, R. Mohan, S. H. Spoel, Y. Tada, N. Zheng, and X. Dong. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature. 486:228-232. 66. Gao, Q. H., K. Xu, X. F. Wang, and Y. Wu. 2008. Effect of grafting on cold tolerance in eggplant seedlings. Acta Hortic. 771:167-174. 67. Gechev, T. S., F. Van Breusegem, J. M. Stone, I. Denev, and C. Laloi. 2006. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays. 28:1091-1101. 68. Gill, S. S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12):909-930. 69. Govindjee. 1995. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant Physiol. 22(2):131-160. 70. Grimstad. S. O. 1993. The effect of a daily low temperature pulse on growth and development of greenhouse cucumber and tomato plants during propagation. Sci. Hortic. 53:53-62. 71. Groot S. P. C., B. Kieliszewska-Rokicka, E. Vermeer, and C. M. Karssen. 1988. Gibberellin-induced hydrolysis of endosperm cell walls in gibberellin-deficient tomato seeds prior to radicle protrusion. Planta. 174:500-504. 72. Hadacek, F., G. Bachmann, D. Engelmeier, and V. Chobot. 2011. Hormesis and a chemical raison d'être for secondary plant metabolites. Dose Response 9:79-116. 73. Hakam, N., S. Khanizadeh, J. R. DeEll, and C. Richer. 2000. Assessing chilling tolerance in roses using chlorophyll fluorescence. HortScience 35(2):184-186. 74. Halliwell, B. and J. M. C. Gutteridge. 2015. Free radicals in biology and medicine. 5th ed. Oxford, U.K. 75. Handley, L. W., D. M. Pharr, and R. F. McFeeters. 1983. Carbohydrate changes during maturation of cucumber fruit. Plant Physiol. 72:498-502. 76. Hatfield, J. L., K. J. Boote, P. Fay, L. Hahn, R. C. Izaurralde, B. A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, and D. Wolfe. 2008. Agriculture. p. 21-74. In: P. Backlund, A. Janetos, and D. Schimel. (eds.). The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. A report by the U.S. climate change science program and the subcommittee on global change research. Environmental Protection Agency, Washington, D.C., USA. 77. Hatfield J. L. and J. H. Prueger. 2015. Temperature extremes:effect on plant growth and development. Weather Clim. Extrem. 10:4-10. 78. Harvaux, M.and K. Kloppstech. 2001. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213(6):953-966. 79. Hayat, S., B. Ali, and A. Ahmad. 2007. Salicylic acid: biosynthesis, metabolism and physiological role in plants. p.1-14. In: S. Hayat. and A. Ahmad. (eds.). Salicylic acid: a plant hormone. Springer-Verlag Berlin Heidelberg, New York, U.S.A. 80. Heath, R. L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198. 81. Hodgson, R. A. and J. K. Raison. 1991. Lipid peroxidation and superoxide dismutase activity in relation to photoinhibition induced by chilling in moderate light. Planta 185:215-219. 82. Hodgson, R. A. J. and J. K. Raison. 1991. Superoxide production by thylakoids during chilling and its implication in the susceptibility of plants to chilling-induced photoinhibition. Planta 183:222-228. 83. Hopkins W. G. and N. P. A. Hüner. 2008. Introduction to plant physiology. 4th ed. Wiley., U.S.A. 84. Horváth, E., T. Janda, G. Szalai, and E. Páldi. 2002. In vitro salicylic acid inhibition of catalase activity in maize: differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Sci. 163:1129-1135. 85. Hsu, Y. T. and C. H. Kao. 2007. Cadmium-induced oxidative damage in rice leaves in reduced by polyamines. Plant Soil 291:27-37. 86. Huner, N. P., G. Oquist, V. M. Hurry, M. Krol, S. Falk, and M. Griffith. 