Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98191
標題: 延長草莓果實貯藏壽命之研究
Study on Prolonging the Storage Life of Strawberry (Fragaria × ananassa) Fruit
作者: 吳岱融
Dai-Rong Wu
關鍵字: 草莓
成熟度
可食性覆膜
脂肪酸蔗糖酯
貯藏壽命
育種
strawberry
maturity level
edible coating
sucrose fatty acid ester
storage life
breeding
引用: 行政院農業委員會農糧署。2016。中華民國一○五年蔬菜生產概況-草莓。(2018年5月1日)取自http://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation.aspx。 李窓明。2006。臺灣農家要覽-草莓。行政院農業委員會。p: 575-580。 財政部關務署統計資料庫查詢系統。2018。進出口貨物數量價值查詢結果-草莓。(2018年5月1日)取自https://portal.sw.nat.gov.tw/APGA/GA02。 張廣淼、吳添益、彭淑貞。2004。草莓栽培管理。苗栗區農業改良場。p39。 黃錦杰。2004。臺灣地區草莓之採後劣變及相關處理技術之研究。碩士論文。國立臺灣大學。 雷家軍、代漢萍、鄧明琴、吳祿平、胡文玉。2002。草莓種間雜交的研究。園藝學報29:519-523。 雷家軍、譚昌華、代漢萍、龐蘭。2010。草莓五倍體種間雜種的獲得及回交研究。吉林農業大學學報32:284-288。 劉小杰、何國慶、袁長貴、鄧林偉、蔣雪紅。2001。蔗糖酯的合成工藝及其應用研究。食品與發酵工業27:64-69。 Aaby, K., S. Mazur, A. Nes, and G. Skrede. 2012. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: composition in 27 cultivars and changes during ripening. Food Chem. 132: 86-97. Amal, S., M. El-Mogy, H. Aboul-Anean, and B. Alsanius. 2010. Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. J. Hort. Sci. Ornamen. Plants 2: 88-97. Andrade Júnior, V.C., A.G. Guimarães, A.M. Azevedo, N.A. Pinto, and M.A. Ferreira. 2016. Postharvest conservation of strawberry fruits at different storage conditions. Hort. Bras. 34: 405-411. Bakker, J., P. Bridle, and S.J. Bellworthy. 1994. Strawberry juice colour: a study of the quantitative and qualitative pigment composition of juices from 39 genotypes. J. Sci. Food Agric. 64: 31-37. Baldwin, E. 2001. New coating formulations for the conservation of tropical fruits. Fruitrop (English ed.) 85: 21-22. Baldwin, E., M. Nisperos-Carriedo, and R. Baker. 1995. Edible coatings for lightly processed fruits and vegetables. HortScience 30: 35-38. Barritt, B. 1980. Resistance of strawberry clones to Botrytis fruit rot. J. Am. Soc. Hort. Sci. 105: 160-164. Bhaskara Reddy, M., P. Angers, and A. Gossenlin. 1998. Characterization and use of essentiao oil from Thymus vulgaris against Botrytis cinerea and Rhizopus stolonifer in strawberry fruits. Phytochemistry 47: 1. Brummell, D.A., and M.H. Harpster. 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 47: 311-339. Butler, B., P. Vergano, R. Testin, J. Bunn, and J. Wiles. 1996. Mechanical and barrier properties of edible chitosan films as affected by composition and storage. J. Food Sci. 61: 953-956. Cagri, A., Z. Ustunol, and E.T. Ryser. 2004. Antimicrobial edible films and coatings. J. Food Prot. 67: 833-848. Cai, Z., R. Yang, H. Xiao, X. Qin, and L. Si. 2015. Effect of preharvest application of Hanseniaspora uvarum on postharvest diseases in strawberries. Postharvest Biol. Technol. 100: 52-58. Capocasa, F., J. Diamanti, B. Mezzetti, S. Tulipani, and M. Battino. 2008. Breeding strawberry (Fragaria × ananassa Duch) to increase fruit nutritional quality. BioFactors 34: 67-72. Castro, I., O. Gonçalves, J. Teixeira, and A. Vicentesc. 2002. Comparative study of Selva and Camarosa strawberries for the commercial market. J. Food Sci. 67: 2132-2137. Cha, D.S., and M.S. Chinnan. 2004. Biopolymer-based antimicrobial packaging: a review. Crit. Rev. Food Sci. Nutr. 44: 223-237. Chai, Y.M., Q. Zhang, L. Tian, C.L. Li, Y. Xing, L. Qin, and Y. Y. Shen. 2013. Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul. 69: 63-69. Chen, F., H. Liu, H. Yang, S. Lai, X. Cheng, Y. Xin, B. Yang, H. Hou, Y. Yao, S. Zhang, G. Bu, and Y. Deng. 2011. Quality attributes and cell wall properties of strawberries (Fragaria x annanassa Duch.) under calcium chloride treatment. Food Chem. 126: 450-459. Civello, P.M., G.A. Martínez, A.R. Chaves, and M.C. Añón. 1997. Heat treatments delay ripening and postharvest decay of strawberry fruit. J. Agric. Food Chem. 45: 4589-4594. Cordenunsi, B., J.d. Nascimento, and F. Lajolo. 2003. Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chem. 83: 167-173. Cordenunsi, B.R., M.I. Genovese, J.R.O. do Nascimento, N.M.A. Hassimotto, R.J. dos Santos, and F.M. Lajolo. 2005. Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem. 91: 113-121. da Silva, F.L., M.T. Escribano-Bailón, J.J.P. Alonso, J.C. Rivas-Gonzalo, and C. Santos-Buelga. 2007. Anthocyanin pigments in strawberry. LWT-Food Sci. Technol. 40: 374-382. de la Peña Moreno, F., G.P. Blanch, G. Flores, and M.L. Ruiz del Castillo. 2010. Impact of postharvest methyl jasmonate treatment on the volatile composition and flavonol content of strawberries. J. Sci. Food Agric. 90: 989-994. Dermen, H., and G.M. Darrow. 1938. Colchicine-induced tetraploid and 16-ploid strawberries. Proc. Amer. Soc. Hort. Sci. 36: 300-301. El-Neshawy, S., and Y. M. Shetaia. 2003. Biocontrol capability of Candida spp. against Botrytis rot of strawberries with respect to fruit quality. Acta Hort. 604: 727-733. El Ghaouth, A., J. Arul, J. Grenier, and A. Asselin. 1992. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology 82: 398-402. El Ghaouth, A., J. Arul, R. Ponnampalam, and M. Boulet. 1991. Chitosan coating effect on storability and quality of fresh strawberries. J. Food Sci. 56: 1618-1620. Esmel, C.E., J.R. Duval, B.M. Santos, S.A. Sargent, and E.H. Simonne. 2008. Is strawberry fruit firmness associated with tissue Ca concentration? Proc. Fla. State Hort. Soc. p. 281-284. Feliziani, E., and G. Romanazzi. 2016. Postharvest decay of strawberry fruit: Etiology, epidemiology, and disease management. J. Berry Res. 6: 47–63. Forney, C.F., W. Kalt, J.E. McDonald, and M.A. Jordan. 1998. Changes in strawberry fruit quality during ripening on and off the plant. Acta Hort. 464: 506. Gallardo, R.K., D. Nguyen, V. McCracken, C. Yue, J. Luby, and J.R. McFerson. 2012. An investigation of trait prioritization in rosaceous fruit breeding programs. HortScience 47: 771-776. Garcia, J.M., C. Aguilera, and M.A. Albi. 1995. Postharvest heat treatment on Spanish strawberry (Fragaria x ananassa cv. Tudla). J. Agric. Food Chem. 43: 1489-1492. Garcia, M.A., M.N. Martino, and N.E. Zaritzky. 1998. Plasticized starch-based coatings to improve strawberry (Fragaria × ananassa) quality and stability. J. Agric. Food Chem. 46: 3758-3767. García, J.M., S. Herrera, and A. Morilla. 1996. Effects of postharvest dips in calcium chloride on strawberry. J. Agric. Food Chem. 44: 30-33. Gil, M.I., D.M. Holcroft, and A.A. Kader. 1997. Changes in strawberry anthocyanins and other polyphenols in response to carbon dioxide treatments. J. Agric. Food Chem. 45: 1662-1667. Gol, N.B., P.R. Patel, and T.V.R. Rao. 2013. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 85: 185-195. Guinebretiere, M., C. Nguyen-The, N. Morrison, M. Reich, and P. Nicot. 