Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98183
標題: 花胡瓜簡易設施栽培噴霧及節水灌溉之研究
Study on the fogging system and water-saving irrigation in greenhouse cultivation of cucumber (Cucumis sativus L.)
作者: 莊育姍
Yu-Shan Chuang
關鍵字: 花胡瓜
設施栽培
噴霧
容器
栽培介質
節水灌溉
葉綠素螢光
Cucumber
protected culture
fogging system
growth substrate
water-saving irrigation
chlorophyll fluorescence
引用: 1. 山崎肯哉。1982。養液栽培全篇。博友社。日本。 2. 于貴瑞、王秋鳳。2010。氣孔行為的生理生態學基礎。植物光合、蒸騰與水分利用的生理生態學。科學出版社。北京。中國。47-78。 3. 吳柏青。2004。設施環控管理及高壓噴霧降溫系統。國立宜蘭大學農業推廣委員會。宜蘭。 4. 李哖。2002。設施內作物之生長與生理。設施生產自動化技術。行政院農業委員會。 5. 蔡金川、李孟穎、蕭吉雄譯。1997。生理障害。胡瓜栽培與營養、生理障害。財團法人農友社會福利基金會24-37。 6. 千晶晶、原保忠、別之龍。2012。溫室作物調虧灌溉研究進展。中國農學通報 28:18-23。 7. 于海秋、武志海、沈秀瑛、徐克章。2003。水分脅迫下玉米葉片氣孔密度、大小及顯微結構的變化。吉林農業大學學報 25(3): 239-242。 8. 王紹輝、張福墁。2002。不同水分處理對日光溫室黃瓜葉片光合特性的影響。植物學通報19(6): 727-733。 9. 艾群。2010。農業生產節水技術與系統研發。農業工程與節能減碳學術研討會專刊 p. 21-37 。 10. 李阿嬌。2017。籃耕果菜栽培系統研發應用。臺中區農業改良場特刊133: 51-62。 11. 李清明。2005。溫室黃瓜(Cucumis sativus L.)節水高效灌溉上限指標的研究。中國西北農林科技大學碩士研究生畢業論文。陝西。中國。p. 1-67。 12. 李聲謙、張金元、李文汕、黃裕益。2006。應用相異控制策略對溫室內噴霧降溫效能影響之探討。中華農業機械期刊15(4): 23-38。 13. 林正亮、朱健松、黃裕益。1997。噴霧降溫系統於雞舍內之蒸發比例分析。嘉義技術學院學報55: 11-26。 14. 林冠宏、黃薇綺、羅筱鳳。2012。高溫、淹水及乾旱對甘藷葉綠素螢光之影響。臺灣園藝58: 315-325。 15. 姚銘輝、洪福良、趙宗明。2016。開頂溫室自動控制系統研發。台灣農業研究65: 306-312。 16. 姚銘輝、陳守泓、漆匡時。2007。利用葉綠素螢光估算作物葉片之光合作用。台灣農業研究56(3): 224-236。 17. 范貴珠、陳心怡。2002。土壤鹽度對繖楊苗木生長,水分狀態及葉綠素濃度之影響。林業研究季刊。國立中興大學農業暨自然資源學院實驗林管理處 出版24 (4) : 57-72。 18. 徐邦達。2002。葉綠素螢光和PAM 螢光儀:原理及測量。光合作用研討會。 p. 1-9。 19. 張智猛、萬書波、戴良香、宋文武、陳靜、石運慶。2011。不同花生品種對乾旱脅迫的回應。中國生態農業學報。19:631-638。 20. 張雅惠。2012。溫室內微氣候梯度對作物蒸散量之影響。國立中興大學生物產業機電工程學系所學位論文。臺中。臺灣。p. 1-64。 21. 郭雅紋、曾宥綋。2016。花胡瓜合理化施肥技術。臺中區農業技術專刊195: 21-28。 22. 陳加忠、陳志昇。1994。溫室細霧冷卻系統之開發與性能研究。農業工程學報40:78-79。 23. 陳令錫。2013。淺談作物生長環境之蒸發散。臺中區農業改良場特刊116:109-114。 24. 陳冠宇。2012。噴霧冷卻及循環風扇對溫室內牛番茄葉溫之影響。國立中興大學生物產業機電工程學系所學位元論文。臺灣:臺中。p. 1-61。 25. 陳筱薇。2007。環境因數對文心蘭光合作用之影響。國立臺灣大學園藝學系碩士論文。臺灣:臺北。p. 46-70 。 26. 陳葦伶。2012。作物耐熱性篩選指標之建立。臺中區農業改良場一○一年專題討論專集。p. 217-220。 27. 陳葦玲、錢昌聖、莊佩蓉。2017。提升設施蔬菜生產效益~從植物的角度來看。設施蔬菜與無土栽培之研發應用研討會。行政院農業委員會臺中區農業改良場出版p. 89-104。 28. 黃國祥、徐武煥、林木連、姚銘輝。2013。被覆材料應用於簡易溫室之光線穿透特性與降溫效能研究。102 年度農業工程與自動化計畫成果研討會論文集p. 2-7。 29. 黃國祥、蔡致榮、姚銘輝、徐武煥。2011。施用遮陰漆於蔬菜設施之穿透光譜與降溫成效分析。2011年生機與農機論文發表會論文。 30. 黃裕益。1999。噴霧冷卻法應用於台灣地區塑膠布溫室內降溫之研究。農業機械期刊 8: 17-28。 31. 劉敏莉。2010。夏季高溫對胡瓜生產之影響。高雄區農業專訊72: 26-27。 32. 劉敏莉。2012。葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報21(1): 1-15。 33. 劉敏莉。2014。胡瓜'高雄3號'品種之育成。高雄區農業改良場研究彙報 25:1-9。 34. 蔡存孝、朱聖浩、黃振昌。2007。加壓式地下滴灌模擬之初步探討。農業工程學報53(1): 22-31。 35. 蔡致榮、吳有恆。2010。農業設施節能技術與系統研發。農業工程與節能減碳學術研討會專刊38-69。 36. 蔡雅琴、劉芳怡、李建勳、邱展臺、楊佐琦。2016。高雌性胡瓜品系選育與 104 年觀摩會展示紀要。種苗科技專訊93: 23-26。 37. 鄭友誠。2016。農業水資源維護保育及永續利用。農政與農情 290期。 38. 錢昌聖、高德錚。2017。設施蔬菜栽培介質重複利用之研究。臺中區農業改良場特刊 133: 109-119。 39. 錢昌聖、蕭政弘。2016。花胡瓜栽培管理技術。臺中區農業技術專刊195:7-20。 40. 戴振洋。2009。設施番茄介質耕栽培技術。臺中區農業技術專刊173: 1-14。 41. 戴振洋。2015。設施果菜養液灌溉管理實例介紹。臺中區農業專訊 89:20-25。 42. 謝明憲。2001。花胡瓜設施栽培。臺南區農業專訊35:5-17。 43. 謝明憲。2014。節水省肥的滴灌栽培。科學發展 496:20-26。 44. 鍾其展、李文汕。2012。養液氮、鉀濃度對胡瓜'夏笛'生長發育及果實品質之影響。興大園藝 33(1): 53-63。 45. 韓青梅、戴順發、劉敏莉、黃祥益、吳純宜。2008。改善瓜果蔬菜設施生產技術之研究。高雄區農業改良場年報125-127。 46. 羅喬中。2009。噴霧冷卻控制策略於聖誕紅葉面降溫之研究。國立中興大學生物產業機電工程學系所學位元論文。臺灣:臺中。1-124。 47. 行政院農委會。2015。農田水利入口網。農業灌溉白皮書。 < http://doie.coa.gov.tw/ >。 48. Bacon, M. 2004. Water Use Efficiency in Plant Biology. In: Bacon MA, ed. Water Use Efficiency in Plant Biology. Blackwell Publishing, UK. p. 1- 26. 49. Brouwer, C., K. Prins, M. Kay, and M. Heibloem. 1988. Irrigation Water Management: Irrigation Methods (Training Manual No. 5) Food and Agriculture Organization of the United Nations, Rome. 50. Cooper, A. J. 1973. Root temperature and plant growth. Research Review No. 4 Commonwealth Bureau of Horticultural and Plantation Crops. East Malling Maidstone Kent. UK. 51. Klueva, N. Y., E. Maestri, N. Marmiroli, and H. T. Nguyen. 