Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98532
標題: 在永久缺血性腦中風的大鼠模式中以IL-13抑制代謝性炎症及胰島素阻抗控制缺血性腦中風後高血糖
Control of post-ischemic hyperglycemia with Interleukin-13 by inhibiting metabolic pro-inflammatory state and insulin resistance in permanent cerebral ischemia rat model
作者: 廖更穎
Keng-Ying Liao
關鍵字: 高血糖
IL-13
胰島素阻抗
Th2免疫
中風
Hyperglycemia
IL-13
Insulin resistance
Th2 immunity
Stroke
引用: 1. Desilles JP, Syvannarath V, Ollivier V, et al. Exacerbation of Thromboinflammation by Hyperglycemia Precipitates Cerebral Infarct Growth and Hemorrhagic Transformation. Stroke 2017;48:1932-1940. 2. Dietrich WD, Alonso O, Busto R. Moderate hyperglycemia worsens acute blood-brain barrier injury after forebrain ischemia in rats. Stroke 1993;24:111-116. 3. Widmer H, Abiko H, Faden AI, et al. Effects of hyperglycemia on the time course of changes in energy metabolism and pH during global cerebral ischemia and reperfusion in rats: correlation of 1H and 31P NMR spectroscopy with fatty acid and excitatory amino acid levels. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 1992;12:456-468. 4. Harada S, Fujita-Hamabe W, Tokuyama S. Ischemic Stroke and Glucose Intolerance: a Review of the Evidence and Exploration of Novel Therapeutic Targets. Journal of Pharmacological Sciences 2012;118:1-13. 5. Huang J, Liu B, Yang C, et al. Acute hyperglycemia worsens ischemic stroke-induced brain damage via high mobility group box-1 in rats. Brain Res 2013;1535:148-155. 6. Powers WJ, Rabinstein AA, Ackerson T, et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2018;49:e46-e110. 7. Weir CJ, Murray GD, Dyker AG, et al. Is hyperglycaemia an independent predictor of poor outcome after acute stroke? Results of a long-term follow up study. BMJ (Clinical research ed) 1997;314:1303-1306. 8. Kuroki T, Tanaka R, Shimada Y, et al. Exendin-4 Inhibits Matrix Metalloproteinase-9 Activation and Reduces Infarct Growth After Focal Cerebral Ischemia in Hyperglycemic Mice. Stroke 2016;47:1328-1335. 9. Kagansky N, Levy S, Knobler H. The role of hyperglycemia in acute stroke. Archives of neurology 2001;58:1209-1212. 10. Pulsinelli WA, Waldman S, Rawlinson D, et al. Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat. Neurology 1982;32:1239-1246. 11. Lin B, Ginsberg MD, Busto R. Hyperglycemic exacerbation of neuronal damage following forebrain ischemia: microglial, astrocytic and endothelial alterations. Acta neuropathologica 1998;96:610-620. 12. Hamilton MG, Tranmer BI, Auer RN. Insulin reduction of cerebral infarction due to transient focal ischemia. Journal of neurosurgery 1995;82:262-268. 13. Scott JF, Robinson GM, French JM, et al. Glucose potassium insulin infusions in the treatment of acute stroke patients with mild to moderate hyperglycemia: the Glucose Insulin in Stroke Trial (GIST). Stroke 1999;30:793-799. 14. Bruno A, Kent TA, Coull BM, et al. Treatment of hyperglycemia in ischemic stroke (THIS): a randomized pilot trial. Stroke 2008;39:384-389. 15. Ntaios G, Abatzi C, Alexandrou M, et al. Persistent hyperglycemia at 24-48 h in acute hyperglycemic stroke patients is not associated with a worse functional outcome. Cerebrovascular diseases (Basel, Switzerland) 2011;32:561-566. 16. Reshi R, Streib C, Ezzeddine M, et al. Hyperglycemia in acute ischemic stroke: Is it time to re-evaluate our understanding? Med Hypotheses 2017;107:78-80. 17. Capes SE, Hunt D, Malmberg K, et al. Stress Hyperglycemia and Prognosis of Stroke in Nondiabetic and Diabetic Patients: A Systematic Overview. Stroke 2001;32:2426-2432. 18. Harada S, Nozaki Y, Matsuura W, et al. Cerebral ischemia-induced elevation of hepatic inflammatory factors accompanied by glucose intolerance suppresses hypothalamic orexin-A-mediated vagus nerve activation. Brain Res 2017;1661:100-110. 19. Yao M, Ni J, Zhou L, et al. Elevated Fasting Blood Glucose Is Predictive of Poor Outcome in Non-Diabetic Stroke Patients: A Sub-Group Analysis of SMART. PLoS One 2016;11:e0160674. 20. Urabe T, Watada H, Okuma Y, et al. Prevalence of abnormal glucose metabolism and insulin resistance among subtypes of ischemic stroke in Japanese patients. Stroke 2009;40:1289-1295. 21. Bienek R, Marek B, Kajdaniuk D, et al. Adiponectin, leptin, resistin and insulin blood concentrations in patients with ischaemic cerebral stroke. Endokrynologia Polska 2012;63:338-345. 