2000. Isolation and characterization of antagonists for the biocontrol of the postharvest wound pathogen Botrytis cinerea on strawberry fruits. J. Food Prot. 63: 386-394. Han, C., Y. Zhao, S. Leonard, and M. Traber. 2004. Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria × ananassa) and raspberries (Rubus ideaus). Postharvest Biol. Technol. 33: 67-78. Harker, F.R., H.J. Elgar, C.B. Watkins, P.J. Jackson, and I.C. Hallett. 2000. Physical and mechanical changes in strawberry fruit after high carbon dioxide treatments. Postharvest Biol. Technol. 19: 139-146. Harris, L., and E. Mitcham. 2007. Strawberries: Safe methods to store, preserve, and enjoy. University of California. Agriculture and Natural Resources. p15. Hernández-Muñoz, P., E. Almenar, M.J. Ocio, and R. Gavara. 2006. Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biol. Technol. 39: 247-253. Hernández-Muñoz, P., E. Almenar, V. Del Valle, D. Velez, and R. Gavara. 2008. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria × ananassa) quality during refrigerated storage. Food Chem. 110: 428-435. Holcroft, D.M., and A.A. Kader. 1999. Controlled atmosphere-induced changes in pH and organic acid metabolism may affect color of stored strawberry fruit. Postharvest Biol. Technol. 17: 19-32. Huber, D. 1984. Strawberry fruit softening: the potential roles of polyuronides and hemicelluloses. J. Food Sci. 49: 1310-1315. Hummer, K.E., P. Nathewet, and T. Yanagi. 2009. Decaploidy in Fragaria iturupensis (Rosaceae). Am. J. Bot. 96: 713-716. Isman, M.B. 2000. Plant essential oils for pest and disease management. Crop Protect. 19: 603-608. Jouquand, C., C. Chandler, A. Plotto, and K. Goodner. 2008. A sensory and chemical analysis of fresh strawberries over harvest dates and seasons reveals factors that affect eating quality. J. Am. Soc. Hort. Sci. 133: 859-867. Kader, A. 1999. Fruit maturity, ripening, and quality relationships. Acta Hort. 434: 203-208. Kalemba, D., and A. Kunicka. 2003. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 10: 813-829. Kalt, W., C.F. Forney, A. Martin, and R.L. Prior. 1999. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J. Agric. Food Chem. 47: 4638-4644. Kalt, W., R. Prange, and P. Lidster. 1993. Postharvest color development of strawberries: influence of maturity, temperature and light. Can. J. Plant Sci. 73: 541-548. Karabulut, O., H. Tezcan, A. Daus, L. Cohen, B. Wiess, and S. Droby. 2004. Control of preharvest and postharvest fruit rot in strawberry by Metschnikowia fructicola. Biocontrol Sci. Technol. 14: 513-521. Ke, D., L. Goldstein, M. O'Mahony, and A.A. Kader. 1991. Effects of short‐term exposure to low O2 and high CO2 atmospheres on quality attributes of strawberries. J. Food Sci. 56: 50-54. Kelly, K., V.M. Whitaker, and M.C. do Nascimento Nunes. 2016. Physicochemical characterization and postharvest performance of the new Sensation®'Florida127'strawberry compared to commercial standards. Sci. Hort. 211: 283-294. Klein, J.D., and S. Lurie. 1991. Postharvest heat treatment and fruit quality. Postharvest News Inform. 2: 15-19. Kore, V. T., S. S. Tawade, and J. Kabir. 2016. Application of edible coatings on fruits and vegetables. Imperial J. Interdisciplinary Res. 3: 591-603. Kovach, J., R. Petzoldt, and G.E. Harman. 2000. Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to strawberries for Botrytis control. Biol. Control 18: 235-242. Koyuncu, M. 2004. Quality changes of three strawberry cultivars during the cold storage. Eur. J. Hort. Sci. 69: 193-200. Kunihisa, M., N. Fukino, and S. Matsumoto. 2005. CAPS markers improved by cluster-specific amplification for identification of octoploid strawberry (Fragaria × ananassa Duch.) cultivars, and their disomic inheritance. Theor. Appl. Genet. 110: 1410-1418. Lara, I., P. Garcıa, and M. Vendrell. 2004. Modifications in cell wall composition after cold storage of calcium-treated strawberry (Fragaria × ananassa Duch.) fruit. Postharvest Biol. Technol. 34: 331-339. Lewers, K.S., Y. Luo, and B.T. Vinyard. 2012. Evaluating strawberry breeding selections for postharvest fruit decay. Euphytica 186: 539-555. Li, C., and A.A. Kader. 1989. Residual effects of controlled atmospheres on postharvest physiology and quality. J. Am. Soc. Hort. Sci. 114: 629-634. Liu, J., Y. Sui, M. Wisniewski, S. Droby, and Y. Liu. 2013. Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int. J. Food Microbiol. 167: 153-160. Lurie, S. 1998. Postharvest heat treatments. Postharvest Biol. Technol. 14: 257-269. Lurie, S., and J.D. Klein. 1990. Heat treatment of ripening apples: differential effects on physiology and biochemistry. Physiol. Plant. 78: 181-186. Macarisin, D., S. Droby, G. Bauchan, and M. Wisniewski. 2010. Superoxide anion and hydrogen peroxide in the yeast antagonist–fruit interaction: a new role for reactive oxygen species in postharvest biocontrol? Postharvest Biol. Technol. 58: 194-202. Maftoonazad, N., H.S. Ramaswamy, and M. Marcotte. 2008. Shelf‐life extension of peaches through sodium alginate and methyl cellulose edible coatings. Int. J. Food Sci. Tech. 43: 951-957. Manning, K. 1993. Soft fruit. Biochemistry of fruit ripening. Springer. p. 347-377. Maqbool, M., A. Ali, P.G. Alderson, N. Zahid, and Y. Siddiqui. 2011. Effect of a novel edible composite coating based on gum arabic and chitosan on biochemical and physiological responses of banana fruits during cold storage. J. Agric. Food Chem. 59: 5474-5482. Matsumoto, K., Y.S. Hwang, C.H. Lee, and D.J. Huber. 2010. Changes in firmness and pectic polysaccharide solubility in three cultivars of strawberry fruit following short-term exposure to high PCO2. J. Food Qual. 33: 312-328. Mekbib, S.B., T.J. Regnier, and L. Korsten. 2011. Efficacy and mode of action of yeast antagonists for control of Penicillium digitatum in oranges. Trop. Plant Pathol. 36: 233-240. Mertely, J., S. MacKenzie, and D. Legard. 2002. Timing of fungicide applications for Botrytis cinerea based on development stage of strawberry flowers and fruit. Plant Dis. 86: 1019-1024. Mokkila, M., K. Randell, J. Sariola, M. Hägg, and U. Häkkinen. 1996. Improvement of the postharvest quality of strawberries. Acta Hort. 439: 553-558. Montero, T.M., E.M. Mollá, R.M. Esteban, and F.J. López-Andréu. 1996. Quality attributes of strawberry during ripening. Sci. Hort. 65: 239-250. Musto, M., and M. Satriano. 2010. Fruit responses to postharvest heat treatment time: characterisation of heat-treated strawberry (Fragaria × ananassa) cv. 'Candonga' fruits. Agron. Res. 8: 815-826. Nogata, Y., H. Ohta, and A. Voragen. 1993. Polygalacturonase in strawberry fruit. Phytochemistry 34: 617-620. Nunes, M., J. Brecht, A. Morais, and S. Sargent. 