Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98184
標題: 芹菜以生物炭改善連作障礙及有機管理雜草和蟲害之研究
The study of continuous cropping obstacle ameliorated by biochar, weed and pest organic management of celery(Apium graveolens L.)
作者: 朱德苓
Te-Ling Chu
關鍵字: 有機農業
生物炭
芹菜
連作障礙
快速堆肥
間作
防蟲網
organic farming
biochar
celery
continuous cropping obstacle
fast compost
intercropping
insect screen
引用: 王芳。2003。茄子連作張礙機理研究。中國農業大學博士論文。中華人民共和國。 王錦堂、黃政華。2004。優質安全農產品生產策略研討會專刊 77-98。 尹淇淋、謝越。2011。酚酸類物質導致作物連作障礙的研究進展。安徽農業科學39: 20977-20978 石郁琴、曹幸之。2002。穴盤苗苗齡對芹菜定植後生長特性之影響。中國園藝 48: 379-390。 田給林。2015。連作草莓土壤酚酸類物質的化感作用及其生物調控研究。中國農業大學博士論文。中華人民共和國。 安寶貞。2001。植物病害的非農藥防治品-亞磷酸。植物病理學會刊 10: 147-154。 安寶貞、陳昭瑩。2006。植物誘導性抗病之研究與應用。符合安全農業之病害防治新技術研討會專刊 p.133-155。 宋妤、張仁銓。2004。溫度及光線對芹菜種子發芽之影響。中國園藝50(2): 157-166。 宋妤、張仁銓。2006。植物生長調節劑及滲調處理促進芹菜種子發芽。植物種苗 8(2): 21-34。 吳立烽。2018。番茄及瓜類莖葉製成快速堆肥於雜草抑制及蔥(Allium fistulosum L.)栽培上的應用。國立中興大學園藝學研究所碩士學位論。中華民國。 吳至誠。2007。甘藷有機栽培雜草管理之研究。中華民國雜草學會會刊 28(1): 18-36。 李亮亮、吳正超、陳彬、劉文娥、臧健。2015。生物炭對添加自毒物質土壤酶活性、微生物區系結構的影響。華北農學報 30(4): 219-205。 李曉鋒、侯瑞賢、朱玉英、侯喜林、朱紅芳。2009。高溫脅迫對大白菜葉綠素螢光特性的影響。農業工程學報 25: 49-54. 林文華、彭冠華。2018。兼具高產值、友善環境雙價值之筊白筍-蕹菜有r機間作模式。花蓮區農業專訊 103: 19-22。 林經偉、陳昇寬、許涵鈞。2009。芹菜合理化施肥技術。台南區農業改良場技術專刊 139: 1-4。 林鳳琪、王清玲、邱一中、鄭櫻慧。2011。傳播番茄斑萎凋病毒屬病毒之薊馬及其防治研究。農作物害蟲及其媒介病害整合防治技術研討會專刊。台灣省農業試驗所特刊出版。p.123-146。 林鳳琪、陳怡如、邱一中、王昭月、王清玲。2017。應用小黑花椿象防治薊馬。農業害蟲管理暨食安把關研發成果研討會專刊。p.69-74。 武玉環、尉文彬、袁文龍、盧海博、甕巧雲。2014。張家口保護地黃瓜根結線蟲病的發生與防治。北方園藝 7: 110-111。 武春成、李天來、曹霞、張勇勇、楊麗娟。2014。添加生物炭對連作營養基質理化性質及黃瓜生長的影響。核農學報 28(8): 1534-1539。 侯惠珍。1988。覆蓋與岸蓋處理對甜椒、花椰菜及球莖甘藍生育之影響。國立中興大學園藝學系研究所碩士論文。中華民國。 施任青。2017。結球白菜(Brassica rapa L. Group Pekinensis )有機栽培管理與採種之研究。國立台灣大學園藝暨景觀學系研究所碩士學位論文。中華民國。 姜輝。2011。設施蔬菜連作障礙綜合防治技術。園藝與種苗 3: 59-60。 范淑貞。1996。夏季芹菜栽培要點。桃園區農業專訓 16: 17-20。 范錦勝、張李香。2009。植物提取物對玉米蚜忌避效果研究。北方園藝 11: 23-25。 柴衛東、劉永平、李洪芹、劉貞貞、李洪民、於國建、孫玉英、張忠波。2005。黑龍港棉花類型區棉(棉花)椒(天鷹椒)間作施肥的經濟效益及水分利用效率研究。江西農業大學學報 27(5): 662-666。 茹瑞紅、李烜楨、黃曉書、高峰、王建明、李本銀、張重義。2014 。食用菌菌渣緩解地黃連作障礙的研究。中國中藥雜誌 39(16): 3036-3041。 張江紅。2005。酚類物質對蘋果化感作用及重茬障礙影響機理的研究。山東農業大學博士論文。中華人民共和國。 張平艷、高榮廣、楊鳳娟、王秀峰、魏珉、史慶華、李岩。2014。矽對連作黃瓜幼苗光合特性和抗氧化酶活性的影響。應用生態學報 25(6): 1733-1738。 康亞龍、劉彥榮、劉建國、李夢格、郝夢超、蔣桂英。2015。連作對加工番茄植株生理活性和物質生產的影響。中國生態農業學報 23(3): 319-328。 許庭宇。2008。間作對青蔥有機栽培生產之影響。國立宜蘭大學園藝學系研究所碩士論文。中華民國。 郭修武、李坤、孫英妮、張立恆、胡禧熙、謝洪剛。2010。葡萄根系分泌物的化感效應及化感物質的分離鑑定。園藝學報 37(6): 861-868。 曹玲、劉溪靜、李南茜、李瑩瑩、王倩。2013。NaCl脅迫對芹菜種子萌發和幼苗生長的影響。北方園藝 15: 20-23. 陳玉雯。2001。芹菜連作障礙之研究。國立中興大學園藝學研究所碩士學位論。中華民國。 陳任芳。2012。植物免疫性的應用。花蓮區農業專訊 82: 2-5。 陳志杰、梁銀麗、張鋒、張淑蓮、徐福利、杜社妮、王琦。2008。溫室土壤連作對黃瓜主要病害的影響。中國生態農業學報 16(1): 71-74。 賀麗娜、梁銀麗、高靜、雄亞梅、周茂娟、韋澤秀。2008。連作對設施黃瓜產量和品質及土壤酶活性的影響。西北農林科技大學學報 36(5): 155-159。 黃鵬、徐輝妃、蔡淳瑩。1998。覆蓋材料對長形山藥生育與產量之影響。花蓮區農業改良場研究彙報 15:19-26。 楊文振。1998。芹菜。高雄區農情月刊 4:6。 楊盈。2018。番茄生物炭混合介質對甘藍及番茄幼苗生長及對蕃茄萎凋病防治之影響。國立中興大學園藝學系研究所碩士論文。中華民國。 陽士藝。2016。覆蓋對臺灣栽培兔眼藍莓生育及雜草防治之研究。國立台灣大學園藝暨景觀學系研究所碩士論文。中華民國。 農業統計年報。2016。行政院農業委員會出版 p.59。 鄒春嬌、張勇勇、張一鳴、郭小鷗、李明靜、李天來。2015。生物炭對設施連作黃瓜根域基質酶活性和微生物的調節。應用生態學報 26(6): 1772-1778。 劉曜德。2015。發展改善芹菜連作障礙之策略。國立台灣大學植物醫學碩士學位學程學位論文。 廖芳心。1993。溫度對甘藍結球生理之效應。桃園區農業改良場研究報告 15:16-23。 蔣慕琰、呂理燊。1981。殺草劑、覆蓋稻草及燒稻草對裡作不整地田雜草之作用。中華民國雜草學會會刊 2:93-104。 蔡佳儒、吳耿東。2016。臺灣農業廢棄物製備生物炭之未來與展望。農業生技產業季刊 46: 24-28。 盧秋通、王清玲。2006。基徵草蛉對設施甜椒害蟲之防治效果評估。台灣農業研究 55(2)111-120。 韓光明、劉東、孫世清、楊細元、陳全求、張濤、藍家樣。2015。生物炭對不同連作年限棉田棉花光合特性的影響。