2001. Mechanisms of thermotolerance in crops. p. 177-217. In: Basra, A. S. (ed). Crop Responses and Adaptations to Temperature Stress. Food Products Press. New York, U.S.A. 52. Koumanov, K., K. Kolev, Z. Rankova, S. Milusheva, Z. Rusalimov, and I. Tsareva. 2006. Regulated deficit drip irrigation and water use efficiency of a raspberry (Rubus Idaeus L.) primocane-fruiting cultivar. In ICID 7th International Micro Irrigation Congress, B-40. 53. Kramer, P. J. and J. S. Boyer. 1995. Water relations of plants and soils. Academic press. New York, U.S.A. 54. Mills, H.A., J.B. Jones, and B. Wolf. 1996. Plant analysis handbook II: A practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing, Inc. p.181. 55. Rao, N. S., K. S. Shivashankara, and R. H. Laxman. 2016. Abiotic stress physiology of horticultural crops. Springer India. p. 51. 56. Abdel-Ghany, A. M., E. Goto, and T. Kozai. 2006. Evaporation characteristics in a naturally ventilated, fog-cooled greenhouse. Renew. Energy. 31:2207-2226. 57. Abad, M., F. Fornes, C. Carrión, V. Noguera, P. Noguera, Á. Maquieira, and R. Puchades. 2005. Physical properties of various coconut coir dusts compared to peat. Hort. Sci. 40: 2138-2144. 58. Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141:391-396. 59. Ayesha, R., N. Fatima, M. Ruqayya, K. M. Qureshi, I. A. Hafiz, K. S. Khan, and A. Kamal. 2011. Influence of different growth media on the fruit quality and reproductive growth parameters of strawberry (Fragaria ananassa). J. Medicinal Plants Res. 5: 6224-6232. 60. Bacci, L., M. Picanço, A. Gonring, R. Guedes, and A. Crespo, 2006. Critical yield components and key loss factors of tropical cucumber crops. Crop Protect. 25:1117-1125. 61. Bacon, M. A. , S. Wilkinson, and W. J. Davies. 1998. pH-regulated leaf cell expansion in drought plants is abscissic acid dependent. Plant Physiol. 114: 1507- 1515. 62. Bakker, J. C. 1991. Effects of humidity on stomatal density and its relation to leaf conductance. Sci. Hortic. 48:205- 212. 63. Baker, N. R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59:89-113. 64. Ball, M., M. Cochrane, and H. Rawson. 1997. Growth and water use of the mangroves Rhizophora apiculata and R. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO2. Plant Cell Environ. 20:1158-1166. 65. Baille, A., K. C. Kittas, and N. Katsoulas. 2001. Influence of whitening on greenhouse microclimate and crop energy partitioning. Agric. For. Meteorol. 107:293–306. 66. Blackman, P. G. and W. J. Davies. 1985. Root to shoot communication in maize plants of the effects of soil drying. J. Exp. Bot. 36: 39- 48. 67. Bang, H., D. I. Sleskovar, D. A. Bender, and K. Crosby. 2004. Deficit irrigation impact on lycopene, soluble solids, firmness and yield of diploidand triploid watermelon in three distinct environments. J. Hortic. Sci. Biotech. 79: 885- 890. 68. Boland, A. M., P. Mitchell, P. Jerie, and I. Goodwin. 1993. The effect of regulated deficit irrigation on tree water use and growth of peach. J. Hortic. Sci. 68:261-274. 69. Boogaard, R., E. J. Veneklaas, and H. Lambers. 1996. The association of biomass allocation with growth and water use efficiency of two Triticum aestivum cultivars. Aust. J. Plant Physiol. 23:751-761. 70. Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analyses of soils. Agron. J. 54:464- 465. 71. Bunce, J. A. 2003. Effects of water vapor pressure difference on leaf gas exchange in potato and sorghum at ambient and elevated carbon dioxide under field conditions. Field Crops Research. 82:37-47. 72. Çakir, R. 2004. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 89:1-16. 73. Cakmak, I. and W. J. Horst. 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant 83:463-468. 74. Cantliffe, D. J., J. Z. Castellanos, and A. V. Paranjpe. 2007. Yield and quality of greenhouse-grown strawberries as affected by nitrogen FC in coco coir and pine bark media. In Proc. Fla. State Hort. Soc. 120: 157-161. 