1993. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth. Res. 37:19-39. 87. Inaba, M., I. Suzuki, B. Szalontai, Y. Kanesaki, D. A. Los, H. Hayashi, and N. Murata. 2003. Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J. Biol. Chem. 278:12191-12198. 88. Islam, S., E. Izekor, and J. O. Garner. 2011. Effect of chilling stress on the chlorophyll fluorescence, peroxidase activity and other physiological activities in Ipomoea batatas L. genotypes. Am. J. Plant Physiol. 6(2):72-82. 89. Jana, S. and M. A.Choudhuri. 1982. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat. Bot. 12:345-354. 90. Janda T., E. Horváth, G. Szalai, and E. Páldi. 2007. Role of salicylic acid in the induction of abiotic stress tolerance. p. 91-150. In: S. Hayat. and A. Ahmad. (eds.). Salicylic Acid – A Plant Hormone. Springer, Dordrecht, Netherlands. 91. Janda, T., G. Szalai, I. Tari, and E. Páldi. 1999. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208:175-180. 92. Jayakannan. M., J. Bose, O. Babourina, Z. Rengel, and S. Shabala. 2015. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. 76:25-40. 93. Jennings, P. and M. E. Saltveit. 1994. Temperature effects on imbibition and germination of cucumber (Cucumis sativus) seeds. J. Amer. Soc. Hort. Sci. 119(3):464-467. 94. Kang, G., C. Wang, G. Sun, and Z. Wang. 2003. Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ. Exp. Bot. 50:9-15. 95. Kang, H. M. and M. E. Saltveit. 2001. Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiol. Plant. 113:548-556. 96. Kang, H. M. and M. E. Saltveit. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol. Plant. 115(4):571-576. 97. Kato, M. and S. Shimizu. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: Phenolic-dependent peroxidative degradation. Can. J. Bot. 65(4):729-735. 98. Kautsky, H. and A. Hirsch.1931. Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 19: 964. 99. Keleş, Y. and I. Öncel. 2002. Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci. 163:783-790. 100. Khan, M. I., M. Fatma, T. S. Per, N. A. Anjum, and N. A. Khan. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 6(462):1-17. 101. Kozik, E. U. and T. C. Wehner. 2014. Tolerance of watermelon seedlings to low-temperature chilling Injury. HortScience 49(3):240-243. 102. Krause, G. H. and E. Weis. 1984. Chlorophyll fluorescence as a tool in plant physiology : II. Interpretation of fluorescence signals. Photosynth. Res. 5:139-157. 103. Krause, G. H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Bioi. 42:313-349. 104. Kuk, Y. I. and J. S. Shin. 2007. Mechanisms of low-temperature tolerance in cucumber leaves of various ages. J. Am. Soc. Hortic. Sci. 132(3):294-301. 105. Kuk, Y. I., J. H. Lee, H. Y. Kim, S. J. Chung, G. C. Chung, J. O. Guh, H. J. Lee and N. R. Burgos. 2003. Relationships of cold acclimation and antioxidative enzymes with chilling tolerance in cucumber (Cucumis sativus L.). J. Am. Soc. Hortic. Sci. 128(5):661–666. 106. Kusvuran, S., S. Ellialtioglu, and Z. Polat. 2013. Antioxidative enzyme activity, lipid peroxidation, and proline accumulation in the callus tissues of salt and drought tolerant and sensitive pumpkin genotypes under chilling stress. Hortic. Environ. Biotechnol. 54(4):319-325. 107. Lafuente, M. T., A. Belver, M. G. Guye, and M. E. Saltveit. 1991. Effect of temperature conditioning on chilling injury of cucumber cotyledons: possible role of abscisic acid and heat shock proteins. Plant Physiol. 