湖北農業科學 54(24): 6202-6206。 顏勝雄。2002。健康蔬菜-芹菜。桃園區農業專訊 41:16-19。 蘇偉。2014。稻草還田對油菜生長、土壤肥力的綜合效應及其機制研究。華中農業大學土壤與植物營養系研究所博士論文。中華人民共和國。 Abad, M., F. Fornes, C. Carrion, and V. Noguera. 2005. Physical properties of coconut coir dusts compared to peat. Hort Sci. 40(7): 2138-2144. Ahmad, M., S. S. Lee, X. Dou, D. Mohan, J. K. Sung, J. E. Yang, and Y. S. Ok. 2012. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technol. 118: 536-544. Akca, M. O. and A. Namli. 2015. Effects of poultry litter biochar on soil enzyme activities and tomato, pepper and lettuce plants growth. Eurasian J. Soil Sci. 4(3) : 161-168. Altland, J. E. and J. C. Locke. 2012. Biochar Affects Macronutrient Leaching from a Soilless Substrate. HortScience 47(8): 1136-1140. An, M., J. E. Pratley, and T. Haig. Dynamics of allelochemicals during decomposition of vulpia residues and their corresponding phytotoxicity. J. Chem. Ecol. 27: 395-409. Asaduzzaman, M. and T. Asao. 2012. Autotoxicity in beans and their allelochemicals. Scientia Horticulturae 134: 26-31. Asao, T., H. Kitazawa, T. Ban, M. H. R. Pramanik, and K. Tokumasa. 2008. Electro degradation of root exudates to mitigate autotoxicity in hydroponically grown strawberry (Fragaria ·ananassa Duch.) Plants. Hort Science 43: 2034-2038. Baumann, D. T., M. J. Kropff, and L. Bastiaans. 2000. Intercropping leeks to suppress weeds. Weed Res. 40: 359-374. Beesley, L., E. Moreno-Jiménez, and J. L. Gomez-Eyles. 2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 158: 2282-2287. Boudreau, M. A. 2013. Diseases in intercropping systems. Annu. Rev. Phytopathol. 51 : 499-519. Brewer, C. E., V. J. Chuang, C. A. Masiello, H.Gonnermann, X. Gao, B. Dugan, L. E. Driver, P. Panzacchi, K. Zygourakis, and C. A. Davies. 2014. New approaches to measuring biochar density and porosity. Biomass Bioenerg. 66: 176-185. Brockhoff, S. R., N. E. Christians, R. J. Killorn, R. Horton, and D. D. Davis. 2010. Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron J. 102(6): 1627-1631. Caspersen, S., B. W. Alsanius, P. Sundin, and P. Jensén. 2000. Bacterial amelioration of ferulic acid toxicity to hydroponically grown lettuce (Lactuca sativa L.). Soil Biol. Biochem. 32: 1063-1070. Chen, L., X. Yang, W. Raza, J. Li, Y. Liu, M. Qiu, F. Zhang, and Q. Shen. 2011. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl. Microniol. Biotechnol. 89: 1653-1663. Chen, L. H., X. Q. Huang, F. G. Zhang, D. K. Zhao, X. M. Yang, and Q. R. Shen. 2012. Application of Trichoderma harzianum SQR-T037 bio-organic fertiliser significantly controls Fusarium wilt and affects the microbial communities of continuously cropped soil of cucumber. J. Sci. Food Agric. 92: 2465-2470. Dáder, B., S. Legarrea, A. Moreno, M. Plaza, M. Carmo-Sousa, F. Amor, E. Viñuela, and A. Fereres. 2014. Control of insect vectors and plant viruses in protected crops by novel pyrethroid-treated nets. Pest Manag. Sci. 71: 1397-1406. DeBach., P. 1964. Biological control of insect pests and weeds. Chapman and Hall., London, UK. Drzal, M. S., W. C. Fonteno, and D. K. Cassel. 