Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98188
標題: 低溫對甘藷葉片生理的影響及生物刺激素增加低溫耐受性之研究
Study of low temperature influence on physiology and the biostimulants enhancing on chilling tolerance of sweet potato leaves (Ipomoea batatas L.)
作者: 廖冠琳
Kuan-Lin Liao
關鍵字: 低溫
甘藷
葉片
生理
生物刺激素
低溫抗性
low temperature
sweet potato
leaves
physiology
biostimulants
chilling tolerance
引用: 王安祥、龔楚媖、吳宜昭、于宜強。2016。2016年1月臺灣地區寒害事件彙整與分析。國家災害防救科技中心災害防救電子報128:1-15。 李文南、張喜寧。2012。蝴蝶蘭耐寒性之快速檢測與水楊酸及過氧化氫預處理提升耐寒性。臺東區農業改良場研究彙報22:79-96。 李良。1994。甘藷, p. 1329-1465。刊於:蔡文孚主編. 雜糧作物各論III 根及莖類。財團法人臺灣區雜糧發展基金會。臺灣。 李靜。2012。低溫弱光脇迫對甜瓜幼苗生長及生理指標的影響。河南農業科學 41(5):106-109。 辛仲文、姜金龍、林維和。1999。葉菜甘藷。少量多樣化雜糧作物栽培手冊。臺灣省政府農林廳。 白福祥、羅筱鳳、黃士穎、賴永昌。2004。甘藷品種耐寒性之研究。華岡農科學報13:35-56。 行政院農委會。2016。農情調查資訊查詢。農情報告資源網。<http://agr.afa.gov.tw/afa/afa_frame.jsp>。 行政院農委會。2017。蔬菜 產品交易價量走勢圖。農產品批發市場交易行情站。<http://amis.afa.gov.tw/veg/VegChartProdTransPriceVolumeTrend.aspx>。 邱麗慧、王玉麒、詹明才。2000。植物與溫度逆境的交感作用I、植物低溫逆境的傷害。科學農業 48(9-10):254-258。 张南、秦智偉。2007。低温處理對菠菜生理生化指標的影響。中國蔬菜11: 22-24。 劉敏莉。2012。葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報21(1):1-15。 Aebi, H. 1974. Catalases. p. 673-684. In: H.U. Bergmeyer (ed). Methods of enzymatic analysis. Academic Press, New York. Aghaee, A., F. Moradi, H. Zare-Maivan, F. Zarinkamar, H. P. Irandoost, and P. Sharifi. 2011. Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage. African J. Biotechnol. 10(39):7617-7621. Ahn, S.J., Y.J. Im, G.C. Chung, B.H. Cho, and S.R. Suh. 1999. Physiological responses of grafted-cucumber leaves and rootstock roots affected by low root temperature. Scientia Hort. 81:397-408. Ali, I.A., U. Kafkafi, I. Yamaguchi, Y. Sugimoto, and S. Inanaga. 1996. Effects of low root temperature on sap flow rate, soluble carbohydrates, nitrate contents and on cytokinin and gibberellin levels in root xylem exudate of sand-grown tomato. J. Plant Nutr. 19:619-634. Anderson, M.D., T.K. Prasad, and C.R. Stewart. 1995. Changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109:1247-1257. Aoki, S., M. Oda, and K. Hosino. 1989. Varietal differences in photosynthesis and leaf chilling-induced depression of growth in cucumber seedlings. J. Japan. Soc. Hort. Sci. 58(1):173-179. Aro, E.M., I. Virgin, and B. Anderson. 1993. Photoinhibition of photosystem II inactivation, protein damage and turnover. Biochem. Biophys. Acta 1143:113-134. Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141:391-396. Ashraf, M. and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59:206-216. Baker, N.R. 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59(1):89-113. Bagnall, D., J. Wolfe, and R.W. King. 1983. Chill-induced wilting and hydraulic recovery in mung bean plants. Plant, Cell Environ. 6:457-464. Bertin, P., J. Bouharmont, and J.M. Kinet. 1997. Somaclonal variation and improvement of chilling tolerance in rice: changes in chilling-induced chlorophyll fluorescence. Crop Sci. 37:1727-1735. Beyer Jr, W. F., and I. Fridovich. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161(2): 559-566. Bienert, G.P., J.K. Schjoerring, and T.P. Jahn. 2006. Membrane transport of hydrogen peroxide. Biochem. Biophys. Acta. 1758:994-1003. Bloom, A.J., M.A. Zwieniecki, J.B. Passioura, L.B.Randall, N.M. Holbrook, and D.A. St. Clair. 2004. Water relations under root chilling in a sensitive and tolerant tomato species. Plant, Cell Environ. 27(8): 971-979. Blunden, G., A.L. Cripps, S.M. Gordon, T.G. Mason, and C.H. Turner. 1986. The characterisation and quantitative estimation of betaines in commercial seaweed extracts. Bot. Marina 8:138-143. Boonsiri, K, S. Ketsa, and W.G. Van Doorn. 2007. Seed browning of hot peppers during low temperature storage. Postharv. Biol. Technol. 45:358-365. Bolhar-Nordenkampf, H. R. and G. Oquist. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. p.193-206. In: D.O. Hall, J. M. O. Scurlock, H. R. Borhar-Nordenkampf, R. C. Leegood and S. P. Long (eds.). Photosynthesis and Production in a Changing Environment: a Field and Laboratory Manual. Chapman and Hall, London. Bohnert, H.J. and R.G. Jensen. 1996. Metabolic engineering for increased salt tolerance - the next step - comment. Aust. J. Plant Physiol. 23:661-666. Buchanan, B. B., W. Gruissem, and R. L. Jones. 2000. Responses to abiotic stresses. Biochemistry and Molecular Biology of Plants. MD: Amer. Soc. Plant Physiol. Rockville, USA. Bucheli, C.S. and S.P. Robinson. 1994. Contribution of enzymic browning to color in sugarcane juice. J. Agric. Food Chem. 42:257-261. Caffagni, A., N. Pecchioni, E. Francia, D. Pagani, and J. Milc. 2014. Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress. Biol. Plant 58:283-295. Calvo, P., L. Nelson, and J.W. Kloepper. 2014. Agricultural uses of plant biostimulants. Plant Soil 383:3-41. Cao, Y.Y., M.T. Yang, X. Li, Z.Q. Zhou, X.J. Wang, and J.G. Bai. 2014. Exogenous sucrose increases chilling tolerance in cucumber seedlings by modulating antioxidant enzyme activity and regulating proline and soluble sugar contents. Sci. Hort. 179:67-77. Chae, S.L., S.M. Kang, J.L. Cho, and K.C. Gross. 2009. Antioxidizing enzyme activities in chilling-sensitive and chilling-tolerant pepper fruit as affected by stage of ripeness and storage temperature. J. Amer. Soc. Hort. Sci. 134(1):156-163. Chang, M.Y., S.L. Chen, C.F. Lee, and Y.M. Chen. 2001. Cold-acclimation and root temperature protection from chilling injury in chilling-sensitive mungbean (Vigna radiata L.) seedlings. Bot. Bull. Acad. Sin. 42: 53-60. Chubachi, T., I. Asano, and T. Oikawa. 1986. The diagnosis of nitrogen nutrition of rice plants (Sasanishiki) using chlorophyll meter. Soil Sci. Plant Nutr. 57: 190-193. Craigie, J.S. 2011. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 23:371-393. Curtis, C.R. 1971. Disc electrophoretic comparisons of proteins and peroxidases from Phaseolus vulgaris leaves infected with Agrobacterium tumefaciens. Can. J. Bot. 49(3):333-337. Crouch, I.J. and J. van Staden. 1992. Effect of seaweed cocentrate on the establishment and yield of greenhouse tomato plants. J. Appl. Phycol. 4:291-296. Crouch, I.J. and J. van Staden. 1993. Evidence for the presence of plant growth regulators in commercial seaweed products. Plant growth Regulat. 13(1):21-29. D'Ambrosio, N., C. Arena, and A. V. De Santo . 2006. Temperature response of photosynthesis, excitation energy dissipation and alternative electron sinks to carbon assimilation in Betav ulgaris L. Environ. Exp. Bot. 55:248-257. Dat, J., S. Vandenabeele, E. Vranova´, M. Van Montagu, and D. Inze´. 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57:779-795. Deewatthanawong, R., P. Rowell, and C. Watkins. 2010. γ -Aminobutyric acid (GABA) metabolism in CO2 treated tomatoes. Postharvest Bio. Technol. 57:97-105. Delfine, S., R. Tognetti, E. Desiderio, and A. Alvino. 2005. Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron. sustainable Dev. 25(2):183-191. Dellapenna, D. and B.J. Pogson. 2006. Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev. Plant Biol. 57:711-738. Dolstra, O., S.R. Haalstra, P.E.L. Van der Putten, and A.H.C.M. Schapendonk. 1994. Genetic variation for resistance to low-temperature photoinhibition of photosynthesis in maize (Zea mays L.). Euphytica 80:85-93. Dong, S., L. Cheng, L.H. Fuchigami. 2002. Effects of urea and defoliant-CuEDTA in a single or a mixed application in the autumn on N reserves and regrowth performance of young 'Fuji'/M26 apple trees. Acta Hortic. 636:29-34. Dong, X., H. Bi, G. Wu, and X. Ai. 2013. Drought-induced chilling tolerance in cucumber involves membrane stabilisation improved by antioxidant system. International J. Plant Production 7(1):67-80. du Jardin, P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hort. 196:3-14. Durand, N., X. Bri, and C. Meyer. 2003. The effect of marine bioactive substances (NPRO) and exogenous cytokinins on nitrate reductase activity in Arabidopsis thaliana. Physiol. Plant 119:489–493. Elansary, H.O., K. Skalicka-Woźniak, and I.W. King. 2016. Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments. Plant Physiol. Biochem. 105:310-320. El Far, M.M.M. and Koyro, H.W. 2014. Differences in chilling tolerance among genotypes of sweetpotato (Ipomoea batatas (L.) Lam.). Arab J. Biotech. 17(2). Fadzillah, N.M., V. Gill, R.P. Finch, and R.H. Burdon. 1996. Chilling, oxidative stress and antioxidant responses in shoot cultures of rice. Planta 199(4):552-556. Fageria, N. K., M. B. Filho, A. Moreira, and C. M. Guimarães. 2009. Foliar fertilization of crop plants. J. Plant Nutr. 32(6):1044-1064. FAOSTAT. 2016. Food and Agriculture Organization of the United Nations. <http://www.fao.org/faostat/en/#data/QC>. Farrar, J.F. 1988. Temperature and the partitioning and translocation of carbon. p. 203-235. In: S.P. Long, and F.I. Woodward (eds). Plants and temperature. Cambridge: The Company of Biologists Limited. Fennell, A. and A.H. Markhart. 1998. Rapid acclimation of root hydraulic conductivity to low temperature. J. Exp. Botany 49: 879–884. Fike, J.H., V.G. Allen, R.E. Schmidt, X. Zhang, J.P. Fontenot, C.P. Bagley, R.L. Ivy, R.R. Evans, R.W. Coelho, and D.B. Wester. 