95(2):443-449. 108. Larcher. W. 1995. Photosynthesis as a tool for indicating temperature stress events. p. 261-278. In: E. D. Schulze. and M. M. Caldwell. (eds.). Ecophysiology of Photosynthesis. Springer-Verlag Berlin Heidelberg, New York, U.S.A. 109. Lecharny, A. M. Schwall, and E. Wagner. 1985. Stem extension rate in light-grown Plants. Plant Physiol. 79:625-629. 110. Lei, T., H. Feng, X. Sun, Q. L. Dai, F. Zhang, H. G. Liang, and H. H. Lin. 2010. The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regul. 60:35-42. 111. Leslie, C. A. and R. J. Romani. 1986. Salicylic acid: a new inhibitor of ethylene biosynthesis. Plant Cell Rep. 5:144-146. 112. Leviatov, S., O. Shoseyov, and S. Wolf. 1995. Involvement of endomannanase in the control of tomato seed germination under low temperature conditions. Ann. Bot. 76:1-6. 113. Li, D. M., Y. K. Guo, Q. Li, J. Zhang, X. J. Wang, and J. G. Bai. 2012. The pretreatment of cucumber with methyl jasmonate regulates antioxidant enzyme activities and protects chloroplast and mitochondrial ultrastructure in chilling-stressed leaves. Sci. Hortic. 143:135-143. 114. Li, Q., B. Yu, Y. Gao, A. H. Dai, and J. G. Bai. 2011. Cinnamic acid pretreatment mitigates chilling stress of cucumber leaves through altering antioxidant enzyme activity. J. Plant Physiol. 168:927-934. 115. Li, X. G., Q. W. Meng, G. Q. Jiang, and Q. Zou. 2003. The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. Photosynthetica 41(2):259-265. 116. Lim, S., Y. H. Kim, S. H. Kim, S. Y. Kwon, H. S. Lee, J. S. Kim, K. Y. Cho, K. Y. Paek, and S. S. Kwak. 2007. Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol. Breed. 19:227-239. 117. Liu, J. J., S. H. Lin, P. L. Xu, X. J. Wang, and J.G. Bai. 2009. Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agric. Sci. China 8(9):1075-1086. 118. Liptay, A. and P. Schopfer. 1983. Effect of water stress, seed coat restraint, and abscisic acid upon different germination capabilities of two tomato lines at low temperature. Plant Physiol. 73:935-938. 119. Lukatkin, A. S., A. Brazaitytė, Č. Bobinas, and P. Duchovskis. 2012. Chilling injury in chilling-sensitive plants: a review. Žemdirbystė. 99:111-124. 120. Luo, Z., C. Chen, and J. Xie. 2011. Effect of salicylic acid treatment on alleviating postharvest chilling injury of 'Qingnai' plum fruit. Postharvest Biol. Technol. 62:115-120. 121. Lyons, J. M., J. K. Raison, and P. L. Steponkus. 1979. The plant membrane in response to low temperature: an overview. p. 1-24. In: J. M. Lyons, D. Graham, and J. K. Raison. (eds.). Low temperature in Crop Plants: The Role of the Membrane. Oxford University Press, New York, U.S.A. 122. Malamy, J. and D. F. Klessig. 1992. Salicylic acid and plant disease resistance. Plant J. 2(5):643-654. 123. Mao, L., H. Pang, G. Wang, and C. Zhu. 2007. Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress. Postharvest Biol. Technol. 44:42-47. 124. Marcelis, L. F. M. 1992. The dynamics of growth and dry matter distribution in cucumber. Ann. Bot. 69:487-492. 125. Marcelis, L. F. M. and L. R. Baan Hofman‐Eijer. 1993. Effect of temperature on the growth of individual cucumber fruits. Physiol. Plant. 87:321-328. 126. Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51(345):659-668. 127. McWilliam, J. R., P. J. Kramer, and R. L. Musser. 1982. Temperature-induced water stress in chilling-sensitive plants. Aust. J. Plant Physiol. 9:343-352. 128. Meigh, D.F., K.H. Norris, C.C. Craft, and M. Lieberman. 