1999. Pore fraction analysis: A new tool for substrate testing. Acta Hort. 481: 43-54. Du, L. T., B. J. Huang, N. S. Du, S. R. Guo, S. Shu, and J. Sun. 2017. Effects of garlic/cucumber relay intercropping on soil enzyme activities and the microbial environment in continuous cropping. Hort Sci. 52: 78-84. Du, Y., W. Niu, Q. Zhang, B. Cui, X. Gu, L. Guo, and B. Liang. 2018. Effects of nitrogen on soil microbial abundance, enzyme activity, and nitrogen use efficiency in greenhouse celery under aerated irrigation. Soil Sci. Soc. Am. J. 82: 606-613. Elad, Y., D. R. David, Y. M. Harel, M. Borenshtein, H. B. Kalifa, A. Silber, and E. R. Graber. 2010. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phyto. 100(9): 913-921. Enders, A., K. Hanley, T. Whitman, and J. Lehman. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource. Technol. 114: 644-53. Fernández, M. M., I. Colomer, P. Medina, A. Fereres, P. D. Estal, and E. Viñuela. 2017. Efficacy of a long-lasting bifenthrin-treated net against horticultural pests and its compatibility with the predatory miteAmblyseius swirskii and the parasitic waspEretmocerus mundus. Pest Manag. Sci. 73(8): 1689-1697. Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Soil Fertil. Soils 35: 219-230. Goleniowski, M., M. Bonfill, R. Cusido, and J. Palazo´n. 2013. Phenolic Acids. In: Natural Products, Springer. p.1951-1973. Go ́mez-Rodrı ́guez, O., E. Zavaleta-Mejı ́a, V. A. Gonza ́lez-Herna ́ndez, M. Livera-Mun ̃oz, and E. Ca ́rdenas-Soriano. 2003. Allelopathy and microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crop Res. 83: 27-34. Graber, E. R., Y. M. Harel, M. Kolton, E. Cytryn, A. Sillber, D. R. David, L. Tsechansky, M. Borenshtein, and Y. Elad. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481-496. Gray, M., M. G. Johnson, M. I. Dragila, and M. Kleber. Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass Bioenerg. 61: 196-205. Guzman-Plazola, R. A., R. M. Davis, and J. J. Marois. 2003. Effects of relative humidityand high temperature on spore germination and development of tomato powderymildew (Leveillula taurica). Crop Prot. 22: 1157-1168. Herath, H. M. S. K., M. Camps-Arbestain, and M. Hedley. 2013. Effect of biochar on soil physical properties in two contrasting soils: An alfisol and an andisol. Geoderma 209: 188-197. Hossain, M. K., V. Strezov, K. Y. Chan, A. Ziolkowski, and P. F. Neison. 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage. 92: 223-228. Hougard, J. M., S. Duchon, and P. Guillet. 2002. Bifenthrin: A Useful Pyrethroid Insecticide for Treatment of Mosquito Nets. J. Med. Entomol. 39(3): 526-533. Iannotti, D. A., M. E. Grebus, B. L. Toth, L. V. Madden, and H. J. Hoitink. 1994. Oxygen respirometry to assess stability and maturity of composted municipal solid waste. Waste Manage. 23: 1177-1183. Inderjit, Stephen and O. Duke. 2003. Ecophysiological aspects of allelopathy. Planta 217(4): 529-539. Inderjit. 2005. Soil microorganisms: An important determinant of allelopathic activity. Plant soil 274: 227-236. Jin, J., Y. Li, J. Zhang, S. Wu, Y. Cao, P. Liang, J. Zhang, M. H. Wong, S. Shan, and P. Christie. 2016. Influence of pyrolysis temperature on properties and Environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 320: 417-426. Jindo, K., H. Mizumoto, Y. Sawada, M. A. Sanchez-Monedero, and T. Sonoki. 