Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/99454
標題: 螢光共振能量轉移於染料敏化太陽能電池之應用
Application of Fluorescence Resonance Energy Transfer in Dye-Sensitized Solar Cells
作者: 林裕傑
Yu-Jie Lin
關鍵字: 螢光團
energy relay dye
光捕獲
太陽能電池
螢光共振能量轉移
fluorophore
energy relay dye
light harvesting
solar cell
fluorescence resonance energy transfer
引用: [1] Wikipedia. (accessed January 4, 2017). Energy crisis [Online]. Available: https://en.wikipedia.org/wiki/Energy_crisis [2] Wikipedia. (accessed January 4, 2017). 核子動力 [Online]. Available: https://zh.wikipedia.org/wiki/%E6%A0%B8%E5%8B%95%E5%8A%9B [3] Wikipedia. (accessed January 4, 2017). Nuclear power [Online]. Available: https://en.wikipedia.org/wiki/Nuclear_power [4] N. R. E. Laboratory. (accessed January 6, 2017). Photovoltaic Research NREL [Online]. Available: http://www.nrel.gov/pv/ [5] B. O''Regan and M. Grätzel, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,' Nature, Vol. 353, pp. 737-740 (1991). [6] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, 'Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency,' Science, Vol. 334, pp. 629-634 (2011). [7] A. Fakharuddin, R. Jose, T. M. Brown, F. Fabregat-Santiago, and J. Bisquert, 'A perspective on the production of dye-sensitized solar modules,' Energy & Environmental Science, Vol. 7, pp. 3952-3981 (2014). [8] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, F. E. CurchodBasile, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, K. NazeeruddinMd, and M. Grätzel, 'Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,' Nature Chemistry, Vol. 6, pp. 242-247 (2014). [9] M. Grätzel, 'Photoelectrochemical cells,' Nature, Vol. 414, pp. 338-344 (2001). [10] S.-J. Cherng, 'Fabrication Techniques of Electrodes for Solar Cells,' Doctoral Dissertation, Department of Chemical Engineering, National Chung Hsing University, Taiwan, 2014. [11] H. Meier, 'Sensitization of electrical effects in solids,' The Journal of Physical Chemistry, Vol. 69, pp. 719-729 (1965). [12] R. Memming and H. Tributsch, 'Electrochemical investigations on the spectral sensitization of gallium phosphide electrodes,' The Journal of Physical Chemistry, Vol. 75, pp. 562-570 (1971). [13] X. Yang, M. Yanagida, and L. Han, 'Reliable evaluation of dye-sensitized solar cells,' Energy & Environmental Science, Vol. 6, pp. 54-66 (2013). [14] P.-T. Hsiao, 'Structure and Electron Conveying Patterns of TiO2 Films in Dye-Sensitized Solar Cells,' Doctoral Dissertation, Department of Chemical Engineering, National Cheng Kung University, Taiwan, 2011. [15] T.-Y. Tsai, C.-M. Chen, S.-J. Cherng, and S.-Y. Suen, 'An efficient titanium-based photoanode for dye-sensitized solar cell under back-side illumination,' Progress in Photovoltaics: Research and Applications, Vol. 21, pp. 226-231 (2013). [16] T. M. Brown, F. De Rossi, F. Di Giacomo, G. Mincuzzi, V. Zardetto, A. Reale, and A. Di Carlo, 'Progress in flexible dye solar cell materials, processes and devices,' Journal of Materials Chemistry A, Vol. 2, pp. 10788-10817 (2014). [17] K. Yoo, J.-Y. Kim, J. A. Lee, J. S. Kim, D.-K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, J. H. Kim, and M. J. Ko, 'Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates,' ACS Nano, Vol. 9, pp. 3760-3771 (2015). [18] A. Hagfeldt and M. Grätzel, 'Molecular photovoltaics,' Accounts of Chemical Research, Vol. 33, pp. 269-277 (2000). [19] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Grätzel, 'Conversion of light to electricity by cis-X2bis(2,2''-bipyridyl-4,4''-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,' Journal of the American Chemical Society, Vol. 115, pp. 6382-6390 (1993). [20] M. Alebbi, C. A. Bignozzi, T. A. Heimer, G. M. Hasselmann, and G. J. Meyer, 'The limiting role of iodide oxidation in cis-Os(dcb)2(CN)2/TiO2 photoelectrochemical cells,' The Journal of Physical Chemistry B, Vol. 102, pp. 7577-7581 (1998). [21] P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, 'Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,' Journal of the American Chemical Society, Vol. 123, pp. 1613-1624 (2001). [22] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, and M. Grätzel, 'Acid−base equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania,' Inorganic Chemistry, Vol. 38, pp. 6298-6305 (1999). [23] M. K. Nazeeruddin, P. Péchy, and M. Grätzel, 'Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex,' Chemical Communications, pp. 1705-1706 (1997). [24] S. M. Zakeeruddin, M. K. Nazeeruddin, R. Humphry-Baker, P. Péchy, P. Quagliotto, C. Barolo, G. Viscardi, and M. Grätzel, 'Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films,' Langmuir, Vol. 18, pp. 952-954 (2002). [25] C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S. M. Zakeeruddin, and M. Grätzel, 'Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells,' ACS Nano, Vol. 3, pp. 3103-3109 (2009). [26] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, 'High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states,' ACS Nano, Vol. 4, pp. 6032-6038 (2010). [27] H. N. Tsao , C. Yi , T. Moehl, J.