Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98525
標題: 連續偵測心肌肌鈣蛋白I在狗的鬱血性心衰竭繼發於二尖瓣心內膜病
Serial Measurement of Cardiac Troponin I in Congestive Heart Failure Secondary to Canine Myxomatous Mitral Valve Disease
作者: 吳三裕
San-Yu Wu
關鍵字: 心肌肌鈣蛋白I
鬱血性心衰竭
二尖瓣心內膜病
cardiac troponin-I
congestive heart failure
myxomatous mitral valve disease
引用: 中文參考書目 論文 56. 薛彤. 單點與連續測量血清N端前腦利鈉激素濃度於退行性二尖瓣疾病犬隻的臨床應用.中興大學獸醫學系暨研究所學位論文 2017:1-102. English bibliography Books 43. Fox PR. Textbook of canine and feline cardiology: principles and clinical practice. Saunders; 1999. 44. Kienle R, Kittleson M, KIENLE R. Small animal cardiovascular medicine. Mosby; 1998. 50. Hall JE. Guyton and Hall textbook of medical physiology. Elsevier Health Sciences; 2015. 56. Miller M, Tilley L. International Small Animal Cardiac Health Council: Recommendations for the diagnosis of heart disease and treatment of heart failure in small animals. Manual of Canine and Feline Cardiology 2nd ed. WB Saunders, Philadelphia 1995:473-485. 66. Verlander J, Cunningham J, Klein B. Textbook of Veterinary Physiology. 2007. 97. Boon JA. Veterinary echocardiographyJohn. Wiley & Sons; 2011. Journal Articles 1. Detweiler D, Patterson D. The prevalence and types of cardiovascular disease in dogs. Ann N Y Acad Sci. 1965;127:481-516. 2. Atkins C, Bonagura J, Ettinger S, et al. Guidelines for the diagnosis and treatment of canine chronic valvular heart disease. J Vet Cardiol. 2009;23:1142-1150. 3. Borgarelli M, Buchanan JW. Historical review, epidemiology and natural history of degenerative mitral valve disease. J Vet Cardiol. 2012;14:93-101. 4. Fox PR. Pathology of myxomatous mitral valve disease in the dog. J Vet Cardiol. 2012;14:103-126. 5. Markby G, Summers K, MacRae V, et al. Myxomatous degeneration of the canine mitral valve: from gross changes to molecular events. J Comp Pathol. 2017;156:371-383. 6. Konstam MA, Kramer DG, Patel AR, et al. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Interv. 2011;4:98-108. 7. Borgarelli M, Haggstrom J. Canine degenerative myxomatous mitral valve disease: natural history, clinical presentation and therapy. Prev Vet Med. 2010;40:651-663. 8. Kvart C, Häggström J, Pedersen HD, et al. Efficacy of enalapril for prevention of congestive heart failure in dogs with myxomatous valve disease and asymptomatic mitral regurgitation. J Vet Intern Med. 2002;16:80-88. 9. Group BS. The effect of benazepril on survival times and clinical signs of dogs with congestive heart failure: Results of a multicenter, prospective, randomized, double-blinded, placebo-controlled, long-term clinical trial. J Vet Cardiol. 1999;1:7-18. 10. Kim H-T, Han S-M, Song W-J, et al. Retrospective study of degenerative mitral valve disease in small-breed dogs: survival and prognostic variables. J Vet Sci. 2017;18:369-376. 11. Borgarelli M, Crosara S, Lamb K, et al. Survival characteristics and prognostic variables of dogs with preclinical chronic degenerative mitral valve disease attributable to myxomatous degeneration. J Vet Intern Med. 2012;26:69-75. 12. Borgarelli M, Savarino P, Crosara S, et al. Survival characteristics and prognostic variables of dogs with mitral regurgitation attributable to myxomatous valve disease. J Vet Intern Med. 2008;22:120-128. 13. Reimann M, Møller J, Häggström J, et al. Mitral regurgitation severity and left ventricular systolic dimension predict survival in young cavalier king charles spaniels. J Vet Intern Med. 2017;31:1008-1016. 14. Beaumier A, Rush JE, Yang VK, et al. Clinical findings and survival time in dogs with advanced heart failure. J Vet Intern Med. 2018. 