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11: 6613-6621. Juma, V. H. O. 2015. Effects of insecticide treated nets in the management of tomato pests and their impact on natural enemies and yield in nairobi and murang'a counties. Kenyatta Univ., Agric. Entomol., Kenya, PhD Diss. Kitazawa, H., T. Asao, T. Ban, M. H. R. Pramanik, and T. Hosoki. 2005. Autotoxicity of root exudates from strawberry in hydroponic culture. J. Hortic. Sci. Biotech. 80(6): 677-680. Klungness, L. M., E. B. Jang, R. F. L. Mau, R. I. Vargas, J. S. Sugano, and E. Fujitani. 2005. New sanitation techniques for controlling Tephritid Fruit Flies (Diptera: Tephritidae) in Hawaii. J. Appl. Sci. Environ. Mgt. 9(2): 5-14. Kooti, W. and N. Daraei. 2017. A review of the antioxidant activity of celery (Apium graveolens L.). Evid. Based Compl. Alt. 22(4): 1029-1034. Lavania, M., P. S. Chauhan, S. V. S. Chauhan, H. B. Singh, and C. S. Nautiyal. 2006. Induction of plant defense enzymes and phenolics by treatment with plant growth–promoting rhizobacteria Serratia marcescens NBRI1213. Curr. Microbiol. 52: 363-368. Lehmann, J. and S. Joseph. 2009. Biochar for environmental management: an intro-duction. In: Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Manage-ment: Science and Technology. Earthscan, London p. 1-12. Lehmann, J., J. Gaunt, and M. Rondon. 2006. Bio-char sequestration in terrestrial ecosystemsea review. Mitig. Adapt. Strat. Gl. 11: 403-427. Li, P., J. Jia, D. Zhang, J. Xie, X. Xu, and D. Wei. 2014. In vitro and in vivo antioxidant activities of a flavonoid isolated from celery (Apium graveolens L. var. dulce). Food Funct. 5: 50-56. Licciardi, S., F. Assogba-Komlan, I. Sidick, F. Chandre, J. M. Hougard, and T. Martin. 2007. A temporary tunnel screen as an eco-friendly method for small-scale farmers to protect cabbage crops in Benin. Int. J. Trop. Insect Sci. 27: 152-158. Li, M. Y., X. L. Hou, F. Wang, G. F. Tan, Z. S. Xu, and A. S. Xiong. 2018. Advances in the research of celery, an important Apiaceae vegetable crop. Crit. Rev. Biotechnol. 38(2): 172-183. Lobato, M. C., F. P. Olivieri, E. A. González Altamiranda, E. A. Wolski, G. R. Daleo, D. O. Caldiz, and A. B. Andreu. 2008. Phosphite compounds reduced disease severity in potato seed tuber and foliage. Eur. J. Plant. Pathol. 122: 349-358. Lobato, M. C., M. F. Machinandiarena, C. Tambascio, G. A. A. Dosio, D. O. Caldiz, G. R. Daleo, A. B. Andreu, and P. Olivieri. 2011. Effect of foliar application of phosphite on post-harvest potato tubers. Eur. J. Plant. Pathol. 130: 155-163. Machinandiarena, M. F., M. C. Labato, M. L.Feldam, G. R. Daleo, and A. B. Andreu. 2012. Potassium phosphite primes defense responses in potato against Phytophothora infestans. J. Plant Physiol. 169: 1417-1424. Martin, T., F. Assogba-Komlan, T. Houndete, J. M. Hougard, and F. Chandre. 2006. Efficacy of Mosquito Netting for Sustainable Small Holders' Cabbage Production in Africa. J. Econ. Entomol. 99(2): 450-454. Martin, T., F. Assogba-Komlan, I. Sidick, V. Ahle, and F. Chandre. 2010. An acaricide-treated net to control phytophagous mites. Crop Prot. 29: 470-475. Martin, T., F. Chandre, J. Chabi, P. F. Guillet, M. Akogbeto, and J. Hougard. 