22. Jing J, Pan Y, Zhao X, et al. Insulin Resistance and Prognosis of Nondiabetic Patients With Ischemic Stroke: The ACROSS-China Study (Abnormal Glucose Regulation in Patients With Acute Stroke Across China). Stroke 2017;48:887-893. 23. Wang YY, Chen CJ, Lin SY, et al. Hyperglycemia is associated with enhanced gluconeogenesis in a rat model of permanent cerebral ischemia. Mol Cell Endocrinol 2013;367:50-56. 24. O'Shaughnessy CT, Rothwell NJ, Shrewsbury-Gee J. Sympathetically mediated hypermetabolic response to cerebral ischemia in the rat. Canadian journal of physiology and pharmacology 1990;68:1334-1337. 25. Wang YY, Lin SY, Chuang YH, et al. Adipose proinflammatory cytokine expression through sympathetic system is associated with hyperglycemia and insulin resistance in a rat ischemic stroke model. Am J Physiol Endocrinol Metab 2011;300:E155-163. 26. Wang YY, Lin SY, Chuang YH, et al. Activation of hepatic inflammatory pathways by catecholamines is associated with hepatic insulin resistance in male ischemic stroke rats. Endocrinology 2014;155:1235-1246. 27. van Kooten F, Hoogerbrugge N, Naarding P, et al. Hyperglycemia in the acute phase of stroke is not caused by stress. Stroke 1993;24:1129-1132. 28. Smith KE, Hachinski VC, Gibson CJ, et al. Changes in plasma catecholamine levels after insula damage in experimental stroke. Brain Res 1986;375:182-185. 29. Park S, Kim DS, Kang S. Exercise training attenuates cerebral ischemic hyperglycemia by improving hepatic insulin signaling and beta-cell survival. Life Sci 2013;93:153-160. 30. Seyfizadeh N, Seyfizadeh N, Gharibi T, et al. Interleukin-13 as an important cytokine: A review on its roles in some human diseases. Acta Microbiol Immunol Hung 2015;62:341-378. 31. Edwards JP, Zhang X, Frauwirth KA, et al. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 2006;80:1298-1307. 32. McLaughlin T, Ackerman SE, Shen L, et al. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest 2017;127:5-13. 33. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007;447:1116-1120. 34. Qiu Y, Nguyen KD, Odegaard JI, et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 2014;157:1292-1308. 35. Russell MA, Morgan NG. The impact of anti-inflammatory cytokines on the pancreatic beta-cell. Islets 2014;6:e950547. 36. Zaccone P, Phillips J, Conget I, et al. Interleukin-13 prevents autoimmune diabetes in NOD mice. Diabetes 1999;48:1522-1528. 37. Darkhal P, Gao M, Ma Y, et al. Blocking high-fat diet-induced obesity, insulin resistance and fatty liver by overexpression of Il-13 gene in mice. Int J Obes (Lond) 2015;39:1292-1299. 38. Stanya KJ, Jacobi D, Liu S, et al. Direct control of hepatic glucose production by interleukin-13 in mice. J Clin Invest 2013;123:261-271. 39. Kawahara K, Suenobu M, Yoshida A, et al. Intracerebral microinjection of interleukin-4/interleukin-13 reduces beta-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice. Neuroscience 2012;207:243-260. 40. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nature reviews Molecular cell biology 2009;10:307-318. 41. Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther 2015;9:3445-3454. 42. Isayama K, Pitts LH, Nishimura MC. Evaluation of 2,3,5-triphenyltetrazolium chloride staining to delineate rat brain infarcts. Stroke 1991;22:1394-1398. 43. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-419. 44. Hatting M, Tavares CDJ, Sharabi K, et al. Insulin regulation of gluconeogenesis. Ann N Y Acad Sci 2018;1411:21-35. 45. O'Brien RM, Lucas PC, Forest CD, et al. Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription. Science (New York, NY) 1990;249:533-537. 46. Oto J, Suzue A, Inui D, et al. Plasma proinflammatory and anti-inflammatory cytokine and catecholamine concentrations as predictors of neurological outcome in acute stroke patients. Journal of anesthesia 2008;22:207-212. 47. Kim JH, Bachmann RA, Chen J. Interleukin-6 and insulin resistance. Vitamins and hormones 2009;80:613-633. 48. Sosale B, Chandrashekara S, Aravind SR, et al. Influence of cytokine status on insulin resistance and circulating endothelial progenitor cells in type 2 diabetes mellitus. Cytokine 2017;99:179-185. 