15. Hezzell M, Boswood A, Chang YM, et al. The combined prognostic potential of serum high‐sensitivity cardiac troponin I and N‐terminal pro‐B‐type natriuretic peptide concentrations in dogs with degenerative mitral valve disease. J Vet Intern Med. 2012;26:302-311. 16. Fonfara S, Loureiro J, Swift S, et al. Cardiac troponin I as a marker for severity and prognosis of cardiac disease in dogs. The Veterinary Journal 2010;184:334-339. 17. Noszczyk-Nowak A. NT-pro-BNP and troponin I as predictors of mortality in dogs with heart failure. Pol J Vet Sci. 2011;14:551. 18. Metra M, Nodari S, Parrinello G, et al. The role of plasma biomarkers in acute heart failure. Serial changes and independent prognostic value of NT‐proBNP and cardiac troponin‐T. Eur J Heart Fail. 2007;9:776-786. 19. Yasue H, Yoshimura M, Sumida H, et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90:195-203. 20. Hall C. NT-ProBNP: the mechanism behind the marker. J Card Fail. 2005;11:S81-S83. 21. Raymond I, Groenning B, Hildebrandt Py, et al. The influence of age, sex and other variables on the plasma level of N-terminal pro brain natriuretic peptide in a large sample of the general population. Heart. 2003;89:745-751. 22. Wang TJ, Larson MG, Levy D, et al. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am J Cardiol. 2002;90:254-258. 23. Langhorn R, Willesen J. Cardiac troponins in dogs and cats. Circulation. 2016;30:36-50. 24. Horwich TB, Patel J, MacLellan WR, et al. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation. 2003;108:833-838. 25. Booth J, Pinney J, Davenport A. N-terminal proBNP—marker of cardiac dysfunction, fluid overload, or malnutrition in hemodialysis patients? Clin J Am Soc Nephrol. 2010;5:1036-1040. 26. Linklater AK, Lichtenberger MK, Thamm DH, et al. Serum concentrations of cardiac troponin I and cardiac troponin T in dogs with class IV congestive heart failure due to mitral valve disease. J Vet Emerg Crit Care. 2007;17:243-249. 27. Magnussen C, Blankenberg S. Biomarkers for heart failure: small molecules with high clinical relevance. J Vet Intern Med. 2018;283:530-543. 28. Polizopoulou ZS, Koutinas CK, Dasopoulou A, et al. Serial analysis of serum cardiac troponin I changes and correlation with clinical findings in 46 dogs with mitral valve disease. Vet Clin Pathol. 2014;43:218-225. 29. Ljungvall I, Höglund K, Tidholm A, et al. Cardiac troponin I is associated with severity of myxomatous mitral valve disease, age, and C‐reactive protein in dogs. J Vet Intern Med. 2010;24:153-159. 30. Spratt D, Mellanby R, Drury N, et al. Cardiac troponin I: evaluation of a biomarker for the diagnosis of heart disease in the dog. J Small Anim Pract. 2005; 46: 139-145. 31. Oyama MA, Sisson DD. Cardiac troponin‐I concentration in dogs with cardiac disease. J Vet Intern Med.2004;18:831-839. 32. Galvani M, Ottani F, Ferrini D, et al. Prognostic influence of elevated values of cardiac troponin I in patients with unstable angina. Circulation. 1997;95:2053-2059. 33. La Vecchia L, Mezzena G, Zanolla L, et al. Cardiac troponin I as diagnostic and prognostic marker in severe heart failure. J Heart Lung Transplant. 2000;19:644-652. 34. Antman EM, Tanasijevic MJ, Thompson B, et al. Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med. 1996;335:1342-1349. 35. Stelzle D, Shah ASV, Anand A, et al. High-sensitivity cardiac troponin I and risk of heart failure in patients with suspected acute coronary syndrome: a cohort study. Eur Heart J Qual Care Clin Outcomes. 2018;4:36-42. 