Please use this identifier to cite or link to this item:
標題: 以花粉過敏原刺激單一嗜鹼性細胞之阻抗量測
Impedance Measurements of Single Basophils Stimulated by Pollen Allergen
作者: 陳繼禾
Chi-Ho Chen
關鍵字: 微流道
Single basophils
Passive transfer
Pollen allergy
引用: Arquint, O., Helbling, A., Crameri, R., Ferreira, F., Breitenbach, M. and Pichler, W. J. (1999). Reduced in vivo allergenicity of Bet v 1d isoform, a natural component of birch pollen. Journal of Allergy and Clinical Immunology, 104(6), 1239-1243. Benavente-Babace, A., Gallego-Pérez, D., Hansford, D. J., Arana, S., Pérez-Lorenzo, E. and Mujika, M. (2014). Single-cell trapping and selective treatment via co-flow within a microfluidic platform. Biosensors and Bioelectronics, 61, 298-305. Berrens, L., van Dijk, A., Houben, G., Hagemans, M. and Koers, W. (1990). Cross-reactivity among the pollen proteins of birch and apple trees. Allergie und Immunologie, 36(3), 147-156. Davenas, E., Beauvais, F., Amara, J., Oberbaum, M., Robinzon, B., Miadonnai, A., Tedeschi, A., Pomeranz, B., Fortner, P. and Belon, P. (1988). Human basophil degranulation triggered by very dilute antiserum against IgE. Nature, 333(6176), 816-818. Deng, B., Li, X., Chen, D., You, L., Wang, J. and Chen, J. (2014). Parameter screening in microfluidics based hydrodynamic single-cell trapping. The Scientific World Journal, 2014. El Hasni, A., Schmitz, C., Bui-Göbbels, K., Bräunig, P., Jahnen-Dechent, W. and Schnakenberg, U. (2017). Electrical impedance spectroscopy of single cells in hydrodynamic traps. Sensors and Actuators B: Chemical, 248, 419-429. Espulgar, W., Yamaguchi, Y., Aoki, W., Mita, D., Saito, M., Lee, J.-K. and Tamiya, E. (2015). Single cell trapping and cell–cell interaction monitoring of cardiomyocytes in a designed microfluidic chip. Sensors and Actuators B: Chemical, 207, 43-50. Hillger, J. M., Lieuw, W.-L., Heitman, L. H. and IJzerman, A. P. (2017). Label-free technology and patient cells: from early drug development to precision medicine. Drug discovery today. Hong, J.-L., Lan, K.-C. and Jang, L.-S. (2012). Electrical characteristics analysis of various cancer cells using a microfluidic device based on single-cell impedance measurement. Sensors and Actuators B: Chemical, 173, 927-934. Joulia, R., Mailhol, C., Valitutti, S., Didier, A. and Espinosa, E. (2017). Direct monitoring of basophil degranulation by using avidin-based probes. Journal of Allergy and Clinical Immunology, 140(4), 1159-1162. e1156. Kang, G., Yoo, S. K., Kim, H.-I. and Lee, J.-H. (2012). Differentiation between normal and cancerous cells at the single cell level using 3-D electrode electrical impedance spectroscopy. IEEE Sensors Journal, 12(5), 1084-1089. Lai, S.-Y., Tsai, S.-L., Wang, M.-H., Chen, M.-K. and Jang, L.-S. (2012). Effect of cell position on impedance measurement in microfluidic channel with planar microelectrodes and a three-pillar structure. Japanese Journal of Applied Physics, 51(9R), 097001. Lawrence, M. G., Woodfolk, J. A., Schuyler, A. J., Stillman, L. C., Chapman, M. D. and Platts-Mills, T. A. (2017). Half-life of IgE in serum and skin: Consequences for anti-IgE therapy in patients with allergic disease. Journal of Allergy and Clinical Immunology, 139(2), 422-428. e424. Lu, C. S., Hung, A., Lin, C. J., Chen, J. B., Chen, C., Shiung, Y. Y., Tsai, C. Y. and Chang, T. (2015). Generating allergen‐specific human IgEs for immunoassays by employing human ε gene knockin mice. Allergy, 70(4), 384-390. Mediaty, A. and Neuber, K. (2005). Total and specific serum IgE decreases with age in patients with allergic rhinitis, asthma and insect allergy but not in patients with atopic dermatitis. Immunity & Ageing, 2(1), 9. Menegatti, E., Berardi, D., Messina, M., Ferrante, I., Giachino, O., Spagnolo, B., Restagno, G., Cognolato, L. and Roccatello, D. (2013). Lab-on-a-chip: Emerging analytical platforms for immune-mediated diseases. Autoimmunity Reviews, 12(8), 814-820. Mose, A. P., Mortz, C. G., Eller, E., Sprogøe, U., Barington, T. and Bindslev-Jensen, C. (2017). Dose-time-response relationship in peanut allergy using a human model of passive cutaneous anaphylaxis. Journal of Allergy and Clinical Immunology, 139(6), 2015-2016. e2014. Nilsson, J., Evander, M., Hammarström, B. and Laurell, T. (2009). Review of cell and particle trapping in microfluidic systems. Analytica Chimica Acta, 649(2), 141-157. Ning, R., Zhuang, Q. and Lin, J.