2001. Tasco-Forage: I. Influence of a seaweed extract on antioxidant activity in tall fescue and in ruminants. J. Anim. Sci. 79:1011-1021. García, A. C., R.LL. Berbara, L.P. Farías, F.G. Izquierdo, O.L. Hernández, R.H. Campos, and R.N. Castro. 2012. Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. African J. Biotechnol. 11(13):3125-3134. Gechev, T., I. Gadjev, F. Van Breusegem, D. Inze´, and S. Dukiandjiev. 2002. Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cel. Mol. Life Sci. 59:708-714. Genard, H., J. Le Saos, J.P. Billard, A. Tremolieres, and J. Boucaud. 1991. Effect of salinity on lipid composition, glycine betaine content and photosynthetic activity in chloroplasts of Suaeda maritima. Plant Physiol. Biochem. 29:421-427. Ghanbari, F. and M. Sayyari. 2018. Controlled drought stress affects the chilling-hardening capacity of tomato seedlings as indicated by changes in phenol metabolisms, antioxidant enzymes activity, osmolytes concentration and abscisic acid accumulation. Sci. Hort. 229:167-174. Gombos, Z., H. Wada, and N. Murata. 1994. The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipid: a mechanism of chilling tolerance. Proc. Natl. Acad. Sci. USA 91:8787-8791. Górnik, K., M. Grzesik, and B. Romanowska-Duda. 2008. The effect of chitosan on rooting of grapevine cuttings and on subsequent plant growth under drought and temperature stress. J. Fruit Ornamental Plant Res. 16:333-343. Gossett, D.R., E.P. Millhollon, and M.C. Lucas. 1994. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci. 34:706-14. Guan, Y.J., J. Hu, X.J. Wang, and C.X. Shao. 2009. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J. Zhejiang Univ. Sci. B. 10(6):427-433. Gururani, M., A., J. Venkatesh, and L. S. P. Tran. 2015. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol. Plant 8(9):1304-1420. Guy, C.L., J.L.A. Huber, and S.C. Huber. 1992. Sucrose phosphate synthase and sucrose accumulation at low-temperature. Plant Physiol. 100:502-508. Halliwell, B. 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 141:312-322. Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochem. Biophys. 125(1):189-198. Henzler, T. and Steudle E. 2000. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 51:2053-2066. Hintze, K.J. and E.C. Theil. 2006. Cellular regulation and molecular interactions of the ferritins. Cell Mol. Life Sci. 63:591-600. Hirotsu, N., A. Makino, S. Yokota, and T. Mae. 2005. The photosynthetic properties of rice leaves treated with low temperature and high irradiance. Plant Cell Physiol. 46:1377-1383. Hodges, D. M., C. J. Andrews, D. A. Johnson, and R. I. Hamilton. 1997. Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J. Exp. Bot. 48(5):1105-1113. Holland, N., H.C. Menezes, and M.T. Lafuente. 2002. Carbohydrates as related to the heat-induced chilling tolerance and respiratory rate of 'Fortune' mandarin fruit harvested at different maturity stages. Postharvest Biol. Technol. 25:181-191. Hong, D.D., H.M. Hien, and P.N. Son. 2007. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J. Appl. Phycol. 19:817-826. Huaman, Z. 1992. Systematic botany and morphology of the sweet potato plant. Technical information bulletin 25. International Potato Center (CIP), Lima, Peru. Huang, M, Z. Guo. 2005. Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol. Plant 49:81-84. Iba, K. 2002. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Ann. Rev. Plant Biol. 53:225-245. Iriti, M., V. Picchi, M. Rossoni, S. Gomarasca, N. Ludwig, M. Gargano, and F. Faoro. 2009. Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ. Exp. Bot. 66:493-500. Ismail, M.R. and S.W. Burrage. 1992. Effects of salinity, vapour pressure deficit and root temperature on growth and yield of NFT-grown tomatoes. Acta Hort. 292:143-148. Jahnke, L.S., M.R. Hull, and S.P. Long. 1991. Chilling stress and oxygen metabolizing enzymes in Zea mays and Zea diploperennis. Plant Cell Environ. 14:97-104. Janda, T., G. Szalai, J. Kissimon, E. Paldi, C. Marton, and Z. Szigeti. 1994. Role of light intensity in the chilling injury of young maize plants studied by chlorophyll fluorescence induction measurements. Photosynthetica 30:293-299. Javier, P.D.J., I.J. Josh, and S.D. Manuel. 1997. Chilling of drought-hardened and non-hardened plants of different chilling-sensitive maize lines changes in water relations and ABA contents. Plant Sci. 112:71-79. Jing-min, Z., X. Shangjun, S. Maopeng, M. Bingyao, C. Xiumei, and L. Chunsheng. 2010. Effect of humic acid on poplar physiology and biochemistry properties and growth under different water level. J. Soil Water Conservation. 