36. Hezzell M, Boswood A, López-Alvarez J, et al. Treatment of dogs with compensated myxomatous mitral valve disease with spironolactone—a pilot study. J Vet Cardiol. 2017;19:325-338. 37. Gohar A, Chong JP, Liew OW, et al. The prognostic value of highly sensitive cardiac troponin assays for adverse events in men and women with stable heart failure and a preserved vs. reduced ejection fraction. Eur J Heart Fail. 2017;19:1638-1647. 38. Omland T, Pfeffer MA, Solomon SD, et al. Prognostic value of cardiac troponin I measured with a highly sensitive assay in patients with stable coronary artery disease. J Am Coll Cardiol. 2013;61:1240-1249. 39. Bonaca M, Scirica B, Sabatine M, et al. Prospective evaluation of the prognostic implications of improved assay performance with a sensitive assay for cardiac troponin I. J Am Coll Cardiol. 2010;55:2118-2124. 40. Wu AH, Jaffe AS. The clinical need for high-sensitivity cardiac troponin assays for acute coronary syndromes and the role for serial testing. Am Heart J. 2008;155:208-214. 41. Peacock IV WF, De Marco T, Fonarow GC, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358:2117-2126. 42. Kawahara C, Tsutamoto T, Sakai H, et al. Prognostic value of serial measurements of highly sensitive cardiac troponin I in stable outpatients with nonischemic chronic heart failure. Am Heart J. 2011;162:639-645. 45. Swenson L, Häggström J, Kvart C, et al. Relationship between parental cardiac status in Cavalier King Charles spaniels and prevalence and severity of chronic valvular disease in offspring. J Am Vet Med Assoc. 1996;208:2009-2012. 46. Markby GR, Summers KM, MacRae VE, et al. Comparative Transcriptomic Profiling and Gene Expression for Myxomatous Mitral Valve Disease in the Dog and Human. Vet Sci. 2017;4:34. 47. Meurs K, Friedenberg S, Williams B, et al. Evaluation of genes associated with human myxomatous mitral valve disease in dogs with familial myxomatous mitral valve degeneration. Vet J. 2018;232:16-19. 48. Olsen LH, Fredholm M, Pedersen HD. Epidemiology and inheritance of mitral valve prolapse in Dachshunds. J Vet Intern Med. 1999;13:448-456. 49. Olsen L, Martinussen T, Pedersen H. Early echocardiographic predictors of myxomatous mitral valve disease in dachshunds. Vet Rec. 2003;152:293-297. 51. Kellihan HB, Stepien RL. Pulmonary hypertension in dogs: diagnosis and therapy. Vet Clin North Am Small Anim Pract. 2010;40:623-641. 52. Jung S, Sun W, Griffiths LG, et al. Atrial Fibrillation as a Prognostic Indicator in Medium to Large‐Sized Dogs with Myxomatous Mitral Valvular Degeneration and Congestive Heart Failure. J Vet Intern Med. 2016;30:51-57. 53. Kittleson MD, Eyster GE, Knowlen GG, et al. Myocardial function in small dogs with chronic mitral regurgitation and severe congestive heart failure. J Am Vet Med Assoc. 1984;184:455-459. 54. Falk T, Ljungvall I, Zois NE, et al. Cardiac troponin‐I concentration, myocardial arteriosclerosis, and fibrosis in dogs with congestive heart failure because of myxomatous mitral valve disease. J Vet Intern Med. 2013;27:500-506. 55. Ettinger S, Suter P. The recognition of cardiac disease and congestive heart failure. Ettinger SF, Duter PF Canine Cardiology Philadelphia, PA: WB Saunders 1970:5. 57. Cornell CC, Kittleson MD, Torre PD, et al. Allometric scaling of M‐mode cardiac measurements in normal adult dogs. J Vet Intern Med. 2004;18:311-321. 58. Hansson K, Häggström J, Kvart C, et al. Left atrial to aortic root indices using two‐dimensional and M‐mode echocardiography in cavalier King Charles spaniels with and without left atrial enlargement. Vet Radiol Ultrasound. 2002;43:568-575. 