1995. Physical and chemical quality characteristics of strawberries after storage are reduced by a short delay to cooling. Postharvest Biol. Technol. 6: 17-28. Nunes, M., and A. Delgado. 2012. Quality of organic compared to conventionally grown strawberries at the retail level. Acta Hort. 1049: 723-730. Nunes, M., A. Morais, J. Brecht, and S. Sargent. 2002. Fruit maturity and storage temperature influence response of strawberries to controlled atmospheres. J. Am. Soc. Hort. Sci. 127: 836-842. Nunes, M., A. Morais, J. Brecht, S. Sargent, J. Bartz, R. Allen, J. Lee, D. Pires, and J. Pittet-Moore. 2012. Occurrence of gray mold in stored strawberries as affected by ripeness, temperature, and atmosphere. Annu. Meet. Fla. State Hort. Soc. 125: 287-294. Nunes, M.C., and do Nascimento. 2015. Correlations between subjective quality and physicochemical attributes of fresh fruits and vegetables. Postharvest Biol. Technol. 107: 43-54. Nunes, M.C.N., J.K. Brecht, A.M.M.B. Morais, and S.A. Sargent. 2006. Physicochemical changes during strawberry development in the field compared with those that occur in harvested fruit during storage. J. Sci. Food Agric. 86: 180-190. Olias, J.M., C. Sanz, and A.G. Perez. 2000. Postharvest handling of strawberries for fresh market. Crop Management and Postharvest Handling of Horticultural Products. Qual. Manage. 1: 364. Olivas, G., and G. Barbosa-Cánovas. 2005. Edible coatings for fresh-cut fruits. Crit. Rev. Food Sci. Nutr. 45: 657-670. Paull, R.E., and N.J. Chen. 2000. Heat treatment and fruit ripening. Postharvest Biol. Technol. 21: 21-37. Perdones, A., L. Sánchez-González, A. Chiralt, and M. Vargas. 2012. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 70: 32-41. Pérez-Gago, M., G. Aguilar, and G. Olivas. 2010. Edible coatings for fruits and vegetables. Stewart Postharvest Rev. 6: 1-14. Perkins‐Veazie, P. 2010. Growth and ripening of strawberry fruit. Hort. Rev. 17: 267-297. Perkins-Veazie, P., J. Pattison, G. Fernandez, and G. Ma. 2016. Fruit quality and composition of two advanced North Carolina strawberry selections. Int. J. Fruit Sci. 16: 220-227. Pierce, M., and C. Walker. 1987. Addition of sucrose fatty acid ester emulsifiers to sponge cakes. Cereal Chem. 64: 222-225. Piljac-Zegarac, J., and D. Samec. 2011. Antioxidant stability of small fruits in postharvest storage at room and refrigerator temperatures. Food Res. Int. 44: 345-350. Pineli, L. d. O., C.L. Moretti, M.S. dos Santos, A.B. Campos, A.V. Brasileiro, A.C. Córdova, and M. D. Chiarello. 2011. Antioxidants and other chemical and physical characteristics of two strawberry cultivars at different ripeness stages. J. Food Compost. Anal. 24: 11-16. Ponce, A.G., S.I. Roura, C.E. del Valle, and M.R. Moreira. 2008. Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: in vitro and in vivo studies. Postharvest Biol. Technol. 49: 294-300. Romanazzi, G., E. Feliziani, M. Santini, and L. Landi. 2013. Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biol. Technol. 75: 24-27. Romanazzi, G., F. Nigro, A. Ippolito, and M. Salerno. 2001. Effect of short hypobaric treatments on postharvest rots of sweet cherries, strawberries and table grapes. Postharvest Biol. Technol. 22: 1-6. Sacks, E.J., and V.S. Douglas. 1993. Color change in fresh strawberry fruit of seven genotypes stored at 0℃. HortScience 28: 209-210. Schoonbeek, H., G. Del Sorbo, and M. De Waard. 