1960. Ethylene production by tomato and apple fruits. Nature 186:902-903. 129. Melcarek, P. K. and G. N.Brown. 1977. The effects of chilling stress on the chlorophyll fluorescence of leaves. Plant Cell Physiol. 18:1099-1107. 130. Miao, M., X. Xu, X. Chen, L. Xue, and B. Cao. 2007. Cucumber carbohydrate metabolism and translocation under chilling night temperature. J. Plant Physiol. 164:621-628. 131. Michalski, W. P. and Z. Kaniuga. 1981. Photosynthetic apparatus of chilling-sensitive plants. X. Relationship between superoxide dismutase activity and photoperoxidation of chloroplast lipids. Biochim. Biophys. Acta 637:159-167. 132. Minchin, A. and E. W. Simon. 1973. Chilling injury in cucumber leaves in relation to temperature. J. Exp. Bot. 24(83):1231-1235. 133. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7(9):405-410. 134. Møller, I. M. 2001. Plant mitochondria and oxidative stress, electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:561-591. 135. Musser, R. L., S. A. Thomas, R. R. Wise, T. C. Peeler, and A. W. Naylor. 1984. Chloroplast ultrastructure, chlorophyll fluorescence, and pigment composition in chilling-stressed soybeans. Plant Physiol. 74:749-754. 136. Mutlu, S., Ö. Atici, B. Nalbantoğlu, and E. Mete. 2016. Exogenous salicylic acid alleviates cold damage by regulating antioxidative system in two barley (Hordeum vulgare L.) cultivars. Front. Life Sci. 9(2):99-109. 137. Nerson, H., D. J. Cantliffe, H. S. Paris, and Z. Karchi. 1982. Low temperature germination of birdsnest-type muskmelon. HortScience 17:639-640. 138. Petrov, V. D. and F. Van Breusegem. 2012. Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants 2012(14):1-13. 139. Pharr, D. M. and H. N. Sox. 1984. Changes in carbohydrate and enzyme levels during the sink to source transition of leaves of Cucumis sativus L., a stachyose translocator. Plant Sci. Lett. 35:187-193. 140. Pharr, D. M., S. C. Huber, and H. N. Sox. 1985. Leaf carbohydrate status and enzymes of translocate synthesis in fruiting and vegetative plant of Cucumis sativus L. Plant Physiol. 77:104-108. 141. Pomeroy, M. K. and J. B. Mudd. 1987. Chilling sensitivity of cucumber cotyledon protoplasts and seedlings. Plant Physiol. 84(3):677-681. 142. Potvin, C. 1985. Effect of leaf detachment on chlorophyll fluorescence during chilling experiments. Plant Physiol. 78(4):883-886. 143. Prasad, T. K. 1996. Mechanisms of chilling-induced oxidative stress injury and tolerance: changes in antioxidant system, oxidation of proteins and lipids and protease activities. Plant J. 10(6):1017-1026. 144. Prasad, T. K., M. D. Anderson, and C. R. Stewart. 1994a. Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol. 105(2):619-627. 145. Prasad, T. K., M. D. Anderson, B. A. Martin, and C. R. Stewart. 1994b. Evidence for chilling-lnduced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell. 6(1):65-74. 146. Purvis, A. C. 1997. Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol. Plant. 100:165-170. 147. Purvis, A. C. and R. L. Shewfelt. 1993. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol. Plant. 88(4):712-718. 148. Rab, A. and M. E. Saltveit. 1996. Differential chilling sensitivity in cucumber (Cucumis sativus) seedlings. Physiol. Plant. 96:375-382. 149. Ribas-Carbo, M., R. Aroca, M. A. Gonzàlez-Meler, J. J. Irigoyen, and M. Sánchez-Díaz. 2000. The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in two cultivars of maize differing in chilling sensitivity. Plant Physiol. 