59. Hansson K, Häggström J, Kvart C, et al. Interobserver variability of vertebral heart size measurements in dogs with normal and enlarged hearts. Vet Radiol Ultrasound. 2005;46:122-130. 60. Winter RL, Saunders AB, Gordon SG, et al. Biologic variability of cardiac troponin I in healthy dogs and dogs with different stages of myxomatous mitral valve disease using standard and high‐sensitivity immunoassays. Vet Clin Pathol. 2017; 46: 299-307. 61. Boswood A, Häggström J, Gordon S, et al. Effect of pimobendan in dogs with preclinical myxomatous mitral valve disease and cardiomegaly: The EPIC Study—A Randomized clinical trial. J Vet Intern Med. 2016;30:1765-1779. 62. Strimbu K, Tavel JA. What are Biomarkers? Curr Opin HIV AIDS. 2010;5:463-466. 63. Group BDW, Atkinson Jr AJ, Colburn WA, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89-95. 64. Adams Jr, Bodor GS, Davila-Roman VG, et al. Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation. 1993;88:101-106. 65. Keller T, Zeller T, Peetz D, et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med. 2009;361:868-877. 67. Li MX, Wang X, Sykes BD. Structural based insights into the role of troponin in cardiac muscle pathophysiology. J Muscle Res Cell Motil. 2004;25:559-579. 68. Adams JE, Schechtman KB, Landt Y, et al. Comparable detection of acute myocardial infarction by creatine kinase MB isoenzyme and cardiac troponin I. Clin Chem. 1994;40:1291-1295. 69. MacRae AR, Kavsak PA, Lustig V, et al. Assessing the requirement for the 6-hour interval between specimens in the American Heart Association Classification of Myocardial Infarction in Epidemiology and Clinical Research Studies. Clin Chem. 2006;52:812-818. 70. Babuin L, Jaffe AS. Troponin: the biomarker of choice for the detection of cardiac injury. CMAJ. 2005;173:1191-1202. 71. O'Brien PJ. Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity. Toxicology. 2008;245:206-218. 72. Apple FS, Murakami MM, Ler R, et al. Analytical characteristics of commercial cardiac troponin I and T immunoassays in serum from rats, dogs, and monkeys with induced acute myocardial injury. Clin Chem. 2008;54:1982-1989. 73. Kociol RD, Pang PS, Gheorghiade M, et al. Troponin elevation in heart failure: prevalence, mechanisms, and clinical implications. J Am Coll Cardiol. 2010;56:1071-1078. 74. White HD. Pathobiology of troponin elevations: do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol. 2011; 57; 2406-2408. 75. Gimenez MR, Twerenbold R, Jaeger C, et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am J Med. 2015; 128: 861-870. 76. Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Glob Heart. 2012; 7: 275-95. 77. Gallegos RP, Swingen C, Xu XJ, et al. Infarct extent by MRI corelates with peak serum troponin level in the canine model12. J Surg Res. 2004;120:266-271. 78. Langhorn R, Oyama M, King L, et al. Prognostic importance of myocardial injury in critically ill dogs with systemic inflammation. J Vet Intern Med. 2013;27:895-903. 79. Hamacher L, Dörfelt R, Müller M, et al. Serum cardiac troponin I concentrations in dogs with systemic inflammatory response syndrome. J Vet Intern Med. 2015;29:164-170. 80. Burgener IA, Kovacevic A, Mauldin GN, et al. Cardiac troponins as indicators of acute myocardial damage in dogs. J Vet Intern Med. 2006;20:277-283. 81. Chun R, Kellihan HB, Henik RA, et al. Comparison of plasma cardiac troponin I concentrations among dogs with cardiac hemangiosarcoma, noncardiac hemangiosarcoma, other neoplasms, and pericardial effusion of nonhemangiosarcoma origin. J Am Vet Med Assoc. 2010;237:806-811. 