2007. A biological test to quantify pyrethroid in impregnated nets. Trop. Med. Int. Health 12: 245-250. Martin, T., A. Kamal, E. Gogo, M. Saidi, E. Delétré, R. Bonafos, S. Simon, and M. Ngouajio. 2014. Repellent effect of alphacypermethrin-treated netting against Bemisia tabaci (Hemiptera: Aleyrodidae). J. Econ. Entomol. 107: 684-690. Mathieu, D. and A. C. Kushalappa. 1993. Effect of temperature and leaf wetness duration on the infection of celery by Septoria apiicola. Ecol. Epidemol. 83(10): 1036-1040. Matsubara, Y., N. Hasegawa, and H. Fukui. 2002. Incidence of Fusarium root rot in asparagus seedlings infected wuth arbuscular mycorrhizal gungus as affected by several soil amendments. J. Japan. Soc. Hort. Sci. 71(3): 370-374. Mukherjee, A., R. Lal, and A. R. Zimmerman. 2014. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci. Total Environ. 487: 26-36. Münzenberger, B., E. Hammer, V. Wray, F. Schauer, J. Schmidt, and D. Strack. 2003. Detoxification of ferulic acid by ectomycorrhizal fungi. Mycorrhiza 13: 117-121. Olivieri, F. P., M. L. Feldman, M. F. Machinandiarena, M. C. Labato, D. O. Caldiz, G. R. Daleo, and A. B. Andreu. 2012. Phosphite applications induce molecular modification in potato tuber periderm and cortex that enhance resistance to pathogens. Crop Prot. 32:1-6. Pardossi, A., G. Bagnoli, F. Malorgio, C. A. Campiotti, and F. Tognoni. 1999. NaCl effects on celery (Apium graveolens L.) grown in NFT. Sci. Hortic 81: 229-242. Paz, A., D. Jareno, L. Arroyo, J. Vinuela, B. Arroyo, F. Mougeot, J. J. Luque-Larena, and J. A. Fargallo. 2013. Avian predators as a biological control system of common vole (Microtus arvalis) populations in north-western Spain: experimental set-up and preliminary results. Pest Manag. Sci. 69: 444-450. Perez-Garcia, F., J. M. Pita, M. E. Gonzalez-Benito, and J. M. Iriondo. 1995. Effects of light, temperature and seed priming on germination of celery seeds (Apium graveolens L.). Seed Sci. Technol. 23: 377-383. Petruccelli, R., A. Bonetti, M. L. Traversi, C. Faraloni, M. Valagussa, and A. Pozzi. 2015. Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum). Crop Pasture Sci. 66: 747-755. Prevedello, J. A., C. R. Dickman, M. V. Vieira, and E. M. Vieira. 2013. Population responses of small mammals to food supply and predators: a global meta-analysis. J. Anim. Ecol. 82: 927-936. Price, A. J. and J. K. Norsworthy. 2013. Cover crops for weed management in southern reduced-tillage vegetable cropping system. Weed Technol. 27: 212-217. Ram, H., G. Singh, and N. Aggarwal. 2016. Effect of irrigation, straw mulching and weed control on growth, water use efficiency and productivity of summer mungbean. Legume Res. 39: 284-288. Rajkumar, M., K. J. Lee, and H. Freitas. 2008. Effects of chitin and salicylic acid on biological control activity of Pseudomonas spp. against damping off of pepper. S. Afr. J. Bot. 74: 268-273. Salo, P., P. B. Bank, C. R. Dickman, and E. Korpimaki. 2013. Predator manipulation experiments: impacts on populations of terrestrial vertebrate pray. Ecol. Monogr. 