75. Caradus, J. R. and R.W. Snaydon. 1986. Plant factors influencing phosphorus uptake by white clover from solution culture—II. Root and shoot pruning and split-root studies. Plant Soil 93:165- 174. 76. Chai, Q., Y. Gan, C.Zhao, H. L. Xu, R. M. Waskom, Y. Niu, and K. H. Siddique. 2016. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 36(1): 3. 77. Chaves, M. M. 1991. Effects of water deficits on carbon assimilation. J. Exp. Bot. 42: 1-16. 78. Chaves, M. M., J. S. Pereira, J. Maroco, M. L. Rodrigues, C.P.P. Ricardo, and M. L. Osorio. 2002. How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot. 89: 907–916. 79. Costa, J. M., M. F. Ortuño, and M. M. Chaves. 2007. Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. J. Integr. Plant Biol. 49(10): 1421-1434. 80. Davies, W. J., M. A. Bacon, amd W. Thompson, L.G. Sobeigh, and M. L. Rodriguez. 2000. Regulation of leaf and fruit growth in plants in drying soil: exploitation of the plant's chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture. J. Exp. Bot. 51:1617-1626. 81. Davies, W. J., G. Kudoyarova, and W. Hartung. 2005. Long-distance ABA signaling and its relation to other signaling pathways in the detectionof soil drying and the mediation of the plant's response to drought.J. Plant Growth Regul. 24: 285- 295. 82. Downton, W. J. S., W. J. R. Grant, and B. R. Loveys. 1987. Diurnal Changes in the photosynthesis of field-grown grape vines. New Phytol. 105:71-80. 83. Ebrahim, M. K., O. Zingsheim, M. N. El-Shourbagy, P. H. Moore, and E. Komor. 1998. Growth and sugar storage in sugarcane grown at temperature below and above optimum. J. Plant Physiol. 153: 593–602. 84. English, M. 1990. Deficit irrigation. I. Analytical framework. J. Irrig. Drain E. ASCE 116:399-412. 85. Fereres, E. and M. A. Soriano. 2006. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58:147-159. 86. Foyer, C. H. 1988. Feedback inhibition of photosynthesis through soure-sink regulation in leaves. Plant Physiol. Biochem. 26:483-492. 87. Gates, D. M. 1964. Leaf temperature and transpiration. Agron. J. 56: 273-277. 88. Gay, A. and R. Hurd. 1975. The influence of light on stomatal density in the tomato. New Phytol. 75:37-46. 89. Gruda, N. 2010. Sustainable peat alternative growing media. Acta Hortic. 927:973-979. 90. Graves, W. R., R. J. Joly., and M. N. Dana. 1991. Water use and growth of honey locust and tree-of-heaven at high root zone temperature. Hort. Sci. 26:1309–1312. 91. Grimes, D. W., V. T. Walhood, W. L. Dickens. 1968. Alternate-furrow irrigation for San Joaquin valley cotton. Calif. Agr. 22: 4-6. 92. Grimes, D. W., H. Yamada, and W. L . Dickens. 1969. Functions for cotton (Gossypium hirsutum L.) production from irrigation and nitrogen fertilization variables: I. yield and evapotranspiration. Agron. J. 61:769. 93. Guo, Y. Y., X. F. Wang, and K. Xu. 2002. Studies on the photosynthetic characteristics of ginger. XXVI International Horticultural Congress: The Future for Medicinal and Aromatic Plants 629. p. 347-353. 94. Holbrook, N. M., V. R. Shashidhar, R. A. James, and R. Munns. 2002. Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J. Exp. Bot. 53: 1503-1514. 95. Hopkins, W. G. and N. P. A. Hüner. 2009. Introduction to plant physiology -4th ed. John Wiley & Sons, Inc. U.S.A. 503 pp. 96. Hsu, B. D. 2007. On the possibility of using a chlorophyll fluorescence parameter as an indirect indicator for the growth of Phalaenopsis seedlings. Plant Sci. 172:604-608. 97. Hunt, R. 1978. Plant Growth Analysis. The Institute of Biology's Studies in Biology. No. 96. Edward Arnold, London. p. 8-16. 98. Hunt, R. 1982. Plant growth curves. The functional approach to plant growth analysis. Edward Arnold Ltd. London. 