2001. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol. Plant Microbe. Interact. 14: 562-571. Schwieterman, M.L., T.A. Colquhoun, E.A. Jaworski, L.M. Bartoshuk, J.L. Gilbert, D.M. Tieman, A. Z. Odabasi, H. R. Moskowitz, K. M. Folta, H. J. Klee, C. A. Sims, V. M. Whitaker, and D. G. Clark. 2014. Strawberry flavor: diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLoS One 9: e88446. Sellamuthu, P., D. Sivakumar, P. Soundy, and L. Korsten. 2013. Enhancing the defence related and antioxidant enzymes activities in avocado cultivars with essential oil vapours. Postharvest Biol. Technol. 81: 66-72. Shafiee, M., T. Taghavi, and M. Babalar. 2010. Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Sci. Hort. 124: 40-45. Shao, X., H. Wang, F. Xu, and S. Cheng. 2013. Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biol. Technol. 77: 94-101. Siriphanich, J. 1998. High CO2 atmosphere enhances fruit firmness during storage (quality and its evaluation of horticultural products, for further development of horticulture in East Asia). J. JPN Soc. Hort. Sci. 67: 1167-1170. Sivakumar, D., and S. Bautista-Baños. 2014. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protect. 64: 27-37. Smilanick, J. 1994. Strategies for the isolation and testing of biocontrol agents, Biological control of postharvest diseases—theory and practice. CRC Press Inc. p: 25-42. Smith, R., and L. Skog. 1992. Postharvest carbon dioxide treatment enhances firmness of several cultivars of strawberry. HortScience 27: 420-421. Souleyre, E.J., P.P. Iannetta, H.A. Ross, R.D. Hancock, L.V. Shepherd, R. Viola, M. A. Taylor, and H. V. Davies. 2004. Starch metabolism in developing strawberry (Fragaria × ananassa) fruits. Physiol. Plant. 121: 369-376. Sturm, K., D. Koron, and F. Stampar. 2003. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem. 83: 417-422. Suutarinen, J., K. Honkapää, R.L. Heiniö, K. Autio, A. Mustranta, S. Karppinen, T. Klutamo, H. Llukkonen-Lllja, and M. Mokkila. 2002. Effects of calcium chloride‐based prefreezing treatments on the quality factors of strawberry jams. J. Food Sci. 67: 884-894. Tharanathan, R.N., and F.S. Kittur. 2003. Chitin—the undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr. 43: 61-87. Tulipani, S., G. Marzban, A. Herndl, M. Laimer, B. Mezzetti, and M. Battino. 2011. Influence of environmental and genetic factors on health-related compounds in strawberry. Food Chem. 124: 906-913. Tzoumaki, M.V., C.G. Biliaderis, and M. Vasilakakis. 2009. Impact of edible coatings and packaging on quality of white asparagus (Asparagus officinalis, L.) during cold storage. Food Chem. 117: 55-63. Van De Velde, F., A.M. Tarola, D. Güemes, and M.E. Pirovani. 2013. Bioactive compounds and antioxidant capacity of Camarosa and Selva strawberries (Fragaria x ananassa Duch.). Foods 2: 120-131. Velickova, E., E. Winkelhausen, S. Kuzmanova, V.D. Alves, and M. Moldão-Martins. 2013. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food Sci. Technol. 52: 80-92. Verdini, R., S. Zorrilla, and A. Rubiolo. 2008. Calcium uptake during immersion of strawberries in CaCl2 solutions. J. Food Sci. 73: C533-C539. Vicente, A.R., M.L. Costa, G.A. Martínez, A.R. Chaves, and P.M. Civello. 