122(1):199-204. 150. Rietze, E. and H. J.Wiebe. 1989. Diurnal rhythm of chilling sensitivity of cucumbers in light. Sci. Hortic. 38:231-237. 151. Roháček, K. 2002. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica. 40(1):13-29. 152. Sayyari, M. 2012. Improving chilling resistance of cucumber seedlings by salicylic acid. Am. Eurasian J. Agric. Environ. Sci. 12(2):204-209. 153. Sayyari, M., F. Ghanbari, S. Fatahi, and F. Bavandpour. 2013. Chilling tolerance improving of watermelon seedling by salicylic acid seed and foliar application. Not. Sci. Biol. 5(1):67-73. 154. Scandalios, J. G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101:7-12. 155. Scott., S. J. and R. A. Jones. 1981. Low temperature seed germination of Lycopersicon species evaluated by survival analysis. Euphytica 31:869-883. 156. Senaratna, T., D. Touchell, E. Bunn, and K. Dixon.2000. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 30:157-161. 157. Seyfferth. C. and K. Tsuda. 2014. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Front. Plant Sci. 5(697):1-10. 158. Sharma, P., A. B. Jha, R. S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012:1-26. 159. Sharma, Y. K., J. Leon, I. Raskin, and K. R. Davis. 1996. Ozone induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense related transcripts and induced resistance. Proc. Natl. Acad. Sci. USA 93:5099-5104. 160. Simon, E. W., A. Minchin, M. M. McMenamin, and J. M. Smith. 1976. The low temperature limit for seed germination. New Phytol. 77(2):301-311. 161. Smallwood, M. and D. J. Bowles. 2002. Plants in a cold climate. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 357:831-847. 162. Smeets, L. and T. C. Wehner. 1997. Environmental effects on genetic variation of chilling resistance in cucumber. Euphytica 97:217-225. 163. Somersalo, S. and G. H. Krause. 1989. Photoinhibition at chilling temperature : Fluorescence characteristics of unhardened and cold-acclimated spinach leaves. Planta 177(3):409-416. 164. Stirbet, A. and Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B. 104:236-257. 165. Suzuki, N. and R. Mittler. 2006. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol. Plant. 126:45-51. 166. Sytar, O., A. Kumar, D. Latowski, P. Kuczynska, K. Strzałka, and M. N. V. Prasad. 2013. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant. 35:985-999. 167. Szafrańska, K., S. Glińska, and K. M. Janas. 2013. Ameliorative effect of melatonin on meristematic cells of chilled and re-warmed Vigna radiata roots. Biol. Plant. 57(1):91-96. 168. Taiz, L. and E. Zeiger. 2002. Plant Physiology. 3rd ed. Sinauer Associates., Sunderland. U.K. 169. Van Hasselt, P. R. 1972. Photooxidation of leaf pigments in cucumis leaf discs during chilling. Acta Bot. Neerl. 21:539-548. 170. Vlugt, J. L. F. van der. 1983. The effect of temperature on formation and abortion of flower buds in gynoecious cucumber plants. Sci. Hortic. 20:323-328. 171. Wagner, A. M. and K. Krab. 1995. The alternative respiration pathway in plants: Role and regulation. Physiol. Plant. 95:318-325. 172. Walker, D. 1987. Fluorescence. p.17-46. In: D. Walker. and R. Walker. (eds.). The use of the oxygen electrode and fluorescence probes in simple measurements of photosynthesis. Robert Hill Institute, University of Sheffield, Sheffield, U.K. 173. Wang,C. Y. 1986. Effect of temperature and light on ACC and MACC in chilled cucumber seedlings. Sci. Hortic. 30:47-52. 