99. Hunt, R. 1990. Basic growth analysis. Plant growth analysis for beginners. Acad. Div. Unwin Hyman Ltd, London, UK. p. 112. 100. Idso, S. B., R. D. Jackson, P. J. Pinter, R. J. Reginato, and J. L. Hatfield. 1981. Normalizing the stress degree day parameter for environmental variability. AgriMet. 24: 45-55. 101. Janoudi, A. K. and I. E. Widders. 1993. Water deficits and fruiting affect carbon assimilation and allocation in cucumber plants. HortScience 28:98-98. 102. Janoudi, A. K., I. E. Widders, and J. A. Flore. 1993. Water deficits and environmental factors affect photosynthesis in leaves of cucumber (Cucumis sativus). J. Amer. Soc. Hort. Sci. 118:366-370. 103. Jensen, C., V. Mogensen, G. Mortensen, M.N. Andersen, J. Schjoerring, J. Thage, and J. Koribidis. 1996. Leaf photosynthesis and drought adaptation in field-grown oilseed rape (Brassica napus L.). Aust. J. Plant Physiol. 23:631-644. 104. Jensen, C. R., A. Battilani, F. Plauborg, G. Psarras, C. Kostas, F. Janowiak, R. Stikic, Z. Jovanovic, G. Li, X. Qi, F. Liu, S. E. Jacobsen, and M. N. Andersen. 2010. Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes. Agric. Water. Manage. 98: 403-413. 105. Jones, H. G. 1992. Plant and microclimate. Cambridge Press. New York, U.S.A. 106. Jones, H. G. 2004. Irrigation Scheduling: advantages and pitfalls of plant based methods. J. Exp. Bot. 55: 2427-2436. 107. Jovanovic Z., R. Stikic, B.V. Radovic, M. Paukovic, Z. Brocic, G. Matovic, S. Rovcanin, and M. Mojevic. 2010. Partial root zone drying increase WUE, N and antioxidant content in field potatoes. Eur. J. Agron. 33:124-131. 108. Kaiser, W. M. 1987. Effects of water deficit on photosynthetic capacity. Physiol. Plant. 71: 142–149. 109. Katerji, N., J. W. van Hoorn, A. Hamdy, M. Mastrorilli, and E. M. Karzel. 1997. Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomata conductance, growth and yield. Agric. Water Manage. 34: 57- 69. 110. Kirkham, M. B. 1983. Physical model of water in a split-root system. Plant Soil 75:153-168. 111. Kuisma, E., P. Palonen, and M. Yli-Halla. 2014. Reed canary grass straw as a substrate in soilless cultivation of strawberry. Sci. Hortic. 178:217-223. 112. Lawson, T. and M. R. Blatt. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164:1556-1570. 113. Lawlor, D. W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25:275-294. 114. Li, F., J. Yu, M. Nong, S. Kang, and J. Zhang. 2010. Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. Agrc. Water Manag. 97:231- 239. 115. Lichtenthaler, H., C. Buschmann, and M. Knapp. 2005. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio R Fd of leaves with the PAM fluorometer. Photosynthetica 43:379-393. 116. Limm, E. B., K. A. Simonin, A. G. Bothman, and T. E. Dawson. 2009. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia. 161:449-459. 117. Liu, X. 2001. The stimulating effects of rewatering in subjecting to water stress on leaf area of winter wheat. Sci. Agr. Sin. 34:422-428. 118. Liu, F. and H. Stützel. 2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Sci. Hort. 102:15-27. 119. Liu, F., C. R. Jensen, A. Shahanzari, M. N. Andersen, and S. E. Jacobsen. 2005. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci. 168: 831-836. 120. Liu, F., A. Shahnazari, M. N. Andersen, S. E. Jacobsen, and C. R. Jensen. 2006. Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Sci. Hortic. 109:113- 117. 121. Locascio, S. J. and A. G. Smajstrala. 1995. Fertilizer timing and pan evaporation scheduling for drip irrigation method. Proceeding of the Fifth International Microirrigation Congress on Microirrigation for a Changing World, Conserving Resources/Preserving the Environment held at Hyatt Regency Orlando, Orlando Florida. p. 175-180. 122. Lorenzo, P., M. Sanchez-Guerrero, E. Medrano, M. Garcia, I. Caparros, G. Coelho, and M. Giménez. 