2005. Effect of heat treatments on cell wall degradation and softening in strawberry fruit. Postharvest Biol. Technol. 38: 213-222. Vicente, A.R., G.A. Martı́nez, A.R. Chaves, and P.M. Civello. 2003. Influence of self-produced CO2 on postharvest life of heat-treated strawberries. Postharvest Biol. Technol. 27: 265-275. Vicente, A.R., G.A. Martı́nez, P.M. Civello, and A.R. Chaves. 2002. Quality of heat-treated strawberry fruit during refrigerated storage. Postharvest Biol. Technol. 25: 59-71. Vicente, A.R., G.A. Martínez, A.R. Chaves, and P.M. Civello. 2006. Effect of heat treatment on strawberry fruit damage and oxidative metabolism during storage. Postharvest Biol. Technol. 40: 116-122. Vicente, A.R., M. Saladie, J.K. Rose, and J.M. Labavitch. 2007. The linkage between cell wall metabolism and fruit softening: looking to the future. J. Sci. Food Agric. 87: 1435-1448. Vu, K., R. Hollingsworth, E. Leroux, S. Salmieri, and M. Lacroix. 2011. Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Res. Int. 44: 198-203. Watkins, C.B., J.E. Manzano‐Mendez, J.F. Nock, J. Zhang, and K.E. Maloney. 1999. Cultivar variation in response of strawberry fruit to high carbon dioxide treatments. J. Sci. Food Agric. 79: 886-890. Wells, J.M., and M. Uota. 1970. Germination and growth of five fungi in low-oxygen and high-carbon dioxide atmospheres. Phytopathology 60: 50-53. Wills, R., V. Ku, and Y. Leshem. 2000. Fumigation with nitric oxide to extend the postharvest life of strawberries. Postharvest Biol. Technol. 18: 75-79. Xu, B., H. Zhang, K. Chen, Q. Xu, Y. Yao, and H. Gao. 2013. Biocontrol of postharvest Rhizopus decay of peaches with Pichia caribbica. Curr. Microbiol. 67: 255-261. Yang, F.M., H.M. Li, F. Li, Z.H. Xin, L.Y. Zhao, Y.H. Zheng, and Q. H. Hu. 2010. Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4°C. J. Food Sci. 75: C236-C240. Yu, T., C. Yu, H. Lu, M. Zunun, F. Chen, T. Zhou, K. Sheng, and X. Zheng. 2012. Effect of Cryptococcus laurentii and calcium chloride on control of Penicillium expansum and Botrytis cinerea infections in pear fruit. Biol. Control 61: 169-175. Zhang, H., L. Wang, Y. Dong, S. Jiang, J. Cao, and R. Meng. 2007a. Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biol. Control. 40: 287-292. Zhang, H., X. Zheng, L. Wang, S. Li, and R. Liu. 2007b. Effect of yeast antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries. J. Food Eng. 78: 281-287. Zhou, R., Y. Li, L. Yan, and J. Xie. 2011. Effect of edible coatings on enzymes, cell-membrane integrity, and cell-wall constituents in relation to brittleness and firmness of Huanghua pears (Pyrus pyrifolia Nakai, cv. Huanghua) during storage. Food Chem. 124: 569-575.
摘要: '桃園1號'為臺灣草莓產業的主流品種。不同成熟度的桃園1號果實其果實重量、貯藏品質顯著不同。低成熟度的果實4℃下貯藏壽命較長,但果實重量與糖度較低。轉色程度40%的果實雖然貯藏壽命最久,但果實重量與品質較100%轉色的果實顯著較低。若以提早採收方式延長果實貯藏壽命,考量果實重量與品質,60%轉色至80%轉色時採收較佳,其果實重量比起100%轉色的果實減少8%至17%,但可延長貯藏壽命27%至79%。 對於完全轉色果實的採後處理,以食品添加劑—脂肪酸蔗糖酯進行覆膜處理的最適濃度為0.5%,該濃度處理過的果實,有最低的失重率、腐敗率與較長的貯藏壽命。處理後的果實具有顯著較高的果實硬度,也較能維持果實的紅色程度。處理後的果實因表面氣體通透性改變,果實內部二氧化碳濃度顯著較高。 桃園1號等10個草莓種原之調查結果顯示,葉片鈣含量、果實鈣含量無法作為貯藏壽命的指標。經由種原貯藏特性調查可知,種原E0在整體貯藏期中,表現出顯著較低的失重率、腐敗指數,與較長的貯藏壽命,但其在果實表面顏色、硬度、糖度、糖酸比與桃園1號呈現顯著差異,與產業熟悉的果實品質不同,無法直接利用,因此本試驗以果實品質近似桃園1號且具更久的貯藏壽命為育種目標,以桃園1號為親本選育新品種。經流式細胞儀檢測得知,桃園1號與種原E0之染色體分別為八倍體與六倍體,因此雜交時須以桃園1號為母本,E0為父本,才得以產生後代種子。桃園1號與E0雜交後,經過篩選得到E03、E05兩個後代品系,貯藏壽命分別為9.9與10.9日,顯著多於桃園1號7.8日的27%與39%。兩後代品系的果實顏色比親本E0更接近桃園1號。E03在果實重量、果實硬度、糖度、酸度顯著低於桃園1號。E05在果實長、果實寬、果實重量、果實硬度、糖度、酸度、糖酸比與桃園1號沒有顯著差異。因此,本試驗育成之E05品系具有與桃園1號相近的果實品質,卻有比桃園1號更久的貯藏壽命,是為可供產業應用之潛力新品種。