80(4): 531-546. Sarker, J. R., B. P. Singh, W. J. Dougherty, Y. Fang, W. Badgery, F. C. Hoyle, R. C. Dalal, and A. L. Cowie. 2018. Impact of agricultural management practices on the nutrient supplypotential of soil organic matter under long-term farming systems. Soil Till. Res. 175: 71-81. Simon, S., F. A. Komlan, L. Adjaito, A. Mensah, H. K. Coffi, M. Ngouajio, and T. Martin. 2014. Efficacy of insect nets for cabbage production and pest management depending on the net removal frequency and microclimate. Int. J. Pest Manage. 60(3): 208-216. Singh, U. P., B. K. Sarma, and D. P. Singh. 2002. Effect of plant growth-promoting rhizobacteria and culture filtrate of Sclerotium rolfsiion phenolic and salicylic acid contents in chickpea (Cicer arietinum). Curr. Microbiol. 46: 131-140. Sohi, S. P., E. Krull, E. Lopez-Capel, and R. Bol. 2010. A review of biochar and its use and function in soil. Adv. Agron. 105: 47-82. Soumare, M., F. M. G. Tack, and M. G. Verloo. 2003. Characterisation of Malian and Belgian solid waste composts with respect to fertility and suitability for land application. Waste Manage. 23: 517-522. Stern, V. M., R. F. Smith, R. van den Bosch, and K.S. Hagen. 1959. The integrated control concept. Hilgardia 29: 81-101. Tognetti, C., M. J. Mazzarino, and F. Laos. 2007. Improving the quality of municipal organic waste compost. Bioresource Technol. 98: 1067-1076. Vaccari, F. P., A. Maienza, F. Miglietta, S. Baronti, S. D. Lonardo, L. Giagnoni, A. Lagomarsino, A. Pozzi, E. Pusceddu, R. Ranieri, G. Valboa, and L. Genesio. 2015. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agr. Ecosyst. Environ. 207: 163-170. Wayne, E. 2012. Conquistadors, cannibals and climate change: A brief history of biochar. Pro-Natura International. http://www.pronatura.org/wp content/uploads/2012/07/History-of-biochar.pdf Yan, X., R. Han, M. Moens, S. Chen, and P. DeClercq. 2013. Field evaluation of entomopathogenic nematodes for biological control of striped flea beetle, Phyllotreta striolata (Coleoptera: Chrysomelidae). Biocontrol 58(2): 247-256. Young, C. C., L. R. Zhu Thorne, and G. R. Waller. 1989. Phytotoxic potential of soils and wheat straw in rice rotation cropping systems of subtropical Taiwan. Plant Soil 120: 95-101. Yu, J. Q. and Y. Matsui. 1994. Phytotoxic substances in root exudates of cucumber (Cucumber sativus L.). J. Chem. Ecol. 20: 21-31. Zaim, M., A. Aitio, and N. Nakashima. 2000. Safity of pyrethroid-treated mosquito nets. Med. Vet. Entomol. 14: 1-5. Zhang, L. and X. Sun. 2015. Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste Manage. 39: 119-129. Zhao, Q., J. W. J. Zhu, Y. C. Qin, P. L. Pan, H. T. Tu, W. X. Du, W. F. Zhou, and F. P. Baxendale. 2014. Reducing whiteflies on cucumber using intercropping with less preferred vegetables. Entomol. Exp. Appl. 150: 19-27. Zhou, X., G. Yu, and F. Wu. 2012. Soil phenolics in a continuously mono‐cropped cucumber (Cucumis sativus L.) system and their effects on cucumber seedling growth and soil microbial communities. Eur. J. Soil Sci. 63(3): 332-340. Zwieten, L. V., S. Kimber, S. Morris, K. Y. Chan, A. Downie, J. Rust, S. Joseph, and A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327: 235-246.
