Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98463
標題: 雙金屬觸媒對水蒸汽增益甲烷乾重組之研究
Study of Steam Enhanced Dry Reforming of Methane Using Bimetallic Catalysts
作者: 楊政緯
Zheng-Wei Yang
關鍵字: 合成氣
沼氣重組
雙金屬觸媒
轉化率
產率
熱穩定性
syngas
dry reforming of biogas
bimetallic catalyst
conversion
yield
thermal stability
引用: [1] 2017年中華民國國家溫室氣體排放清冊報告,行政院環保署,2017。 [2] 中油2017永續報告書,台灣中油股份有限公司,2017。 [3] 2016年能源產業技術白皮書,經濟部能源局,2016。 [4] 105年經濟部能源局年報,經濟部能源局,2017。 [5] P. Weiland, Biogas production: current state and perspectives, Applied Microbiology and Biotechnology 2010; 85:849–860. [6] 沼氣利用技術與實例,現代養豬,2009。 [7] S. S. Itkulova, G. D. Zakumbaeva, Y. Y. Nurmakanov, A. A. Mukazhanova, and A. K. Yermaganbetova, Syngas production by bireforming of methane over Co-based alumina-supported catalysts, Catalysis Today 2014; 228:194–198. [8] D. Park, C. Lee, D. J. Moon, and T. Kim, Design, analysis, and performance evaluation of steam-CO2 reforming reactor for syngas production in GTL process, International Journal of Hydrogen Energy 2015; 40:11785–11790. [9] T. Stroud, T. J. Smith, E. Le Saché, J. L. Santos, M. A. Centeno, H. Arellano-Garcia, J. A. Odriozola, and T. R. Reina, Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts, Applied Catalysis B: Environmental 2018; 224:125–135. [10] Ş. Özkara-Aydınoğlu, and A. E. Aksoylu, CO2 reforming of methane over Pt-Ni/Al2O3 catalysts: Effects of catalyst composition, and water and oxygen addition to the feed, International Journal of Hydrogen Energy 2011; 36:2950–2959. [11] S. Ahmed, S. H. D. Lee, and M. S. Ferrandon, Catalytic steam reforming of biogas – Effects of feed composition and operating conditions, International Journal of Hydrogen Energy 2015; 40:1005–1015. [12] L. Turchetti, M. A. Murmura, G. Monteleone, A. Giaconia, A. A. Lemonidou, S. D. Angeli, V. Palma, C. Ruocco, and M. C. Annesini, Kinetic assessment of Ni-based catalysts in low-temperature methane/biogas steam reforming, International Journal of Hydrogen Energy 2016; 41:16865–16877. [13] M. Li, and A. C. van Veen, Coupled reforming of methane to syngas (2H2-CO) over Mg-Al oxide supported Ni catalyst, Applied Catalysis A: General 2018; 550:176–183. [14] N. Kumar, A. Roy, Z. Wang, E. M. L'Abbate, D. Haynes, D. Shekhawat, and J. J. Spivey, Bi-reforming of methane on Ni-based pyrochlore catalyst, Applied Catalysis A: General 2016; 517:211–216. [15] F. A. J. Al-Doghachi, A. Islam, Z. Zainal, M. I. Saiman, Z. Embong, and Y. H. Taufiq-Yap, High coke-resistance Pt/Mg1-xNixO catalyst for dry reforming of methane, PLOS ONE 2016; 11:e0145862. [16] T. J. Siang, T. L. M. Pham, N. V. Cuong, P. T. T. Phuong, N. H. H. Phuc, Q. D. Truong, and D.-V. N. Vo, Combined steam and CO2 reforming of methane for syngas production over carbon-resistant boron-promoted Ni/SBA-15 catalysts, Microporous and Mesoporous Materials 2018; 262:122–132. [17] Y. Khani, Z. Shariatinia, and F. Bahadoran, High catalytic activity and stability of ZnLaAlO4 supported Ni, Pt and Ru nanocatalysts applied in the dry, steam and combined dry-steam reforming of methane, Chemical Engineering Journal 2016; 299:353–366. [18] K. Y. Koo, H.-S. Roh, U. H. Jung, and W. L. Yoon, Combined H2O and CO2 reforming of CH4 over Ce-promoted Ni/Al2O3 catalyst for gas to liquid (GTL) process: Enhancement of Ni–CeO2 interaction, Catalysis Today 2012; 185:126–130. [19] K. Y. Koo, S.-h. Lee, U. H. Jung, H.-S. Roh, and W. L. Yoon, Syngas production via combined steam and carbon dioxide reforming of methane over Ni–Ce/MgAl2O4 catalysts with enhanced coke resistance, Fuel Processing Technology 2014; 119: 151–157. [20] S.-K. Ryi, S.-W. Lee, J.-W. Park, D.-K. Oh, J.-S. Park, and S. S. Kim, Combined steam and CO2 reforming of methane using catalytic nickel membrane for gas to liquid (GTL) process, Catalysis Today 2014; 236:49–56. [21] W.J. Jang, D.W. Jeong, J.O. Shim, H.