'Taoyuan No. 1' is the major strawberry variety in Taiwan. The maturity stage of fruit at harvest in 'Taoyuan No. 1' is closely related to fruit weight and quality during storage. The fruits picked at earlier maturity stage had longer storage life and higher fruit firmness that are beneficial for later transportation. However, the fruit weight and total soluble solids decreased. Fruits picked at 40%-turn-red stage had the longest storage life, however, fruit weight and quality were significantly lower than those picked at 100%-turn-redstage. Results from this study suggested that 60% to 80%-turn-red stage are the better harvesting stages to prolong the storage life when fruit weight and quality are major concerns. The fruit weight at 60% to 80%-turn-red stage decreased 8% to 17% compared with that at 100%-turn-red stage, and the storage life increased 27% to 79%, respectively. To lengthen storage life and reduce fruit decay of full-red strawberry fruits, edible fruit coating with 0.5% sucrose fatty acid ester, a kind of food additives, was found to be most suitable for the strawberry Taoyuan No. 1 in terms of weight loss, decay index and storage life. The strawberry fruit treated with the coating had higher fruit firmness, and the red color may be maintained. After storage, the CO2 concentration inside the coated fruit was significantly higher than that of the control fruit. In order to find out the potencial cultivar with longer storage life, the storage characteristics of 10 strawberry genotypes were investigated. Our results indicated that calcium content in leave or fruits may not be used as the indicator for storage life. The genotype 'E0' showed significantly lower weight loss and decay index with the longest storage life, however, its fruit surface color, firmness, total soluble solids, sugar/acid ratio were significantly different from Taoyuan No. 1. The fruit quality of E0 did not match commercial standards, and thus E0 may not replace Taoyuan No. 1 directly. Therefore, the breeding program was conducted to improve the Taoyuan No. 1. Results from cytoflow ploidy analysis indicated that Taoyuan No. 1 and E0 belong to octoploid and hexaploid, respectively, and Taoyuan No. 1 should be used as the female parent and E0 as the male parent for a successful crossing. Two offspring lines, 'E03' and 'E05', were selected from the cross between Taoyuan No. 1 and E0. The storage life of E03 and E05 were 9.9 and 10.9 days, 27% and 39% longer than Taoyuan No. 1 (7.8 days), respectively. The fruit surface color of both lines were closer to Taoyuan No. 1 than that of E0. E03 had lower fruit weight, firmness, total soluble solids, titratable acid as compared to Taoyuan No. 1. E05 had no significant difference with Taoyuan No. 1 in terms of fruit size, weight, firmness, total soluble solids, titratable acid, and sugar/acid ratio. Results from fruit quality evaluation revealed that E05 may be considered as a new the potencial cultivar with similar fruit quality of Taoyuan No. 1 but longer storage life to be promoted to the production area.
URI: http://hdl.handle.net/11455/98191
文章公開時間: 2018-08-22
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.