Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/99285
標題: Negative-Capacitance Fin Field-Effect Transistor Beyond the 7-nm Node
作者: Chen, Kuan-Ting
Qiu, Yu-Yan
Tang, Ming
Lee, Chia-Feng
Dai, Yi-Lu
Lee, Min-Hung
Chang, Shu-Tong
張書通
摘要: In this paper, we investigate the negative-capacitance fin field-effect (NC-FinFET) and extend the design beyond the 7-nm technology node. A 7-nm-node NC-FinFET is presented using the Landau-Khalatnikov equation and the physical equations of a 3D technology computer-aided design simulation. We propose a new NC-FinFET with double ferroelectric hafnium zircon dioxide layers. This device exhibits noticeable voltage gains in the sub-threshold region, can decrease subthreshold swing (SS) effectively, has a wide-ranged uniform SS lower than 60 mV/dec, and can downscale the threshold voltage without increasing the off current. The static noise margin of the static random access memory using the new NC-FinFET is simulated and shows good performance with improved SS and threshold voltage.
URI: http://hdl.handle.net/11455/99285
ISSN: 1533-4880
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.