2004. Climate control in the summer season: a comparative study of external mobile shading and fog system. Acta Hort. 659:189–194. 123. Loveys, B. R., P. R. Dry, M. Stoll, and M. G. McCarthy. 2000. Using plant physiology to improve the water use efficiency of horticultural crops. Acta Hort. 537:187-199. 124. Loveys B. R., M. Stoll, and W. J. Davies. 2004. Physiological approaches to enhance water use efficiency in agriculture: Exploiting plant signalling in novel irrigation practice. In: Bacon MA, ed. Water Use Efficiency in Plant Biology. Blackwell Publishing, UK. p. 113- 141. 125. Lu, N., T. Nukaya, T. Kamimura, D. Zhang, I. Kurimoto, M. Takagaki, T. Maruo, T. Kozai, and W. Yamori. 2015. Control of vapor pressure deficit (VPD) in greenhouse enhanced tomato growth and productivity during the winter season. Sci. Hortic. 197:17-23. 126. Malone, S. R., H.S. Mayeux, H. B. Johnson, and H.W. Polley. 1993. Stomatal density and aperture length in four plant species grown across a subambient CO2 gradient. Am. J. Bot. 80:1413-1418. 127. Mao, X., M. Liu, X. Wang, C. Liu, Z. Hou, and J. Shi, 2003. Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain. Agric. Water Manage. 61:219-228. 128. Markham, J. and S. Halwas. 2011. Effect of neighbour presence and soil volume on the growth of Andropogon gerardii Vitman. Plant Ecol. Divers. 4:265-268. 129. Meca, D., J. C. López, J. C. Gázquez, E. Baeza, J. Pérez Parra, and G. Zaragoza. 2013. A comparison of three different cooling systems in parral type greenhouses in Almería. Span. J. Agric. Res. 5:285-29. 130. Moussa, H. R. and S. M. Abdel-Aziz. 2008. Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Aust. J. Crop Sci. 1:31-36. 131. Miller, G., N. Suzuki, S. Ciftci‐Yilmaz, and R. Mittler. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33:453-467. 132. Montero, J. I., T. H. Short, R. B. Curry, and W. L. Bauerle. 1981. Influence of evaporative cooling systems on greenhouse environment. ASAE Paper. 81-4027. 133. Montero, J. I., A. Anton., C. Biel, and A. Franquet. 1990. Cooling of greenhouses with compressed air fogging nozzles. Acta Hort. 281:199-209. 134. Neumann, P. M. 2007. Evidence for long distance xylem transport of signal peptide activity from tomato roots. J. Exp. Bot. 58: 2217-2223. 135. Norrie, J., J. Charbonneau, A. Gosselin, and M. Graham. 1995. Impact of irrigation management of greenhouse tomato: yield, nutrition, and salinity of peat substrate. Can. J. Plant Sci. 75:497-503. 136. Oukarroum, A., G. Schansker, and R. J. Strasser. 2007. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. J. Exp. Bot. 336:1199-1206. 137. Pérez-Pastor, A. M., C. Ruiz-Sánchez, and R. Domingo. 2014. Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot trees. Agrc. Water Manag. 134:110- 118. 138. Pruit, W.O., E. Fereres, P. E. Martin, H. Singh, D.W. Henderson, R. M. Hagan, E. Tarantino, and B. Chandio. 1989. Microclimate, evapotranspiration, and water use efficiency for drip and furrow irrigated tomatoes. Conference on Irrigation and Drainage (ICID) 12th Congress p. 367-396. 139. Reddy, A. R., K. V. Chaitanya, and M. Vivekanandan, 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161:1189-1202. 140. Rodrigues, M. L., T. P. Santos, A. P. Rodrigues, C. R. de Souza, C. M. Lopes, J. P. Maroco, J.S. Pereira, and M. M. Chaves. 2008. Hydraulic and chemical signalling in the regulation of stomatal conductance and plant water use in field grapevines growing under deficit irrigation. Funct. Plant Biol. 35: 565-579. 141. Roháček, K. and M. Barták. 1999. Technique of the modulated chlorophyll fluorescence: Basic concepts, useful parameters, and some applications. Photosynthetica 37(3):339-363. 142. Samartzidis, C., T. Awada, E. Maloupa, K. Radoglou, and H. I. Constantinidou. 