49. Xiong X, Barreto GE, Xu L, et al. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 2011;42:2026-2032. 50. Famakin B, Mou Y, Spatz M, et al. Downstream Toll-like receptor signaling mediates adaptor-specific cytokine expression following focal cerebral ischemia. J Neuroinflammation 2012;9:174. 51. Kim HA, Whittle SC, Lee S, et al. Brain immune cell composition and functional outcome after cerebral ischemia: comparison of two mouse strains. Front Cell Neurosci 2014;8:365. 52. Nie Y, Erion DM, Yuan Z, et al. STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat Cell Biol 2009;11:492-500. 53. Ramadoss P, Unger-Smith NE, Lam FS, et al. STAT3 targets the regulatory regions of gluconeogenic genes in vivo. Molecular endocrinology (Baltimore, Md) 2009;23:827-837. 54. Kim JH, Kim JE, Liu HY, et al. Regulation of interleukin-6-induced hepatic insulin resistance by mammalian target of rapamycin through the STAT3-SOCS3 pathway. J Biol Chem 2008;283:708-715. 55. McCormick SM, Heller NM. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 2015;75:38-50. 56. Wang AJ, Yang Z, Grinchuk V, et al. IL-25 or IL-17E Protects against High-Fat Diet-Induced Hepatic Steatosis in Mice Dependent upon IL-13 Activation of STAT6. J Immunol 2015;195:4771-4780. 57. Souza PP, Brechter AB, Reis RI, et al. IL-4 and IL-13 inhibit IL-1beta and TNF-alpha induced kinin B1 and B2 receptors through a STAT6-dependent mechanism. Br J Pharmacol 2013;169:400-412. 58. Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI, et al. IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America 2010;107:22617-22622. 59. Theodorou GL, Marousi S, Ellul J, et al. T helper 1 (Th1)/Th2 cytokine expression shift of peripheral blood CD4+ and CD8+ T cells in patients at the post-acute phase of stroke. Clin Exp Immunol 2008;152:456-463. 60. Lindsberg PJ, Roine RO. Hyperglycemia in acute stroke. Stroke 2004;35:363-364. 61. Wannamethee SG, Perry IJ, Shaper AG. Nonfasting serum glucose and insulin concentrations and the risk of stroke. Stroke 1999;30:1780-1786. 62. Tziomalos K, Dimitriou P, Bouziana S, et al. Transient hyperglycemia at admission and acute ischemic stroke severity and short-term outcome. Hellenic Journal οf Atherosclerosis 2016;7. 63. Serra-Perez A, Verdaguer E, Planas AM, et al. Glucose promotes caspase-dependent delayed cell death after a transient episode of oxygen and glucose deprivation in SH-SY5Y cells. Journal of neurochemistry 2008;106:1237-1247. 64. Cronberg T, Rytter A, Asztely F, et al. Glucose but not lactate in combination with acidosis aggravates ischemic neuronal death in vitro. Stroke 2004;35:753-757. 65. Faraco G, Fossati S, Bianchi ME, et al. High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. Journal of neurochemistry 2007;103:590-603. 66. Vemula S, Roder KE, Yang T, et al. A functional role for sodium-dependent glucose transport across the blood-brain barrier during oxygen glucose deprivation. J Pharmacol Exp Ther 2009;328:487-495. 67. Magnusson I, Rothman DL, Katz LD, et al. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 1992;90:1323-1327. 68. Cieślak M, Wojtczak A, Cieślak M. Role of pro-inflammatory cytokines of pancreatic islets and prospects of elaboration of new methods for the diabetes treatment. Acta Biochimica Polonica 2015;62:15-21. 69. Buras ED, Yang L, Saha P, et al. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice. FASEB J 2015;29:3537-3548. 70. Russell MA, Cooper AC, Dhayal S, et al. Differential effects of interleukin-13 and interleukin-6 on Jak/STAT signaling and cell viability in pancreatic beta-cells. Islets 2013;5:95-105. 71. Priceman SJ, Kujawski M, Shen S, et al. Regulation of adipose tissue T cell subsets by Stat3 is crucial for diet-induced obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America 2013;110:13079-13084. 72. Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Alternative medicine review : a journal of clinical therapeutic 2003;8:223-246. 73. Madhumitha H, Mohan V, Deepa M, et al. Increased Th1 and suppressed Th2 serum cytokine levels in subjects with diabetic coronary artery disease. Cardiovascular diabetology 2014;13:1. 74. Ezquer F, Ezquer M, Contador D, et al. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells 2012;30:1664-1674.
