Please use this identifier to cite or link to this item:
標題: 以兩相動力學模擬分析電弧爐在不同再利用法之配方比例下探討煉鋼之脫磷效益
Using two-phase dynamics simulation for the Electric Arc Furnace of steel-making process:Dephosphorization formation with different recycling slag ingredient formulation
作者: 林政德
Cheng-Te Lin
關鍵字: 電弧爐
ANSYS Fluent
two-phase dynamics
ANSYS Fluent
引用: [1] X. Song, Z. Yuan, J. Jia, D. Wang, P. Li, and Z. Deng, 'Effect of Phosphorus Grain Boundaries Segregation and Precipitations on Mechanical Properties for Ti-IF Steel after Recrystallization Annealing,' Journal of Materials Science & Technology, vol. 26, no.9, pp. 793-797, 2010. [2] 張祖恩,煉鋼爐石資源化利用與展望,中國礦冶工程學會年會,2017年。 [3] I.H. Jung, 'Overview of the applications of thermodynamic databases to steelmaking processes,' Calphad, vol. 34, no. 3, pp. 332-362, 2010. [4] H.M. Cobb, Dictionary of Metals, Appendix I: Metals History Timeline, ASM International, Materials Park, OH, pp. 304, 2012. [5] 呂錫民,鋼鐵冶煉技術發展綜論,中國鑛冶工程學會會刊,第240期,第36-46頁,2017年。 [6] H.B. Lüngen, M. Peters, P. Schmöle, 'Measures to increase efficiency and to reduce CO2 emissions in iron and steelmaking in Germany and Europe,' AISTech 2012 Proceedings, 109-119. [7] 謝宏志、林村禾、汪啟榮、周文賢,第一煉鋼極低磷鋼種煉製製程開發,礦冶季刊,第五十三卷,第一期,2009年。 [8] L. C. Oertel and A. C. e Silva, 'Application of Thermodynamic Modeling to Slag-Metal Equilibrian in Steelmaking,'Calphad, Vol. 23,No. 3-4, pp. 379-391, 1999. [9] 李廣田、陳敏、杜成武編著,鋼鐵冶金輔助材料-精煉渣、覆蓋劑、保護渣,化學工業出版社,第63-66頁,2009年。 [10] S. Basu, A. K. Lahiri, and S.Seetharaman, 'Phosphorus Partition Between Liquid Steel and CaO-SiO2-P2O5-MgO Slag Containing Low FeO,' Metallurgical and Materials Transactions B, Vol. 38, No.1, pp. 355-366, 2007. [11] N. Yoshie, K. Naoki, I. Maki, N. Seiji, and K. Yasuo, 'Development of slag recycling process in hot metal desulfurization with mechanical stirring,' Steel Research International, Vol. 80, No. 10,pp. 727-732, 2009. [12] M. Francesco, M. Carlo and G. Marta, 'Recycling of ladle slag in the EAF: A way to improve environmental conditions andreduce variable costs in steel plants,' Iron and Steel Technology, Vol. 4, No.2, pp. 68-76, 2007. [13] S. Shiomi, Y. Muraki, and N. Sano, 'Hot Metal Treatment by Using LD Slags,' ISIJ international, vol. 11, pp. 1504-1509, 1985. [14] 林啟明、陳志宏、李佳峻、張顧齡、吳威德,精煉爐渣活化再利用於煉鋼脫磷與脫硫之研究,中國礦冶工程學會會刊,第229期,第101-110頁,2015年。 [15] 吳洲呈,動力學分析探討先進再利用方法於煉鋼脫磷之效益,中興大學精密工程所碩士論文,2015年。 [16] J. Szekely, 'FLUID FLOW PHENOMENA IN METALS PROCESSING,' 1979. [17] 計算流體動力學分析—CFD軟件原理與應用,清華大學出版社,第121-122頁,2004年。 [18] 李寶寬、赫冀成編著,煉鋼中的計算流體力學,冶金工業出版社,第21頁,1998年。 [19] R. H. Nichols, C. C Nelson, 'Wall Function Boundary Conditions Including Heat Transfer and Compressibility for Transport Turbulence Models,' 2004. [20] D. B. Spalding, 'A Single Formula for the 'Law of the Wall,' Journal of Applied Mechanics, vol. 28, no. 3, pp. 455-458, 1961. [21] M. Wolfshtein, 'The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient,' International Journal of Heat and Mass Transfer, vol. 12,pp.301-318,1969. [22] Charles E. Baukal, Jr., Vladimir Gershtein, Xianming Jimmy Li.' Computational Fluid Dynamics in Industrial Combustion,' CRC Press, pp. 67 , 2000, ISBN 9780849320002. [23] 經濟部工業局,電弧爐煉鋼業污染防治技術,1994年。 [24] [25] [26] O. J. P. Gonzalez, M. A. Ramirez-Argaez, and A. N. Conejo, 'Effect of Arc Length on Fluid Flow and Mixing Phenomena in AC Electric Arc Furnaces,' ISIJ international, vol. 50, no. 1, pp. 1-8, 2010. [27] ANSYS, [28] 虎門科技股份有限公司,
摘要: 隨著工業技術的蓬勃發展,鋼鐵已成為各項基礎建設不可或缺的材料,對於鋼鐵品質要求也越來越嚴格。由於目前對鋼鐵清潔度和低成本需求的增加,煉鋼廠面臨節約資源與保護環境等議題。實際上在節約資源及降低渣量排放是可將精煉渣之再活化,進行多次循環使用,並搭配電弧爐快速粗煉鋼的技術,可達到減渣與碳排放目的。本文研究電弧爐再利用精煉渣六組脫磷劑配方進行模擬分析,研究精煉渣在脫磷期間磷含量的影響,並可將50%精煉渣再利用,在粗煉20 min後,具有60%以上脫磷效率。 本文則利用兩相動力學模擬分析,使用不同再利用精煉渣製作之脫磷配方。建構電弧爐三維模型,進行鋼液脫磷效率模擬分析,探討再利用精煉渣的脫磷效率最佳配方,降低鋼材內的磷含量來提升品質。
Steel making industry is an indispensable processes for modern infrastructures and industrial technology. The quality requirements for steel are becoming more and more important. In addition, due to the current increase in steel purity and low cost requirements, the steel industry are face to the issues such as resource conservation and environmental protection. In fact, in terms of saving resources and reducing slag discharge, it is possible to reactivate the refining slag through the implementation of multiple recycles and the cooperation with the EAF to rapidly crude steel technology, in which it can achieve the purpose of reducing slag and carbon emissions. In this thesis, there are six sets of dephosphorization agent formulation of the EAF reuse refining slag process and all sets were studied for their performance using computer simulation to find out the best of them. In the simulation, we used two-phase dynamics simulation analysis of ANYSYS CFD software. The dephosphorization formulation that made by different used refining slag formulations were compared with the actual experimental processes. The study build 3D models of the EAF to implement steel liquid dephosphorization processes and studying to find the best formulation of dephosphorization efficiency when using refining slag. The results of the study proof the effect of refining slag on phosphorus content during dephosphorization and show it could reuse 50% of refining slag. Accordingly, it has more than 60% efficiency on dephosphorization after 20 minutes of crude.
文章公開時間: 2021-08-10
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.