82. Fox PR, Oyama MA, Reynolds C, et al. Utility of plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) to distinguish between congestive heart failure and non-cardiac causes of acute dyspnea in cats. J Vet Cardiol. 2009;11:S51-S61. 83. Januzzi Jr JL, Camargo CA, Anwaruddin S, et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol. 2005;95:948-954. 84. McCullough PA, Omland T, Maisel AS. B-type natriuretic peptides: a diagnostic breakthrough for clinicians. Rev Cardiovasc Med. 2003;4:72-80. 85. Eggers KM, Jaffe AS, Lind L, et al. Value of cardiac troponin I cutoff concentrations below the 99th percentile for clinical decision-making. J Vet Intern Med. 2009;55:85-92. 86. O'brien P, Smith D, Knechtel T, et al. Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Lab Anim.2006;40:153-171. 87. Hori Y, Iguchi M, Heishima Y, et al. Diagnostic utility of cardiac troponin I in cats with hypertrophic cardiomyopathy. J Vet Intern Med. 2018. 88. Serra M, Papakonstantinou S, Adamcova M, et al. Veterinary and toxicological applications for the detection of cardiac injury using cardiac troponin. Vet J. 2010;185:50-57. 89. Schober KE, Kirbach B, Oechtering G. Noninvasive assessment of myocardial cell injury in dogs with suspected cardiac contusion. J Vet Cardiol. 1999; 1: 17-25. 90. Kelley WE, Januzzi JL, Christenson RH. Increases of cardiac troponin in conditions other than acute coronary syndrome and heart failure. J Vet Intern Med. 2009; 55: 2098-2112. 91. Langhorn R, Thawley V, Oyama M, et al. Prediction of long‐term outcome by measurement of serum concentration of cardiac troponins in critically ill dogs with systemic inflammation. J Vet Intern Med. 2014; 28: 1492-1497. 92. Lazzeri C, Bonizzoli M, Cozzolino M, et al. Serial measurements of troponin and echocardiography in patients with moderate-to-severe acute respiratory distress syndrome. J Crit Care. 2016; 33: 132-136. 93. Porciello F, Rishniw M, Herndon W, et al. Cardiac troponin I is elevated in dogs and cats with azotaemia renal failure and in dogs with non‐cardiac systemic disease. Aust Vet J. 2008; 86: 390-394. 94. Kanderian A, Francis G. Cardiac troponins and chronic kidney disease. Kidney Int. 2006; 69: 1112-1114. 95. Ronco C, Haapio M, House AA, et al. Cardiorenal syndrome. J Am Coll Cardiol. 2008; 52:1527-1539. 96. Pouchelon J, Atkins C, Bussadori C, et al. Cardiovascular–renal axis disorders in the domestic dog and cat: a veterinary consensus statement. J Small Anim Pract. 2015; 56: 537-552. 98. Freeman A, Levine SA. The clinical significance of the systolic murmur: a study of 1000 consecutive non-cardiac cases. Ann Intern Med. 1933;6:1371-1385. 99. López‐Alvarez J, Elliott J, Pfeiffer D, et al. Clinical severity score system in dogs with degenerative mitral valve disease. J Vet Intern Med. 2015;29:575-581. 100. Peddle GD, Singletary GE, Reynolds CA, et al. Effect of torsemide and furosemide on clinical, laboratory, radiographic and quality of life variables in dogs with heart failure secondary to mitral valve disease. J J Vet Cardiol.y 2012;14:253-259. 101. Jepsen‐Grant K, Pollard R, Johnson L. Vertebral heart scores in eight dog breeds. Vet Radiol Ultrasound. 2013;54:3-8. 102. Packer M, O'Connor CM, Ghali JK, et al. Effect of amlodipine on morbidity and mortality in severe chronic heart failure. N Engl J Med. 1996; 335: 1107-1114. 103. Missov E, Calzolari C, Pau B. Circulating cardiac troponin I in severe congestive heart failure. Circulation. 1997; 96: 2953-2958. 104. Zoghbi WA, Enriquez-Sarano M, Foster E, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003; 16: 777-802. 