174. Wang C. Y. 1994. Chilling Injury of tropical horticultural commodities. HortScience 29:986-988. 175. Wang, C. Y. and D. O. Adams. 1980. Ethylene production by chilled cucumbers (Cucumis sativus L.). Plant Physiol. 66(5):841-843. 176. Wang, C. Y. and D. O. Adams. 1982. Chilling-induced ethylene production in cucumbers (Cucumis sativus L.). Plant Physiol. 69(2):424-427. 177. Wang, Y., Z. M. Yang, Q. F. Zhang, and J. L. Li. 2009. Enhanced chilling tolerance in Zoysia matrella by pre-treatment with salicylic acid, calcium chloride, hydrogen peroxide or 6-benzylaminopurine. Biol. Plant. 53(1):179-182. 178. Weidner T. M. 1964. Translocation of photosynthetically labeled C14 compounds in bean, cucumber and white ash. Ph. D. Thesis, Ohio State University, Columbus. 66pp. 179. Weight, M. and E. W. Simon. 1973. Chilling injury in cucumber leaves. J. Exp. Bot. 24:(79)400-411. 180. Willing, R. P. and A. C. Leopold. 1983. Cellular expansion at low temperature as a cause of membrane lesions. Plant Physiol. 71(1):118-121. 181. Wilson. J. M. 1978. Leaf respiration and atp levels at chilling temperatures. New Phytol. 80(2):325-334. 182. Wise, R. R. 1995. Chilling-enhanced photooxidation: The production, action and study of reactive oxygen species produced during chilling in the light. Photosynth. Res. 45:79-97. 183. Wise, R. R. and A. W. Naylor. 1987. Chilling-enhanced photooxidation : evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 83(2):278-282. 184. Wolfe. D. W. 1991. Low temperature effect on early vegetative growth, leaf gas exchange and water potential of chilling-sensitive and chilling-tolerant crop species. Ann. Bot. 67:205-212. 185. Yadeghari, L. Z., R. Heidari, and J. Carapetian. 2008. The Influence of cold acclimation on proline, malondialdehyde (MDA), total protein and pigments contents in soybean (Glycine max) seedlings. Res. J. Biol. Sci. 3(1):74-79. 186. Yordanova, R. and L. Popova. 2007. Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. Gen. Appl. Plant Physiol. 33:155-170. 187. Yu, J. Q., Y. H. Zhou, S. F. Ye, and L. F. Huang. 2002. 24-epibrassinolide and abscisic acid protect cucumber seedlings from chilling injury. J. Hortic. Sci. Biotechnol. 77:470-473. 188. Zhang, N., Q. Sun, H. Zhang, Y. Cao, S. Weeda, S. Ren, and Y. D. Guo. 2015. Roles of melatonin in abiotic stress resistance in plants. J. Exp. Bot. 66(3):647-656. 189. Zhang, W. P., B. Jiang, L. N. Lou, M. H. Lu, M. Yang, and J. F. Chen. 2011. Impact of salicylic acid on the antioxidant enzyme system and hydrogen peroxide production in Cucumis sativus under chilling stress. Z. Naturforsch. C. 66:413-422. 190. Zhang, X., S. Chen, and Z. Mou. 2010. Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis. J. Plant Physiol. 167(2):144-148. 191. Zhou, J., J. Wang, K. Shi, X. J. Xia, Y. H. Zhou, and J. Q. Yu. 2012. Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiol. Biochem. 60:141-149. 192. Zhou, Y. H., J. Q. Yu, L. F. Huang, and S. Nogués. 2004. The relationship between CO2 assimilation, photosynthetic electron transport and water–water cycle in chill-exposed cucumber leaves under low light and subsequent recovery. Plant Cell Environ. 27:1503-1514.