-M. (2018). Biomaterial-based microfluidics for cell culture and analysis. Cell Analysis on Microfluidics, Springer: 181-224. Ogulur, I., Kiykim, A., Baris, S., Ozen, A., Yuce, E. G. and Karakoc-Aydiner, E. (2017). Basophil activation test for inhalant allergens in pediatric patients with allergic rhinitis. International Journal of Pediatric Otorhinolaryngology, 97, 197-201. Phan, T. G., Strasser, S. I., Koorey, D., McCaughan, G. W., Rimmer, J., Dunckley, H., Goddard, L. and Adelstein, S. (2003). Passive transfer of nut allergy after liver transplantation. Archives of Internal Medicine, 163(2), 237-239. Reunala, T., Brummer-Korvenkontio, H., Räsänen, L., François, G. and Palosuo, T. (1994). Passive transfer of cutaneous mosquito-bite hypersensitivity by IgE anti-saliva antibodies. Journal of Allergy and Clinical Immunology, 94(5), 902-906. Shtessel, M. and Tversky, J. (2018). Reliability of allergy skin testing. Annals of Allergy, Asthma & Immunology, 120(1), 80-83. Valizadeh, A. and Khosroushahi, A. Y. (2015). Single-cell analysis based on lab on a chip fluidic system. Analytical Methods, 7(20), 8524-8533. Westly, E. (2010) Nothing to sneeze at, Nature Publishing Group. Zhang, R., Wei, M., Chen, S., Li, G., Zhang, F., Yang, N. and Huang, L. (2018). A cell viability assessment method based on area-normalized impedance spectrum (ANIS). Biosensors and Bioelectronics, 110, 193-200. 蔡惟亘,利用梳狀微流道分離捕捉單一顆粒之實驗研究,台中市,國立中興大學碩士論文,2013. 洪國瀚,於微流道捕捉單一細胞及阻抗量測之實驗研究,台中市,國立中興大學碩士論文,2014. 彭煥唐,應用微電極裝置進行單一嗜鹼性細胞捕捉與阻抗量測觀察,台中市,國立中興大學碩士論文,2015.
摘要: 本研究探討花粉引起的過敏反應,搭配阻抗分析儀達到無標記與非侵入式的量測結果,並藉由阻抗頻譜的變化了解過敏機制。本實驗使用黃光微影技術製作捕捉及量測單一細胞的微流道電極晶片。針對過敏反應,本實驗以單一嗜鹼性細胞經被動傳輸的方式與樺樹花粉免疫球蛋白E(IgE)結合,再以樺樹花粉過敏原刺激,使嗜鹼性細胞產生脫顆粒現象。實驗結果發現細胞捕獲前後阻抗增加約1倍,在濃度1 μg/ml的樺樹花粉刺激後阻抗下降23%,嗜鹼性細胞的外觀有逐漸膨脹的趨勢,在15分鐘內膨脹的幅度較明顯;在後續至45分鐘的反應趨於平緩,細胞直徑從原本的13.3μm增加至16.1μm;然而以濃度10 μg/ml的樺樹花粉刺激後阻抗下降24%,變化並不明顯。本實驗成功的使用液動力捕獲單一嗜鹼性細胞,並透過阻抗與相位的量測分辨細胞的捕捉及受過敏原刺激後的變化,經顯微鏡觀察到刺激後細胞的外型明顯改變。
This study investigates the allergic reaction caused by birch pollen based on impedance response as a label-free and non-invasive analysis. In the present experimental study, light lithography techniques for microelectromechanical systems (MEMS) were employed to produce the bio-chip for capturing and measuring single cells. In this study, a basophilic cell line KU812 were cultured with specific birch pollen (Betula verrucosa, Bet v 1) IgE through passive transfer as the sample cells. Then specific antigen (anti-Bet v 1 IgE) were used to stimulate the sensitized single KU812 cells that were captured in the bio-chip for investigating the degranulation phenomenon. Experimental results show that the impedance magnitude for capture of single KU812 cell increases to nearly twice compared with the one before the capturing. As the single sensitized cell was stimulated with birch pollen allergens at a concentration of 1 μg/ml, the impedance was found to decrease about 23%. Time-varying images of the stimulated single KU812 cell also shows a rapid expansion in size in about 15 min and then followed by a slower growth until 45 min, resulting in a total increase in cell diameter from 13.3 to 16.1 μm. Using a much higher birch pollen concentration of 10 μg/ml for stimulation also demonstrated a decrease in impedance by about 24%, indicating indiscernible change as compared with the lower concentration of 1 μg/ml. The bio-chip developed in the present experimental study allows one to measure and observe the allergic reaction of IgE-mediated single basophils stimulated by the specific allergens and may serve as a platform for allergy testing.
文章公開時間: 10000-01-01
Appears in Collections:機械工程學系所



Show full item record
TAIR Related Article

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.