8(1): 9-20. Jung, S., K. L. Steffen, and H. J. Leeb.1998. Comparative photoinhibition of a high and a low altitude ecotype of tomato (Lycopersicon hirsutum) to chilling stress under high and low light conditions. Plant Sci. 134:69-77. Kami, D., T. Muro, and K. Sugiyama. 2011. Changes in starch and soluble sugar concentrations in winter squash mesocarp during storage at different temperatures. Scientia Hort. 127:444-446. Kang, H.M. and M.E. Saltveit. 2002. Reduced chilling tolerance in elongating cucumber seedling radicles is related to their reduced antioxidant enzyme and DPPH-radical scavenging activity. Physiol. Plant 115:244-250. Karpinski, S., H. Reynolds, B. Karpinska, G. Wingsle, G. Creissen, and P. Mullineaux. 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Sci. 284:654-657. Kehrer, J.P. 2000. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43-50. Keunen, E., D. Peshev, J. Vangronsveld, W. Van Den Ende, and A. Cuypers. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 36:1242-1255. Khan, W., U.P. Rayirath, S. Subramanian, M.N. Jithesh, P. Rayorath, D.M. Hodges, A.T. Critchley, J.S. Craigie, J. Norrie, and B. Prithiviraj. 2009. Seaweed extracts as biostimulants of plant growth and development. Plant Growth Regul. 28:386-399. Kim, H., F. Chen, X. Wang, and N.C. Rajapakse. 2005. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 53:3696-3701. Kozik, E.U. and T.C. Wehner. 2014. Tolerance of watermelon seedlings to low-temperature chilling injury. HortScience 49(3):240-243. Krause, G.H. 1994. Photoinhibition induced by low temperatures. p. 331-348. In: N.R. Baker J.R. Bowyer (eds.). Photoinhibition of photosynthesis: from molecular mechanisms to the field. BIOS Scientific Publishers, Oxford. Krause, G.H. 1998. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol. Plantarum 74:566-574. Kudoh, Hideki, and K. Sonoike. 2002. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta 215(4): 541-548. Lamikanra, O. 2002. Enzymatic effects on flavor and texture of fresh-cut fruits and vegetables. p. 125-185. In: O. Lamikanra (ed.). Fresh-cut Fruits and Vegetables: Science, Technology, and Market. CRC Press, Florida. Landrigan, M., S.C. Morris, K.S. Gibb. 1996. Relative humidity influences postharvest browning in rambutan (Nephelium Lappaceum L.). HortScience 31:417-418. Latowski, D., P. Kuczyńska, and K. Strzałka. 2011. Xanthophyll cycle - a mechanism protecting plants against oxidative stress. Redox Rpt. 16(2):78-90. Lee, S., H. Choi, S. Suh, I.S. Doo, K.Y. Oh, E.J. Choi, and Y. Lee. 1999. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol. 121:147-152. Lee, S. H., S. J. Ahn, Y. J. Im, K. Cho, G.C. Chung, B. H. Cho, and O. Han. 2005. Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots. Biochem. Biophys. Res. Commun. 330(4):1194-1198. Liau, Y.J., L. Wen, J.F. Shaw, and C.T. Lin. 2007. A highly stable cambialistic-superoxide dismutase from Antrodia camphorata: expression in yeast and enzyme properties. J. Biotechnol. 131:84-91. Lin, K. H., W. C. Hwang, and H. F. Lo. 2007. Chilling stress and chilling tolerance of sweet potato as sensed by chlorophyll fluorescence. Photosynthetica 45(4):628-632. Liu, L., L. Duan, J. Zhang, Z. Zhang, G. Mi, and H. Ren. 2010. Cucumber (Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and enhances chilling tolerance. Sci. Hort. 124(1):29-33. Liu, X. and B. Huang. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40(2):503-510. Los, D.A. and N. Murata. 2004. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta 1666:142-157. Lotfi, R., M. Pessarakli, P. Gharavi-Kouchebagh, and H. Khoshvaghti. 2015. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity. Crop J. 3(5):434-439. Lopez-Delgado, H, J. Dat, C.H. Foyer, and I.M. Scott. 1998. Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J. Exp. Bot. 49:713-720. Luis, A., L.M. Sandalio, F.J. Corpas, and J.B. Barroso. 2006. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol. 141(2):330-335. Maalekuu, K., Y. Elkind, A. Leikin-Frenkel, S. Lurie, and E. Fallik. 2006. The relationship between water loss, lipid content, membrane integrity and LOX activity in ripe pepper fruit after storage. Postharvest Biol. Technol. 42:248-255. Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses : an overview. Arch. Biochem. Biophys. 444(2):139-158. Martz, F., S. Kiviniemi, T.E. Palva, and M.L. Sutinen. 2006. Contribution of omega-3 fatty acid desaturase and 3-ketoacyl-ACP synthase II (KASII) genes in the modulation of glycerolipid fatty acid composition during cold acclimation in birch leaves. J. Exp. Bot. 57:897-909. Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence a practical guide. J. Exp. Bot. 51:659-668. Mayer, A.M. and E. Harel 1979. Polyphenol oxidases in plants. Phytochemistry 18: 193-215. McKersie, B.D. and Y.Y. Leshem. 1994. Stress and Stress Coping in Cultivated Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands. Miedema, P. 1982. The effects of low temperature on Zea mays. Adv. Agron. 35: 93-128. Milton, R.F. 1962. The production of compounds of heavy metals with organic residues. British Patent 902:563-565. Mittler R., S. Vanderauwera, M. Gollery, and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498. Mishra, R.K. and G.S. Singhal. 1992. Function of photosynthetic apparatus of intact wheat leaves under high light and heat stress and its relationship with peroxidation of thylakoid lipids. Plant Physiol. 98(1):1-6. Moller, I.M. 2001. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev. Plant Physiol. Plant Mol. Biol. 52:561-591. Mondal, M.M.A., M.I.K. Rana, N.C. Dafader, and M.E. Haque. 2011. Effect of foliar application of chitosan on growth and yield in Indian spinach. J. Agrofor. Environ. 5:99-102. Mondal, M.M.A., M.A. Malek, A.B. Puteh, M.R. Ismail, M. Ashrafuzzaman and L. Naher. 2012. Effect of foliar application of chitosan on growth and yield in okra. Aust. J. Crop Sci. 6:918-921. Moon, B.Y., S. Higashi, Z. Gombos, and N. Murata. 1995. Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plant. Proc. Natl. Acad. Sci. USA 92:6219-6223. Müller, P., X.P.Li, and K.K. Niyogi. 2001. Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiol. 125(4):1558-1566. Nagarajan S. and Nagarajan S. 2010. Abiotic tolerance and crop improvement. p. 1–11. In: A. Pareek, S.K. Sopory and H.J.G. Bohnert (eds.). Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht. Netto, A.T., E. Campostrini, J.G. de Oliveira, R.E. Bressan-Smith. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 104:199-209. Noctor, G. and C.H. Foyer. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:249-279. Norrie J. and J.P. Keathley. 2006. Benefits of Ascophyllum nodosum marine-plant extract applications to 'Thompson seedless' grape production. (Proceedings of the Xth International Symposium on Plant Bioregulators in Fruit Production, 2005). Acta Hortic. 727:243–247. Olivares, F.L., N.O. Aguiar, R.C.C. Rosa, and L.P. Canellas. 2015. Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci. Hortic. 183:100-108. Palma, F., N. Tejera, and C. Lluch. 2013. Nodule carbohydrate metabolism and polyols involvement in the response of Medicago sativa to salt stress. Environ. Exp. Bot. 85:43-49. Palma, F., F. Carvajal, C. Lluch, M. Jamilena, and D. Garrido. 2014. Changes in carbohydrate content in zucchini fruit (Cucurbita pepo L.) under low temperature. Plant Sci. 217-218:78-86. Palonen, P., D. Buszard, and D. Donnelly. 2000. Changes in carbohydrates and freezing tolerance during cold acclimation of red raspberry cultivars grown in vitro and in vivo. Physiol. Plant. 110:393-401. Parkin, K. L. and S.J. Kuo. 1989. Chilling-induced lipid degradation in cucumber (Cucumis sativa L. cv Hybrid C) fruit. Plant Physiol. 90:1049-1056. Paula, S.C., I. P. Pais, F. L. Partelli, B.S. Paula, and J. Ramalho. 2014. Phospholipids profile in chloroplasts of Coffea spp. genotypes differing in cold acclimation ability. J. Plant Physiol. 171:243-249. Petrov, K.A., L.V. Dudareva, V.V. Nokhsorov, A.A. Perk, V.A. Chepalov, V.E. Sophronova, V.K. Voinikov, I.S. Zulfugarov, and C.H. Lee. 2016. The role of plant fatty acids in regulation of the adaptation of organisms to the cold climate in cryolithic zone of Yakutia. J. Life Sci. 26:519-530. Powles, S.D. 1984. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. Plant Physiol. 35:15-44. Purseglove, J. W. 1974. Tropical crops. Dicotyledons. Longman Group Ltd, London. Purvis, A.C. and W. Grierson. 1982. Accumulation of reducing sugar and resistance of grapefruit peel to chilling injury as related to winter temperatures. J. Am. Soc. Hort. Sci. 107:139-142. Prasad, T.K., M.D. Anderson, B.A. Martin, and C.R. Stewart. 1994. Physiological evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65-74. Rayirath, P., B. Benkel, D. Mark Hodges, P. Allan-Wojtas, S. MacKinnon, and A.T. Critchley. 2009. Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta 230(1):135-47. Reitz, S.R. and J.T. Trumble. 1996. Effects of cytokinin-containing seaweed extract on Phaseolus lunatus L.: influence of nutrient availability and apex removal. Bot. Mar. 39:33-38. Routaboul, J.M., S.F. Fischer, and J. Browse. 2000. Trienoic fatty acids are required to maintain chloroplast function at low temperatures. Plant Physiol. 