摘要: 腦中風為全世界死亡原因的前三名,而高血糖又被認為是中風預後的危險因子。然而,臨床調查顯示,即使是先前沒有糖尿病相關病史的急性腦中風患者,約有8-65%的患者會在中風後發生潛在糖尿病或葡萄糖耐受不良的高血糖,可能造成患者預後不佳、死亡率較高或神經復原較差。但是,缺血性腦中風後高血糖的發生機制還不甚了解,對於中風患者的血糖控制也尚無一個可以依循的準則。臨床上目前仍是使用胰島素在控制缺血性中風後高血糖,然而治療的效果仍有正反兩面的爭議。另外,有研究顯示腦中風會釋放反調節激素、前炎症細胞激素等調節激素,會促進糖質新生作用降低胰島素路徑的敏感性導致胰島素阻抗。而由輔助型T2淋巴細胞所分泌的介白素13(interleukin-13;簡寫為IL-13)為抑炎症細胞素家族的一種,在體內試驗被證實有促進胰島素路徑的敏感性及抑制肝臟糖質新生的作用,過量表現IL-13可以改善肥胖造成的葡萄糖代謝異常及胰島素阻抗。因此本研究欲透過永久性缺血性腦中風的大鼠模式,探討缺血性腦中風後高血糖的發生機制以及細胞素IL-13可能扮演的角色。結果顯示腦中風會造成高血糖、高胰島素血症、胰島素阻抗、胰島素路徑被抑制及糖質新生增加,且有系統性前炎症細胞素增加、抑炎症細胞素減少的情形。而IL-13能有效反轉上述腦中風所造成的病理變化,應與其活化JAK1/STAT6的細胞素路徑,改變炎症傾向有關。我們的研究結果顯示,IL-13治療可能可以作為中風後高血糖症的預防和控制新方針。
Cerebral ischemia (stoke) is one of the leading causes of death and disability worldwide, whereas hyperglycemia is known as a risk factor for stroke prognosis. Post-ischemic hyperglycemia happens to about 8-63% acute ischemic stroke patients even without preexisting diabetes, which might cause poor prognosis, higher mortality, and impaired neurological recovery. However, with the unknown mechanism, there has not been a protocol for treating post-ischemic hyperglycemia. On the other hand, research found that acute stroke secretes counter-regulatory hormones, pro-inflammatory cytokines, and other regulatory factors, which enhances insulin resistance. Interleukin-13 (IL-13), as a member of the Th2 anti-inflammatory cytokine family, was reported to be involved in glucose hemostasis. Studies showed that IL-13 is capable of enhancing insulin sensitivity and suppressing hepatic gluconeogenesis, and that overexpressing IL-13 reverses abnormal glucose metabolism and insulin resistance in obese mice. Thus, we aim to discuss the mechanism of post-ischemic hyperglycemia and the role IL-13 may play in this phenomena through permanent middle artery occlusion rat model. Our results showed that post-ischemic hyperglycemia was accompanied by elevated insulin resistance index, elevated serum insulin concentration, elevated hepatic gluconeogenesis, and decreased insulin signaling. Meanwhile, systemic pro-inflammatory cytokine was also found significantly elevated and anti-inflammatory cytokine decreased. With IL-13 treatment, the above pathological state was reversed due to the JAK1/STAT6 signaling activation, which shifted the inflammatory state towards Th2 immunity. Our findings suggest that IL-13 treatment may be a new perspective for the prevention and control of post-ischemic hyperglycemia.
URI: http://hdl.handle.net/11455/98532
文章公開時間: 2022-01-22
Appears in Collections:獸醫學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.