105. Thomas L, Foster E, Schiller NB. Peak mitral inflow velocity predicts mitral regurgitation severity. Journal of the American College of Cardiology 1998;31:174-179. 106. Ljungvall I, Rishniw M, Porciello F, et al. Murmur intensity in small‐breed dogs with myxomatous mitral valve disease reflects disease severity. J Small Anim Pract. 2014;55:545-550. 107. Ljungvall I, Ahlstrom C, Höglund K, et al. Use of signal analysis of heart sounds and murmurs to assess severity of mitral valve regurgitation attributable to myxomatous mitral valve disease in dogs. American journal of veterinary research 2009;70:604-613. 108. Wayand D, Baum H, Schätzle G, et al. Cardiac troponin T and I in end-stage renal failure. Clin Chem. 2000; 46: 1345-1350. 109. Lam CS, Cheng S, Choong K, et al. Influence of sex and hormone status on circulating natriuretic peptides. J Am Coll Cardiol. 2011; 58: 618-626. 111. Kim JH, Park HM. Usefulness of conventional and tissue Doppler echocardiography to predict congestive heart failure in dogs with myxomatous mitral valve disease. J Vet Intern Med. 2015; 29: 132-140. 112. TESHIMA K, ASANO K, SASAKI Y, et al. Assessment of left ventricular function using pulsed tissue Doppler imaging in healthy dogs and dogs with spontaneous mitral regurgitation. J Vet Med Sci. 2005;67:1207-1215. 113. Jacques DC, Pinsky MR, Severyn D, et al. Influence of alterations in loading on mitral annular velocity by tissue Doppler echocardiography and its associated ability to predict filling pressures. Chest. 2004;126:1910-1918. 114. Liu J, Du J, Zhang C, et al. Progressive troponin I loss impairs cardiac relaxation and causes heart failure in mice. Am J Physiol Heart Circ Physiol. 2007; 293: 1273-1281. 115. Pan B, Xu Z, Xu Y, et al. Diastolic dysfunction and cardiac troponin I decrease in aging hearts. Arch Biochem Biophys. 2016;603:20-28. 116. Li Y, Zhang L, Jean-Charles P-Y, et al. Dose-dependent diastolic dysfunction and early death in a mouse model with cardiac troponin mutations. Journal of molecular and cellular cardiology 2013; 62: 227-236. 117. Zhang L, Nan C, Chen Y, et al. Calcium desensitizer catechin reverses diastolic dysfunction in mice with restrictive cardiomyopathy. Arch Biochem Biophys. 2015; 573: 69-76. 118. Van der Laarse A. Hypothesis: troponin degradation is one of the factors responsible for deterioration of left ventricular function in heart failure. Cardiovasc Res.; 2002; 56: 8-14. 120. Choi B-S, Moon H-S, Seo S-H, et al. Evaluation of serum cystatin-C and symmetric dimethylarginine concentrations in dogs with heart failure from chronic mitral valvular insufficiency. J Vet Med Sci. 2017;79:41-46. 121. Fraser GG, Harris EK. Generation and application of data on biological variation in clinical chemistry. Crit Rev Clin Lab Sci. 1989;27:409-437. 122. Wu AH, Lu QA, Todd J, et al. Short-and long-term biological variation in cardiac troponin I measured with a high-sensitivity assay: implications for clinical practice. Clin Chem. 2009; 55: 52-58. 123. Ruaux C, Scollan K, Suchodolski JS, et al. Biologic variability in NT‐proBNP and cardiac troponin‐I in healthy dogs and dogs with mitral valve degeneration. Vet Clin Pathol. 2015; 44: 420-430. 124. Petersen PH, Fraser CG, Sandberg S, et al. The index of individuality is often a misinterpreted quantity characteristic. Clin Chem Lab Med. 1999; 37: 655-661. Electronic Resources 119. IRIS Staging of CKD (modified 2015), Retrieved June 1, 2018, from: http://www.iris-kidney.com/pdf/003-5559.001-iris-website-staging-of-ckd-pdf_220116-final.