-M. Kim, H.-S. Roh, I. H. Son, and S. J. Lee, Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application, Applied Energy 2016; 173:80–91. [22] N. Kumar, M. Shojaee, and J. J. Spivey, Catalytic bi-reforming of methane: from greenhouse gases to syngas, Current Opinion in Chemical Engineering 2015; 9:8–15. [23] A. M. Efstathiou, A. Kladi, V. A. Tsipouriari, and X. E. Verykios, Reforming of methane with carbon dioxide to synthesis gas over supported Rhodium catalysts: II. A steady-state tracing analysis: Mechanistic aspects of the carbon and oxygen reaction pathways to form CO, Journal of Catalysis 1996; 158:64–75. [24] Z. Xie, Q. Liao, M. Liu, Z. Yang, and L. Zhang, Micro-kinetic modeling study of dry reforming of methane over the Ni-based catalyst, Energy Conversion and Management 2017; 153:526–537. [25] 郭佳勳,鉑金觸媒催化二氧化碳/甲烷重組反應之研究,國立中山大學化學系碩士論文,2012。 [26] 方建閔,超高溫水氣轉換反應之實驗探討,國立中興大學機械工程學系碩士論文,2015。 [27] 張士賢,觸媒對水煤氣轉化合成氣製備氫氣之探討,國立中興大學機械工程學系碩士論文,2016。 [28] 王誌謙,觸媒對二氧化碳甲烷化之影響,國立中興大學機械工程學系碩士論文,2017。 [29] S. Lu, Y. Liu, and Y. Wang, Meso–macro-porous monolithic Pt–Ni/Al2O3 catalysts used for miniaturizing preferential carbon monoxide oxidation reactor, Chemical Communications 2010; 46:634–636. [30] M. K. Nikoo, and N. A. S. Amin, Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation, Fuel Processing Technology 2011; 92:678–691. [31] B. Pawelec, S. Damyanova, K. Arishtirova, J. L. G. Fierro, and L. Petrov, Structural and surface features of PtNi catalysts for reforming of methane with CO2, Applied Catalysis A: General 2007; 323:188–201. [32] V. Chiodo, S. Maisano, G. Zafarana, and F. Urbani, Effect of pollutants on biogas steam reforming, International Journal of Hydrogen Energy 2017; 42:1622–1628. [33] D. Li, Y. Nakagawa, and K. Tomishige, Methane reforming to synthesis gas over Ni catalysts modified with noble metals, Applied Catalysis A: General 2011; 408:1–24.
摘要: 本研究以甲烷乾重組反應為基礎,探討反應溫度 (600~800℃)、進料CH4/CO2比 (1/0.25~1/1) 以及添加水蒸汽對沼氣重組產製合成氣的影響。採用含浸法製備Ni/Al2O3、Pt/Al2O3和Pt-Ni/Al2O3觸媒,並以氮氣物理吸附 (BET)、氫氣程序升溫還原 (H2-TPR) 與X-ray繞射試驗 (XRD) 分析觸媒表徵。由於甲烷乾重組為吸熱反應,因此提升反應溫度可獲得較高CH4和CO2轉化率以及H2和CO產率。實驗結果顯示,3wt%Pt-10wt%Ni/Al2O3雙金屬觸媒表現出較佳的觸媒性能。當進料中含有較多的CO2時,會獲得較高的CH4轉化率和H2產率,但CO2轉化率和CO產率會較低。在進料中添加水蒸汽後,由於甲烷蒸汽重組反應的影響,可獲得較高的CH4轉化率、H2產率以及高於1的H2/CO比。而受到水煤氣轉化反應的影響,會獲得較低的CO2轉化率,甚至出現負值。從穩定性測試發現,Pt-Ni/Al2O3雙金屬觸媒比Ni/Al2O3單金屬觸媒具有更好的熱穩定性。
In this study, syngas production from catalytic dry reforming of biogas was experimentally studied. The Ni/Al2O3, Pt/Al2O3, and Pt-Ni/Al2O3 were used as the catalysts, prepared by wet impregnation method, and characterized by N2 physisorption (BET), hydrogen temperature programmed reduction (H2-TPR), and X-ray diffraction (XRD). A continuous flow tubular reactor was built to perform the catalytic reaction tests, and the following reaction variables were analyzed: reaction temperature (600~800°C) and CH4/CO2 ratio (1/0.25~1/1). Due to endothermic reaction, increasing the reaction temperature led to higher conversions of CH4 and CO2 and yields of H2 and CO. From the measured results, it was found that the bimetallic 3wt%Pt-10wt% Ni/Al2O3 catalyst has the best performance among the catalysts prepared. It was also found that CH4 conversion and H2 yield can be enhanced when biogas contained more CO2. However, CO2 conversion and CO yield decreased. With the addition of steam in the reaction, it was found that CH4 conversion and H2 yield can be enhanced due to the dominance of steam reforming of methane. The H2/CO ratio higher than one can be obtained. However, low or even negative CO2 conversion was resulted due to the enhancement of water-gas shift reaction. From stability test, it was found that Pt-Ni/Al2O3 has better thermal stability than Ni/Al2O3 catalyst.
URI: http://hdl.handle.net/11455/98463
文章公開時間: 2021-08-28
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.