124:1697-1705. Richardson, A.D., S.P. Duigan, and G.P. Berlyn. 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist 153:185-194. Rizza, F., D. Pagani, A.M. Stanca, and L.Cattivelli. 2001. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breed. 120: 389-396. Saito, M. and M. Yoshida. 2011. Expression analysis of the gene family associated with raffinose accumulation in rice seedlings under cold stress. J. Plant Physiol. 168: 2268-2271. Scandalios, J.G. 1993. Oxygen stress and superoxide dismutase. Plant Physiol. 101:7-12. Schiavon, M., D. Pizzeghello, A. Muscolo, S. Vaccaro, O. Francioso, S. Nardi. 2010. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J. Chem. Ecol. 36:662-669. Simon, E.W. 1974. Phospholipids and plant membrane permeability. New Phytol. 73: 377-420. Simova-Stoilova, L., I. Vaseva, B. Grigorova, K. Demirevska, and U. Feller. 2010. Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol. Biochem. 48:200-206. Singla-Pareek, S.L., A. Pareek, and S.K. Sopory. 2007. Transgenic plants for dry and saline environments. pp. 501-530. In: M.A. Jenks et al. (Eds.). Advances in molecular breeding toward drought and salt tolerant crops. Somersalo, S. and G.H., Krause. 1989. Photoinhibition at chilling temperature. Fluorescence characteristics of unhardened and cold acclimated spinach leaves. Planta 177:409-416. Sonoike, K. and I. Terashima. 1994. Mechanism of the photosystem I photoinhibition in leaves of Cucumis sativus L. Planta 194:287–293. Souza, R.P., E.C. Machado, J.A.B. Silva, A.M. Lagoa, and J.A.G. Silveira. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot. 51:45-56. Spunda, V., J. Kalina, O. Urban, V.C. Luis, I. Sibisse, J. Puertolas, M. Sprtova, and M.V. Marek. 2005. Diurnal dynamics of photosynthetic parameters of Norway spruce trees cultivated under ambient and elevated CO2: the reasons of midday depress ion in CO2 assimilation. Plant Sci.168:1371-1381. Stirk, W.A., M.S. Novak, and J. van Staden. 2003. Cytokinins in macroalgae. Plant Growth Regul. 41:13-24. Sui, X.L., F.Z. Meng, H.Y. Wang, Y.X. Wei, R.F. Li, Z.Y. Wang, L.P. Hu, S.H. Wang, and Z.X. Zhang. 2012. Molecular cloning, characteristics and low temperature response of raffinose synthase gene in Cucumis sativus L. J. Plant Physiol. 169: 1883-1891. Sun, H., T. Mu, L. Xi, M. Zhang, and J. Chen. 2014. Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods. Food Chem. 156: 380-389. Sun, J.H., J.Y. Chen, J.F. Kuang, W.X. Chen, and W.J. Lu. 2010. Expression of sHSP genes as affected by heat shock and cold acclimation in relation to chilling tolerance in plum fruit. Postharvest Biol. Technol. 55:91-96. Megha, S., U. Basu, and N. N. Kav 2014. Metabolic engineering of cold tolerance in plants. Biocatalysis Agri. Biotechnol. 3(1):88-95. Taiz, L. and E. Zeiger. 2010. Plant Physiology 5th ed. Sinauer Associates. Inc., USA. Taka, T. 2004. The relationship of antioxidant enzymes and some physiological parameters in maize during chilling. Plant Soil Environ. 50:27-32. Tanino, K.K. and B.D. McKersie. 1985. Injury within the crown of winter wheat seedlings after freezing and icing stress. Can. J. Bot. 63(3):432-436. Terashima, I., L.R. Huang, and C.B. Osmond. 1989. Effects of leaf chilling on the thylakoid functions, measured a t room temperature, in Cucumis sativus L. and Oryza sativa L. Plant Cell Physiol. 30:841-850. Van Kooten, O. and J.H. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25(3):147-150. Venema, J.H., F. Posthumus, M. De Vries, and P.R. Van Hasselt. 1999. Differential response of domestic and wild Lycopersicon species to chilling under low light: growth, carbohydrate content, photosynthesis and the xanthophyll cycle. Physiol. Plantarum 105(1):81-88. Walker, M.A. and B.D. McKersie. 1993. Role of the ascorbate glutathione antioxidant system in chilling resistance of tomato. J. Plant Physiol. 141:234-239. Wang, C.Q. and R.C. Li. 2008. Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress. Acta Physiol. Plant. 30:841-847. Wang, Q., J. Chen, R. H. Stamps, and Y. Li, 2005. Correlation of visual quality grading and SPAD reading of green-leaved foliage plants. J. Plant Nutr. 28(7):1215-1225. Wang, W. B., Y. H. Kim, H. S. Lee, X. P. Deng, and S. S. Kwak. 2009. Differential antioxidation activities in two alfalfa cultivars under chilling stress. Plant Biotechnol. Rpt. 3(4):301-307. Wei, C., J. Huang, X. Wang, G.A. Blackburn, Y. Zhang, S. Wang, and L.R. Mansaray. 2017. Hyperspectral characterization of freezing injury and its biochemical impacts in oilseed rape leaves. Remote Sensing Environ. 