摘要: 目前在人類醫學以及獸醫學上已顯示許多心臟的生物標記能有效評估心臟病的預後,例如N端前腦力鈉激素(N-terminal pro-brain natriuretic peptide, NT-pro BNP)與心肌肌鈣蛋白I (cardiac troponin I, cTnI)。目前認為相較於單點的測量值,連續測量這些心臟的生物標記能提供更好評估心臟病預後的效果。因此,本實驗進行想以連續測量cTnI來評估犬心衰竭繼發於二尖瓣心內膜病預後。本實驗納入76隻患有二尖瓣心內膜病的狗,在第一次就診時將這些狗根據有美國獸醫內科醫學會(American College of Veterinary Internal Medicine, ACVIM)對於二尖瓣心內膜病之分級進行分組,再根據有無心衰竭以及有無完全心臟重塑(是否擁有心臟重塑之所有證據)分別進行分組,而其中24隻心衰竭組的犬隻進入到實驗的第二部分:連續測量cTnI以及存活分析。在第一次就診時cTnI濃度在ACVIM 分組中具有統計學上的顯著差異,此外,在心衰竭組以及完全心臟重塑分別具有較高的cTnI (P值分別為0.008以及0.011),此外cTnI 與臨床分數(clinical score, CS)、心跳、椎體心臟評分(vertebral heart score, VHS)、心雜音強度 (intensity of heart murmur, Murmur)、影像分數(radiographic score, RS)以及其他可以反映心衰竭、二尖瓣逆流以及心臟重塑之嚴重程度之心臟超音波測量數值呈顯著的正相關。故推測cTnI可以反映犬二尖瓣心內膜病的嚴重程度。在存活分析中,第一次與第三次cTnI絕對變化量 > 0.018 ng/mL以及相對變化量 > 15.56 %的狗在確診心衰竭繼發於二尖瓣心內膜病後360天內具有較短的存活時間(P值分別為0.016以及0.002),其心因性死亡的風險比率( HRa, hazard ratio)分別為3.629 (95%信賴區間:1.192-11.044)與5.257 (95%信賴區間:1.683-16.427)。多變項COX迴歸分析中發現一次與第三次cTnI相對變化量 > 15.56 %以及二尖瓣早期舒張血流流速與心肌早期舒張運動速度的比值與確診心衰竭繼發於二尖瓣心內膜病後360天內的心因性死亡具有統計學上的顯著相關。而這兩個數值可能都意味著心肌舒張功能的受損。
Many biomarkers presented good prognostic value for cardiac diseases in both veterinary medicine and human medicine, such as N-terminal pro-B-type natriuretic peptide (NT-pro BNP) and cardiac troponin-I (cTnI). Recently, serial monitor of these biomarkers was considered better than one-time-point analysis for predicting prognosis. Therefore, we want to evaluate the prognostic value of serial change of cTnI concentration in the dogs with heart failure secondary to canine myxomatous mitral valve disease (MMVD) in this study. Seventy-six dogs were enrolled in this study at admission and also recruited from staffs and students for age-matched healthy control. They were classified by the American College of Veterinary Internal Medicine (ACVIM) guideline and also allocated into different groups according to the stage of cardiac remodeling and heart failure. Twenty-three of the enrolled dogs with heart failure underwent serial measurement of serum cTnI levels and their survival time was recorded. Cardiac troponin I was significantly different among the ACVIM group (P<0.001). Moreover. the serum concentration of cTnI was significantly higher in dogs with heart failure (P=.008) compare to those without heart failure and complete cardiac remodeling (P=.011) compare to those without complete cardiac remodeling. Moreover, serum cTnI level presented significantly positive correlation with clinical score, heart rate, vertebral heart score (VHS), the intensity of heart murmur (Murmur), radiographic score (RS) and other selective echocardiographic measurements. In the serial analysis, Kaplan-Meier analysis also showed a significant difference in survival time when the cut-off points were 0.018 ng/mL and 15.56% for absolute change and relative change of baseline to third visit cTnI (cTnI1-3) respectively (P=.016 and P=.002 respectively). The hazard ratio (HRa) was 3.629 (95% confidence interval: 1.192-11.044) and 5.257 (95% confidence interval: 1.683-16.427) for absolute change cTnI 1-3 > 0.018 ng/mL and relative change cTnI1-3 > 15.56% respectively. In multiple COX regression, only relative change cTnI1-3 and the ratio of early transmitral inflow velocity and early-diastolic myocardium velocity (E/E'), which were considered indicating the diastolic dysfunction, showed significantly associated with cardiac death during follow-up 360 days.
URI: http://hdl.handle.net/11455/98525
文章公開時間: 2021-08-21
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.