摘要: 本研究以循環利用農業廢棄物、維護土壤生產力及開發替代化學製劑的害物防治技術,推廣兼顧環境和產業的永續農業模式為本論文之宗旨。 本試驗利用戴壟科技生產的大道寶粉生物炭及將葫蘆科和番茄莖葉殘株分別以350和550℃熱裂解而成生物炭,測定五者之物理化學性質,結果顯示其特性因材料和製作溫度而有差異,pH值介於8-10,當中350℃生物炭其孔隙度低,不利於保水且有疏水性,不適合添加於介質。將大道寶粉(B)、葫蘆科(C550)和番茄(T550)於550℃製成之生物炭以3、6或9% (w/w)添加至泥炭土中,6%的C550 (C5506)處理可顯著提高芹菜種子發芽率及芹菜苗葉面積和地上部鮮乾重。種植五週芹菜於T550之地上部乾重有抑制現象,其餘無顯著差異。以B、C550生物炭添加在混拌芹菜莖葉殘質的介質中,以6%的大道寶粉(B6)可以提高株高1.3倍、葉柄徑1.2倍及地上部鮮重1.4倍,表示生物炭於不良之栽培土壤環境較有應用價值。 大道寶粉生物炭於連作芹菜土壤施用後可以提高株高、葉柄徑、葉柄數和地上部鮮乾重,當中以6%的大道寶粉生物炭(CB6)相較於對照組可提高1.4倍的產量,改善了連作土對芹菜生長之抑制。生物炭之添加亦促進了連作芹菜的抗氧化力,CB6處理之過氧化氫酶活性為對照組的9倍,MDA含量降低至0.8倍。芹菜以不同比例沒食子酸和生物炭處理,沒食子酸處理下以添加3%的大道寶粉生物炭(GB3)處理之芹菜苗生長最佳,芹菜苗更有抵抗高濃度沒食子酸帶來的逆境的能力,甚至在5000 ppm沒食子酸濃度下GB3芹菜苗之株高、葉柄徑、地上部和地下部鮮乾重仍優於對照組。沒食子酸濃度處理下CAT、POD和APX等抗氧化酶活性在生物炭處理下顯著提高,MDA含量和EC值則不顯著,表示無論生物炭處理與否芹菜苗在沒食子酸處理下皆遭受到逆境,而生物炭對其生長之維持主要是透過對氧化逆境之抵抗。 將番茄和南瓜莖葉殘株分別以國立中興大學楊秋忠教授研發的快速堆肥技術製成堆肥,其pH值分別為5.01和6.49,總酚類化合物含量分別為3809.27及2938.26 ppm,以2或3公分覆蓋抑制芹菜種子發芽。覆蓋於芹菜苗周圍1、2或3公分可有效抑制雜草的生長,當中以3公分的南瓜雜草抑制率達95%為最佳。快速堆肥的覆蓋對芹菜生長有促進之作用,最佳處理為覆蓋南瓜3公分之芹菜株高和鮮重分別高達45.5公分和51.5公克。油菜以芹菜和青蔥間作及普通防蟲網和殺蟲劑處理之32目藥網進行害蟲和雜草調查,以黃色黏蟲紙捕獲之蟲口數及以害蟲啃食之葉片面積估算之葉片危害指數在間作及防蟲網處理皆顯著低於對照組,間作芹菜和青蔥之防蟲效果無顯著差異,32目普通網和32目藥網之防蟲效果亦不顯著但較間作佳,四種防治技術下雜草鮮重和乾重皆顯著低於對照組,顯示有降低雜草危害的效果。五種處理下油菜植株株高、莖徑、地上部鮮重和乾重以32目藥網最佳,32目普通網和次之,間作芹菜或青蔥對油菜植株生長無顯著影響。
The aim of this study was to promote the use of agricultural waste, maintain soil productivity, develop alternative technologies to pest-control chemicals,and advocate a sustainable agriculture modle that takes both the environment and industry into consideration. In this study, biochar produced by Dazzeon Technology and biochar obtained by pyrolysis of stem and leaf residues of ground (Cucurbitaceae) or tomato plants at 350℃ and 550℃ were used. The physical and chemical properties of these biochar products were investigated, and the results indicated that their characteristics varied, and were mainly dependent on the production temperature. The pH values of the biochar were between 8 and 10. Biochar prepared at 350℃ had a low porosity, which was not conducive to water retention, and was hydrophobic; therefore, it was not suitable for addition to a growth medium. Dazzeon biochar (B), or biochar products made by pyrolysis of Cucurbitaceae (C550) or tomato plants (T550) at 550℃, were added to peat soil at 3, 6 or 9% (w/w), and the results showed that treatment with 6% C550 (C5506) significantly improved the germination rate of celery seeds, the leaf area of celery seedlings and the above-ground fresh dry weight. After planting for five weeks, only celery planted in growth medium with T550 showed a reduced above-ground dry weight, and there were no significant differences between the other treatments. When B and C550 biochar were added to the medium mixed with stem and leaf residue, the addition of 6% B biochar increased the plant height, petiole diameter and above-ground fresh weight by 1.3-, 1.2- and 1.4-fold, respectively, indicating that biochar application was of value for use in poorly-cultivated soil environment. The application of B biochar in the soil of a continuously-monocropped celery system increased the plant height, petiole diameter, petiole number and above-ground fresh dry weight. Among the treatments, adding 6% B biochar (CB6) increased the crop yield by 1.4-fold that of the control, suggesting that biocharcan improved the inhibition effect of the soil due to continuous monocropping. The addition of biochar also promoted tha antioxidant capacity of continuously-moncropped celery. The catalase