2005. Rose productivity and physiological responses to different substrates for soil-less culture. Sci. Hortic. 106:203-212. 143. Sánchez, F.J., M.a. Manzanares, E.F. de Andrés, J.L. Tenorio, and L. Ayerbe. 2001. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur. J. Agron. 15:57-70. 144. Santos, T. P., C. M. Lopes, M. L. Rodrigues, C. R. de Souza, J. M. Ricardo-da-Silva, J. P. Maroco, J. S. Pereira, and M. M. Chaves. 2007. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Sci. Hortic. 112: 321-330. 145. Sauer, T., P. Havlík, U. A. Schneider, E. Schmid, G. Kindermann, and M. Obersteiner. 2010. Agriculture and resource availability in a changing world: The role of irrigation. Water Resour. Res. 46(6): 1-12. 146. Schroeder J. I., J. M. Kwak, and G. J. Allen. 2001. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327- 330. 147. Semchenko, M., M. J. Hutchings, and E. A. John. 2007. Challenging the tragedy of the commons in root competition: confounding effects of neighbor presence and substrate volume. J. Ecology 95:252-260. 148. Sepaskhah, A. R. and S. H. Ahmadi. 2012. A review on partial root-zone drying irrigation. Int. J. Plant. Prod. 4: 241-258. 149. Sethi, V. P. and S. K. Sharma. 2007. Survey of cooling technologies for worldwide agricultural greenhouse applications. Solar Energy 81:1447-1459. 150. Shahnazari, A., F. Liu, M.N. Andersen, S. E. Jacobsen, and C. R. Jensen. 2007. Effects of partial root-zone drying on yield, tuber size and water-use efficiency in potato under field conditions. Field Crop Res. 100:117-124. 151. Sponchiado, B. N., J. W. White, J. A. Castillo, and P. G. Jones. 1989. Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Exp. Agr. 25: 249- 257. 152. Simsek, M., Tonkaz, T., Kacira, M., Comlekcioglu, N., and Dogan, Z. 2005. The effects of different irrigation regimes on cucumber (Cucumbis sativus L.) yield and yield characteristics under open field conditions. Agric. Water Manag. 73(3): 173-191. 153. Singandhupe, R., G. Rao, N. Patil, and P. Brahmanand. 2003. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum L.). Eur. J. Agron. 19:327-340. 154. Siopongco, J.D., A. Yamauchi, H. Salekdeh, J. Bennett, and L. J. Wade. 2006. Growth and water use response of doubled-haploid rice linesto drought and rewatering during the vegetative stage. Plant Prod. Sci. 9:141-151. 155. Sobeih, W. Y., I. C. Dodd, M. A. Bacon, D. Grierson, and W. J. Davies. 2004. Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying. J. Exp. Bot. 55: 2353-2363. 156. Stoll, M., B. R. Loveys., and P. Dry. 2000. Hormonal changes induced by partialroot zone drying of irrigated grapevine. J. Exp. Bot. 51: 1627- 1634. 157. Tahi, H., S. Wahbi, R. Wakrim, B. Aganchich, R. Serraj, and M. Centritto. 2007. Water relations, photosynthesis, growth and water-use efficiency in tomato plants subjected to partial rootzone drying and regulated deficit irrigation. Plant Biosyst. 141:265-274. 158. Tanner, C. B. 1963. Plant temperatures. Agron. J. 55:210-211. 159. Tardieu, F., C. Granier, and B. Muller. 1999. Modelling leaf expansion in a fluctuating environment: are changes in specific leaf area a consequence of changes in expansion rate? New Phytol. 143:33-43. 160. Wang, F., G. Wang, X. Li, J. Huang, and J. Zheng. 2008. Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa L.). J. Plant Physiol. 165:324-330. 161. Weatherley, P. E. 1950. Studies in water relations of cotton plants. I. The field measurement of water deficits in leaves. New Phytol. 49:81-97. 162. Wiegand, C. L. and L. N. Namken. 1966. Influences of plant moisture stress, solar radiation, and air temperature on cotton leaf temperature. Agron. J. 58: 582-586. 163. Wilkinson, S. and W. J. Davies. 