摘要: 花胡瓜(Cucumis sativus L.)為臺灣可週年生產之重要蔬菜作物,於冬季栽培時易受到低溫寒流而發生生育不良之情形。本研究應用不同之生理指標及綜合指標評估臺灣常見花胡瓜商業品種之耐寒性,並探討水楊酸預處理種子對於提升花胡瓜幼苗低溫耐受性之效用。研究結果指出受試的六個花胡瓜品種幼苗,經7 /4℃(日/夜)低溫連續處理3天後葉片之葉綠素螢光參數值皆會顯著下降,且葉片內丙二醛含量會顯著增加,部分品種葉片之相對電解質滲漏率也有增加之趨勢,而回溫3天後,幼苗葉片外觀有明顯寒害之症狀,但葉綠素螢光參數值則有回復的現象,再將上述各耐寒指標計算成隸屬函數數值後以綜合指標值之方式評估耐寒性,結果顯示六個花胡瓜品種以 '和生美'及 'CU-87'較具耐寒性,而 '河童盛夏7號'及 '河童盛夏11號'兩者則較不具有耐寒性。另外,將較不具有耐寒性之 '河童盛夏11號'及較具耐寒性之 '和生美'種子以0、0.5、1及1.5 mM 四種不同濃度的水楊酸(salicylic acid, SA)預措處理後,栽培於25 /18℃(日/夜)條件下並不會使花胡瓜幼苗葉片之外觀、葉綠素螢光參數值、丙二醛含量及相對電解質滲漏率產生顯著變化,但兩品種之幼苗經7 /4℃(日/夜)低溫連續處理3天後0.5及1.0 mM SA處理組之葉綠素螢光參數值相對下降比率皆較對照組顯著減少,且丙二醛含量亦有較對照組些微減少之情形,但在葉片之相對電解質滲漏率及外觀寒害症狀上與對照組並無顯著之差異。此外,兩品種在低溫後SA處理組之過氧化氫含量、超氧化物歧化酶活性、抗壞血酸過氧化酶活性及抗壞血酸含量皆與對照組無明顯差異,僅過氧化氫酶活性有較對照組顯著更高,推論SA處理能使花胡瓜幼苗在低溫下維持適量之過氧化氫含量以因應低溫之逆境。
Cucumber (Cucumis sativus L.) is an important year-round vegetable crop in Taiwan, however, poor growth is often seen in winter due to low temperature stress. In this study, various physiological indexes plus a comprehensive index were applied to evaluate the cold tolerance of commonly grown commercial varieties of cucumber in Taiwan. The effect of seed-pretreated with different concentrations of salicylic acid (SA) on cold tolerance of cucumber seedlings was also investigated. Results from this study indicated that leaf chlorophyll fluorescence parameter in seedlings of six varieties tested were all decreased after being subjected to 7/4 oC (day/night) for three days, furthermore, malondialdehyde content in seedling leaves were all increased and relative electrolyte leakage in seedling leaves were elevated in some varieties tested. Under low temperature followed by rewarming condition, chilling injury symptoms were observed in seedling leaves but leaf chlorophyll fluorescence parameter appeared to be restored. A comprehensive index was integrated from various individual physiological indexes to further evaluate the cold tolerance of different cucumber varieties tested. Our results revealed that 'CU-87' and 'CU-74' were more cold resistant and 'Kappa summer no. 7' and 'Kappa summer no. 11' were less cold resistant. In addition, seeds from 'CU-74' which is more cold resistant and 'Kappa summer no. 11' which is less cold resistant were pretreated with 0, 0.5, 1.0 and 1.5 mM of SA before being planted under normal temperature condition [25/18 oC (day/night)]. Our results demonstrated that SA treatments had no significant effect on leaf outside appearance, leaf chlorophyll fluorescence parameter, malondialdehyde content and relative electrolyte leakage in seedling leaves under normal temperature condition. After being subjected to low temperature condition [7/4 oC (day/night)] for three days, relative reduction ratio of leaf chlorophyll fluorescence was less reduced in 0.5 and 1.0 mM SA treatment groups compared to control group (0 mM SA) in both varieties evaluated. Similarly, malondialdehyde content was slightly reduced in 0.5 and 1.0 mM SA treatment groups compared to control group (0 mM SA) in both varieties evaluated, however, SA treatments appeared to have no significant effect on relative electrolyte leakage and chilling injury symptoms in seedling leaves. Moreover, SA treatments showed no obvious effect on hydrogen peroxide content, superoxide dismutase activity, ascorbate peroxide activity and ascorbic acid content in seedling leaves of both varieties tested under low temperature condition except that catalase activity was increased in SA treatment groups relative to control group. These results suggested that suitable amount of hydrogen peroxide in cucumber seedlings may be achieved by pretreatment of seeds with SA to cope with low temperature stress.
URI: http://hdl.handle.net/11455/98182
文章公開時間: 2021-08-27
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.