195:56-66. Wright, M. and E.W. Simon. 1973. Chilling injury in cucumber leaves. J. Exp. Bot. 24:400-411. Wilson, J.M. 1976. The Mechanism of chill- and drought-hardening of Phaseolus vulgaris leaves. New Phytol. 76(2):257-270. Wilson, S. 2001. Frost management in cool climate vineyards. In: University of Tasmania Research Report UT 99(1). Grape and Wine Research & Development Corporation. Wonsheree, T., S. Kesta ,and W.G. van Doorn. 2009. The relationship between chilling injury and membrane damage in lemon basil (Ocimum × citriodourum) leaves. Postharv. Biol. Technol. 51:91-96. Woods, F. M., J.O. Garner Jr, J.L. Silva, and C. Phromtong. 1991. Estimation of chilling sensitivity in leaves of sweet potato by chlorophyll fluorescence and electrolyte leakage. Phyton. 51:33-37. Woolfe, J. A. 1992. Sweet potato: an untapped food resource. Cambridge University Press. Xia, X.J., Y.J. Wang, Y.H. Zhou, Y. Tao, W.H. Mao, K. Shi, T. Asami, Z. Chen, and J.Q. Yu. 2009. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol. 150:801-814. Yan, B., Q. Dai, X. Liu, S. Huang, and Z. Wang. 1996. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179(2):261-268. Yan, J., R. E. Schmidt, and D. M. Orcutt. 1997. Influence of fortified seaweed extract and drought stress on cell membrane lipids and sterols of ryegrass leaves. Internat. Turfgrass Soc. Res. J. 8:1356-1362. Yan, Q.Y., Z.Q. Duan, J.Q. Mao, X. Li, and F. Dong. 2013. Low root zone temperature limits nutrient effects on cucumber seedling growth and induces adversity physiological response. J. Integrative Agric. 12(8):1450-1460. Yan, P., Y. XU, D. Duan, and L. Mao. 2009. Postharvest quality and physiological behavior of sweet potato (Ipomoea batatas L.) leaf stalks under three temperatures. Agr. Sci. China 8(2): 244-248. Yoshida, S., D.A. Forno, J.H. Cock, and K.A. Gomez. 1976. Laboratory manual for physiological studies of rice. p. 46-49. International Rice research Institute, Los Banos, Philippines. Zhang, A., M.Y. Jiang, J.H. Zhang, H.D. Ding, S.C. Xu, X.L. Hu, and M. Tan. 2007. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol. 175:36-50. Zhang, S., and Scheller H.V. 2004. Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol. 45:1595-1602. Zhang, X., E.H. Ervin, and R.E. Schmidt. 2003. Physiological effects of liquid applications of a seaweed extract and a humic acid on creeping bentgrass. J. Amer. Soc. Hort. Sci. 128(4):492-496. Zhang, X., E.H. Ervin, and R.E. Schmidt. 2003. Seaweed extract humic acid, and propiconazole improve tall fescue sod heat tolerance and posttransplant quality. HortScience 38:440-443. Zhang, X. and E.H. Ervin. 2004. Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci. 44:1737-1745. Zhang, Z., Y. Jia, H. Gao, L. Zhang, H. Li, and Q. Meng. 2011. Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta 234(5):883-889. Zlatev, Z.S., F.C. Lidon, J.C. Ramalho, and I.T. Yordanov. 2006. Comparison of resistance to drought of three bean cultivars. Biol. Plant. 50:389-394.
摘要: 低溫逆境會造成葉用甘藷(Ipomoea batatas L.)於品質和產量上的嚴重傷害,葉片外觀出現萎凋、水浸狀、黃化和壞疽。本試驗之目的為選育耐低溫之品種、優良之抗寒藥劑,及預處理過氧化氫(H2O2)所誘導之耐低溫抗性,分析植株相關生理表現與耐低溫表現之相關性。 觀察五品種甘藷葉於黑暗6 ℃下0、3、5、7、9和15小時與回溫24和48小時期間之葉片寒害指數與復原指數,總寒害指數於'日本種'為7.31、'大葉種'為8.13和'台農71號'為6.75,'黃葉種'為14.44和'裂葉種'為12.22;總復原指數'日本種'為5.47、'大葉種'為3.00和'台農71號'為5.10,'黃葉種'為10.15和'裂葉種'為7.49。綜合寒害指數、復原指數葉綠素螢光與SPAD值,較耐寒品種為'日本種'、'大葉種'和'台農71號',較不耐寒品種為'黃葉種'和'裂葉種'。'台農71號'處理15小時後回溫48小時(R 48 hr)之Fv/Fm顯著增加,於6 ℃下9小時和15小時之SOD活性皆顯著上升,'裂葉種'之MDA含量於6 ℃下9小時和15小時之變化百分率分別為279.4 %與324.6%,代表細胞膜嚴重受損。 施用生物刺激素(biostimulants)作為抗寒藥劑,於低溫前1小時噴施抗寒藥劑海藻精(seaweed extract)、腐植酸(humic acid)、黃腐酸(fulvic acid)和甲殼素(chitosan)於'日本種'葉片,置於黑暗6 ℃生長箱下9小時,以腐植酸稀釋50倍的處理有顯著較對照組和大部分處理組低的電解質滲漏率-0.7 %,且Fv/Fm之變化率上升2.07%。'日本種'以甲殼素50倍處理則是有最低的寒害指數和SPAD值之變化率,分別為2.33與6.75%。田間低溫下甲殼素50倍可顯著提高'日本種'和'台農71號'葉片之CAT和SOD活性,腐植酸50倍則可降低'台農71號'葉片之MDA含量。經自然界的冷馴化後,複方藥劑(海藻精1000倍、腐植酸200倍和甲殼素200倍)有加成的抗寒效果,表現在'日本種'和'台農71號'葉片之Fv/Fm值和MDA含量上,Fv/Fm值分別為0.848與0.853,MDA含量分別為16.77與13.76 μmol g-1 FW。 低溫下低光(日/夜溫為18/10℃,光強度為70 mmol m-2s-1,光週期12/12小時)對'台農71號'甘藷葉片造成的寒害症狀,初期為點狀黃化,接著為大面積黃化與葉緣黑褐色壞疽斑點。葉片寒害指數、電解質滲漏率與MDA含量顯著提高,Fv/Fm與CAT活性顯著下降。處理複方生物刺激素(海藻精1000倍、腐植酸200倍和甲殼素200倍)與0.5、5和50 mM的過氧化氫2小時後,置於低溫光線下24小時(日/夜溫為14/6℃,光強度為70 mmol m-2s-1,光週期10/14小時)。預處理複方的效果與過氧化氫(H2O2)相比較佳,有最低的MDA含量,最高的CAT和POD活性,其中POD與對照組顯著差異。過氧化氫(H2O2)的處理中以0.5 mM的效果較佳,特別是在抗氧化酵素活性的提升和MDA含量的下降。本試驗結果顯示葉用甘藷於低溫下之優良生理指標為Fv/Fm值、MDA含量和SOD活性。