1997. Xylem sap pH increase: A droughtsignal received at the apoplastic face of the guard cell that involvesthe suppression of saturable abscisic acid uptake by the epidermalsymplast. Plant Physiol. 113: 559- 573. 164. Wilkinson, S. and W. J. Davies. 2002. ABA-based chemical signalling: Theco-ordination of responses to stress in plants. Plant Cell Environ. 25: 195–210. 165. Wilkinson, S., M. A. Bacon, and W. J. Davies. 2007. Nitrate signalling to stomata and growing leaves: interactions with soil drying, ABA, and xylem sap pH in maize. J. Exp. Bot. 58: 1705- 1716. 166. Wilkinson, S. and W. J. Davies. 2008. Manipulation of the apolastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation. J. Exp. Bot. 59: 619-631. 167. Wilkinson, S. and W. J. Davies. 2010. Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ. 33: 510-525. 168. Xu, Z., G. Zhou, and H. Shimizu. 2009. Are plant growth and photosynthesis limited by pre-drought following rewatering in grass? J. Exp. Bot. 60:3737-3749. 169. Xu, H. L., F. Qin, Q. Xu, J. Tan, and G. Liu. 2011. Applications of xerophytophysiology in plant production—the potato crop improved by partial root zone drying of early season but not whole season. Sci. Hortic. 129: 528- 534. 170. Xu, Z. and G. Zhou. 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59:3317-3325. 171. Yaghi, T., A. Arslan, and F. Naoum. 2013. Cucumber (Cucumis sativus, L.) water use efficiency (WUE) under plastic mulch and drip irrigation. Agric. Water Manage. 128:149-157. 172. Zegbe-Domínguez, J. A., M. H. Behboudian, A. Lang, and B. E. Clothier. 2003. Deficit irrigation and partial root zone drying maintain fruit dry mass and enhance fruit quality in 'Petopride' processing tomato (Lycopersicon esculentum Mill.). Sci. Hort. 98:505-510. 173. Zelitch, I. 1975. Improving the efficiency of photosynthesis. Science 188:626-633.
摘要: 為解決花胡瓜(Cucumis sativus L.)設施栽培過程之高溫問題及因應農業水資源減少造成灌溉水不足之現象,本研究選拔合適於夏季栽培之品種及探討簡易設施之噴霧條件,期能解決高溫問題,並以不同容器及介質栽培了解花胡瓜之最佳水分利用效率以有效利用水資源,及對不同調缺灌溉條件與噴霧栽培下對植株之水分利用效率與生長情形作探討,以因應水資源缺乏議題。 栽培5種具單偽結果性且耐熱之花胡瓜品種於溫網室中,以'沛綠'具高產且生長速度度快等特性,判斷為較適合栽培於夏季設施中之品種。夏季設施栽培正午期間(10時至14時),噴霧條件以60秒、90秒及120秒3種噴霧持續時間與30秒、40秒及50秒3種間隔時間進行試驗,並於確認噴霧條件後加入內遮陰處理。結果顯示於10時至14時以20 µm直徑之噴頭噴霧90秒間歇40秒於配合內遮陰下可同時具降低設施內溫度約0.5℃與葉溫約3℃之效果。以噴霧栽培'沛綠'及'220'花胡瓜,'沛綠'可維持較高之光合效能、增加葉片下表皮氣孔大小、乾重顯著增加、且產量較對照組高436 g。'220'花胡瓜以噴霧栽培亦可增加植株之乾重,並使產量較對照組高508.9 g,顯示於噴霧栽培下可顯著促進植株生長與增產。 以耕植槽、籃耕及長盆配合泥炭土、椰纖土與泥炭混合椰纖土,在充分灌溉下栽培花胡瓜,籃耕泥炭混合椰纖土(BM)處理,具78.86 g顯著最高之乾重與422.09 g之產量,但以長盆椰纖(LC)處理具顯著最高之水分利用效率203.83%,且生長速度最快,始花天數僅需29.7天,且乾重僅次於BM,因此於設施栽培中以長盆椰纖栽培花胡瓜可較有效利用農業水資源。 以長盆及椰纖土栽培花胡瓜,處理田間容水量75%±3%、60%±3% 及45%±3 FC與充分灌溉(Control)之節水灌溉處理,並分為營養生長期與生殖生長期進行節水,以60% 於營養生長期節水灌溉(60V)相較於Control省下29%的灌溉水,且植株的水分利用效率顯著最高為164.9%,且不顯著降低植株乾重,並維持較高之經濟產量。花胡瓜於生殖生長期對缺水敏感,節水灌溉處理之產量皆顯著下降。於60% FC以上之節水灌溉處理影響光合作用之因子主要為氣孔因子,45% FC以下則對光合作用之影響較大,其葉片MDA含量顯著較高且NPQ值亦顯著較高,顯示花胡瓜於45% FC灌溉下及有較嚴重之缺水逆境發生。 以節水灌溉配合噴霧可增加營養生長期節水處理之乾重,增加60% FC以上處理之葉片相對含水量。噴霧後75% FC營養生長期與生殖生長期節水之兩處理(75V及75P)增加水分利用效率,對60%及45%於生殖生長期節水灌溉(60P及45P) 則無幫助,但噴霧處理下使各處理之正午葉片MDA較未噴霧處理為低,顯示噴霧可緩解節水灌溉於正午期間之逆境情形。
In order to solve the issues related to the cultivation of cucumbers (Cucumis sativus L.) related to the high temperature in summer and shortage of agricultural water resources, this study selected heat-tolerant cucumber cultivars for summer cultivation, evaluated whether different fogging conditions helped to resolve the effects of a high temperature and improve the water use efficiency (WUE) for cucumbers grown in facility. This study also investigated various culture substrates and container types to identify those that resulted in the best WUE and crop growth. Five parthenocarpy heat-tolerant cultivars of cucumbers were cultured in a net house. Among the five cultivars, 'Pei-Lui' was found to have the characteristics of high production and fast growth, suggesting that