activity of celery grown in soil mixed with CB6 increased by 9-fold that of the control, and tha MDA content was reduced to 0.8-fold that of the control. The anti-oxidative effect of biochar was then studied using celery plants exposed to gallic acid to induce oxidative stress. GB3 treatment significantly reduced the inhibition effect on crop growth of the high concentration of gallic acid, even at 5000 ppm. GB6 treatment resulted in improved plant height, petiole diameter, above-ground and below-ground fresh dry weights as compared with the control. In the celery seedlings under gallic acid-induced stress, celery plants with biochar treatment had significantly higher activities of antioxidant enzymes, while no significant changes in the MDA content and EC value were observed. The results indicated that gallic acid induced oxidative stress in celery plants, and biochar reserved the inhibition effect on crop growth via increasing the anti-oxidative activity. Compost materials made from leaf and stem residues of tomato or pumpkin plants by the rapid composting technology developed by Chiu-Chung Young, National Chung Hsing Universiy, were compared. The pH values of the tomato and pumpkin composts were 5.01 and 6.49, respectively. A covering of the compost to a height of 2 or 3 cm inhibited germination of celery seeds, while a compost covering of 1, 2, or 3 cm in height around celery seedlings was found to effectively inhibit weed growth, among which a 3-cm-high pumpkin compost covering had the highest weed inhibition rate of 95%. Covering by rapid compost promoted the growth of celery: a 3-cm-high pumpkin compost covering resulted in the best plant height and fresh weight of celery, at 45.5 cm and 51.5 g, respectivity. The effects of intercropping and the use of insect screens on pest and weed control in a field of rape (Brassica rapa L.) were investigated. The rape was either untreated, or treated with one of the four pest- and weed-control techiques: intercropping with celery, intercropping with shallots, covering with a 32-mesh common insect screen, or covering with a 32-mesh insectide-treated screen. The numbers of insects caught by yellow sticky papers and the total damaged leaf area were used as indices to estimate the effectiveness of pest control, and the fresh weight and dry weight of weeds were used to evaluate the effectivenedd of weed control. Both intercropping and use of an insect screen resulted in better pest and weed control as compared with control conditions. There was no significant difference in the effect on insect control between celery celery and shallot intercropping. The insect control effects of the 32-mesh common insect screen and the insecticide-treated screen were not significantly different, but both resulted in better control than intercropping. The fresh weight and dry weight of weeds under any one of the four control techniques were significantly lower than those of the control, indicating that intercropping and the use of an insect screen can reduce weed growth. In terms of the plant height, stem diameter, and above-ground fresh weight and dry weight of the rape plants, use of the insecticide-treated screen produced the best results, followed by the common insect screen. Furthermore, intercropping with celery or shallots had no significant effect in the growth of the rape plants.
URI: http://hdl.handle.net/11455/98184
文章公開時間: 2022-01-10
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.