Chilling stress causes great damages with regards to the quality and the yield of sweet potato leaves. The injured leaves appear wilted, water-soaked and yellow, with patches of necrosis. The aim of this experiment is to select chilling tolerance cultivars and identify the efficiencies of chilling-tolerance induced agents, as well as to study the chilling tolerance induced by hydrogen peroxide (H2O2). The parameters correlated with chilling tolerance investigated in this study included the chilling injury index, recovery index, chlorophyll content of the leaves (measured with Soil-Plant Analyses Development [SPAD] device), chlorophyll fluorescence (Fv/Fm), membrane damage (assessed by measurement of malondialdehyde [MDA] content and electrolyte leakage), antioxidant enzymes activities (CAT and SOD) and carbohydrates changes. Five sweet potato cultivars were maintained at 6 ℃ in the dark for 0, 3, 5, 7, 9 and 15 hours, then subsequently kept at 25 ℃ for 24 and 48 hours to recover. The total chilling injury indices of 'Japanese', 'Big leaves', 'Tainung 71', 'Yellow leaves' and 'Cracked leaves' were 7.31, 8.13, 6.75, 14.44 and 12.22, respectively (smaller indices indicated that the chilling injuries were mild), while their total recovery indices were 5.47, 3.00, 5.10, 10.15, and 7.49, respectively. The results demonstreated that 'Japanese', 'Big leaves' and 'Tainung 71' exhibited high tolerances to chilling, 'Yellow leaves' and 'Cracked leaves' were sensitive to chilling. The significantly increase of Fv/Fm in 'Tainung 71' after a 48-hour recovery period (R 48 hr), and the plants maintained at 6 ℃ for 9 and 15 hours had higher SOD activities. The MDA percentage changes of 'Cracked leaves' maintained at 6 ℃ for 9 and 15 hours are 279.4 % and 324.6%, respectively, indicating that the cell membrane was severely damaged. To examine the efficiency of chilling-tolerance induced agents, kinds of biostimulants were used in this study. The agents (seaweed extract, humic acid, fulvic acid, and chitosan)were sprayed on leaves of 'Japanese' sweet potato one hour before placing under 6 ℃ for 9 hours. Leaves treated with 1/50 diluted humic acid showed a significant change of -0.7 % in electrolyte leakage, in addition to a significant increase of 2.07% in Fv/Fm as compared with control. The effect of humic acid on electrolyte leakage was not only significantly lower than control, but also lower than other agents treatment in this study. Leaves treated with 1/50 diluted chitosan had the lowest chilling injury indices and the smallest changes in SPAD value percentage, 2.33 and 6.75%, respectively. Leaves of 'Japanese' and 'Tainung 71' in the field were treated with 1/50 diluted chitosan before cold current, which significantly increased the CAT and SOD activities under low temperature stress. Leaves of 'Tainung 71' treated with 1/50 diluted humic acid exhibited significant decrease on MDA contents. After cold acclimation, the mixture of multiple chilling-tolerance induced agents had a synergetic effect on inducing chilling tolerance in leaves of sweet potato 'Japanese' and 'Tainung 71', the Fv/Fm values were increased to 0.848 and 0.853, respectively, while the MDA contents were lowered to 16.77 and 13.76 μmol g-1 FW, respectively. Low temperature and low light treatment (day/night, 18/10 ℃; photosynthetic photon flux density [PPFD], 70 mmol m-2s-1; light period, 12/12 hours) cause chilling injuries on leaves of sweet potato 'Tainung 71', with yellow spots then followed by large area of yellowing, and necrotic spots on the leaf margin. The treatment significantly increased the chilling injury indices, electrolyte leakage and MDA contents, and significantly decreased the Fv/Fm and CAT activities. Leaves were pretreated with mixture of multiple chilling-tolerance induced agents (seaweed extract 1/1000, humic acid 1/200 and chitosan 1/200) or with 0.5, 5, 50 mM H2O2 for 2 hours, then placed to low temperature and low light treatment (day/night, 14/6 ℃; PPFD, 70 mmol m-2s-1; light period, 10/14 hours). The results showed that the mixture of multiple chilling-tolerance induced agents had better anti-chilling effects than plants pretreated with H2O2, the former resulted in the lowest MDA contents, and the highest CAT and POD activities. POD activities showed significantly higher than control. Among the H2O2 treatments, plant treated with 0.5 mM H2O2 had the best effect, especially on increasing antioxidant enzymes activities and decreasing MDA contents. The results of this study suggested that the Fv/Fm, MDA content and SOD activity are good physiological indicator for the study of chilling tolerance of sweet potato leaves under chilling stress.
URI: http://hdl.handle.net/11455/98188
文章公開時間: 2019-01-17
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.