it is the most suitable cultivar for net-house cultivation in the summer. Several fogging conditions, created using nozzles of 20 µm in diameter and a combination of three spraying durations (60, 90 and 120 secs) and three intervals (30, 40 and 50 secs), were tested. The results showed that fogging system with a spray duration of 90 secs and interval for 40 secs resulted in the best out come when shaded of the facility was employed, and these conditions reduced the ambient temperature in the facility by 0.5℃ and decreased the leaf temperature by 3℃. Under fogging and shading, the growth and yield of cultivars 'Pei-Lui' and '220' were compared. The results showed that fogging and shading benefitted both cultivars. For 'Pei-Lui', the treatment augmented the photosynthetic capacity, stomata size and dry mass, and increased the yield by 436 g over that of the control. For '220', the treatment augmented the dry mass and increased the yield by 508.9 g over that of the control. In order to identify the most suitable culture substrate and container type to improve the WUE, cucumber growth and production, different substrates (peat moss, coir and mixed substrate with peat moss amd coir at 1:1 ratio [v/v]) and containers (tillage culture, basket culture amd long pot culture) were compared. The test was carried out under full-irrigation cultivation, and results showed that highest dry mass and productivity of the cucumbers were obtained when planted in a blasket with mixed substrate (BM), which resulted in a dry mass of 78.86 g and 422.09 g of fresh fruit. Plants cultured in long pots with coir (LC) had the highest WUE of 203.83% and the fastest growth rate; their days to flowering was the shortest among all groups at only 29.7 days, and the dry mass was lower than the BM group only. Thus, LC was recommended for planting cucumbers in this type of facility, because the method used water more effectively and resulted in better growth. Next, cucumber plants were grown under regulated deficit irrigation (RDI), which helps to improve the WUE, in order to evaluate the effects of different RDI conditions on cucumber grovsth and production. Various RDI treatments designed to subject the cucumbers to various degrees of soil water deficit (75±3%, 60±3% and 45±3% of field capacity [FC]) or full-irrigation in the vegetative and reproductive phases of cucumber growth were established. The results showed that an RDI of 60% FC during the vegetative phase reduced the use of irrigation water by 29% as compared with the control; the WUE was 164.9%, and the economic productivity was higher than that under other conditions, with no reduction in dry mass. As the reproductive phase of the cucumber is very sensitive to water deficit, any RDI condition significantly reduced the yield. The effect of 60% or higher FC on photosynthesis was lesser, and acted mainly through stomatal regulation, while 45% FC had a great impact on photosynthesis, and the MDA content and NPQ value of the leaves were significantly higher, indicating that the cucumbers were under serious water stress. During the vegetative phase, RDI with fogging treatment increased the dry mass, and the relative water content of the leaves increased under 60% or higher FC. 75% FC with fogging treatment during the vegetative and reproductive phases (75V and 75P) increased the WUE, while 60% and 45% FC treatment during the reproductive phase (60P and 45P) did not improve the WUE. Fogging treatment significantly reduced the leaf MDA content as compared with no fogging treatment, indicating that fogging can alleviate the adverse effects of RDI during the hottest part of the day.
URI: http://hdl.handle.net/11455/98183
文章公開時間: 2022-01-03
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.