-H. Yum, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Grätzel, 'Cyclopentadithiophene bridged donor–acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-cobalt bipyridine redox couple,' ChemSusChem, Vol. 4, pp. 591-594 (2011). [28] S. SA. (accessed November 21, 2016). Ruthenium sensitizers for Dye Solar Cells [Online]. Available: http://shop.solaronix.com/sensitizing-dyes/ruthenium-dyes.html [29] H. Nusbaumer, J.-E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Grätzel, 'CoII(dbbip)22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells,' The Journal of Physical Chemistry B, Vol. 105, pp. 10461-10464 (2001). [30] S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, and A. Hagfeldt, 'Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells,' Journal of the American Chemical Society, Vol. 132, pp. 16714-16724 (2010). [31] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, 'A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells,' Solar Energy Materials and Solar Cells, Vol. 70, pp. 85-101 (2001). [32] B. E. Hardin, H. J. Snaith, and M. D. McGehee, 'The renaissance of dye-sensitized solar cells,' Nature Photonics, Vol. 6, pp. 162-169 (2012). [33] A. Stanley, B. Verity, and D. Matthews, 'Minimizing the dark current at the dye-sensitized TiO2 electrode,' Solar Energy Materials and Solar Cells, Vol. 52, pp. 141-154 (1998). [34] J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, and Y. Huang, 'Progress on the electrolytes for dye-sensitized solar cells,' Pure and Applied Chemistry, Vol. 80, pp. 2241-2258 (2008). [35] J.-L. Lan, 'PVP-capped Pt Nano-Clusters as Catalyst for Counter Electrode of Dye Sensitized Solar Cell and Grid-type DSSC Module,' Doctoral Dissertation, Department of Chemical Engineering, National Tsing Hua University, Taiwan, 2011. [36] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, 'Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,' Thin Solid Films, Vol. 516, pp. 4613-4619 (2008). [37] S. Thomas, T. G. Deepak, G. S. Anjusree, T. A. Arun, S. V. Nair, and A. S. Nair, 'A review on counter electrode materials in dye-sensitized solar cells,' Journal of Materials Chemistry A, Vol. 2, pp. 4474-4490 (2014). [38] G. Yue, W. Zhang, J. Wu, and Q. Jiang, 'Glucose aided synthesis of molybdenum sulfide/carbon nanotubes composites as counter electrode for high performance dye-sensitized solar cells,' Electrochimica Acta, Vol. 112, pp. 655-662 (2013). [39] E. M. Barea, J. Ortiz, F. J. Paya, F. Fernandez-Lazaro, F. Fabregat-Santiago, A. Sastre-Santos, and J. Bisquert, 'Energetic factors governing injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers,' Energy & Environmental Science, Vol. 3, pp. 1985-1994 (2010). [40] S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, and M. Grätzel, 'Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells,' Chemical Communications, pp. 4351-4353 (2005). [41] N. R. Neale, N. Kopidakis, J. van de Lagemaat, M. Grätzel, and A. J. Frank, 'Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells:  shielding versus band-edge movement,' The Journal of Physical Chemistry B, Vol. 109, pp. 23183-23189 (2005). [42] J. Lim, Y. S. Kwon, and T. Park, 'Effect of coadsorbent properties on the photovoltaic performance of dye-sensitized solar cells,' Chemical Communications, Vol. 47, pp. 4147-4149 (2011). [43] K.-M. Lee, C.-Y. Chen, S.-J. Wu, S.-C. Chen, and C.-G. Wu, 'Surface passivation: The effects of CDCA co-adsorbent and dye bath solvent on the durability of dye-sensitized solar cells,' Solar Energy Materials and Solar Cells, Vol. 108, pp. 70-77 (2013). [44] T. Förster, 'Zwischenmolekulare energiewanderung und fluoreszenz,' Annalen der Physik, Vol. 437, pp. 55-75 (1948). [45] T. Förster, '10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation,' Discussions of the Faraday Society, Vol. 27, pp. 7-17 (1959). [46] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3 ed. USA: Springer US, 2006. [47] B. E. Hardin, E. T. Hoke, P. B. Armstrong, J.-H. Yum, P. Comte, T. Torres, J. M. J. Fréchet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, 'Increased light harvesting in dye-sensitized solar cells with energy relay dyes,' Nature Photonics, Vol. 3, pp. 406-411 (2009). [48] R. E. Dale and J. Eisinger, 'Intramolecular distances determined by energy transfer. Dependence on orientational freedom of donor and acceptor,' Biopolymers, Vol. 13, pp. 1573-1605 (1974). [49] R. E. Dale, J. Eisinger, and W. E. Blumberg, 'The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer,' Biophysical Journal, Vol. 26, pp. 161-193 (1979). [50] C. Siegers, J. Hohl-Ebinger, B. Zimmermann, U. Würfel, R. Mülhaupt, A. Hinsch, and R. Haag, 'A dyadic sensitizer for dye solar cells with high energy-transfer efficiency in the device,' ChemPhysChem, Vol. 8, pp. 1548-1556 (2007). [51] Y. Takahashi, H. Arakawa, H. Sugihara, K. Hara, A. Islam, R. Katoh, Y. Tachibana, and M. Yanagida, 'Highly efficient polypyridyl-ruthenium(II) photosensitizers with chelating oxygen donor ligands: β-diketonato-bis(dicarboxybipyridine)ruthenium,' Inorganica Chimica Acta, Vol. 310, pp. 169-174 (2000). [52] J. M. Serin, D. W. Brousmiche, and J. M. J. Frechet, 'Cascade energy transfer in a conformationally mobile multichromophoric dendrimer,' Chemical Communications, pp. 2605-2607 (2002). [53] Z. B. Hill, D. B. Rodovsky, J. M. Leger, and G. P. Bartholomew, 'Synthesis and utilization of perylene-based n-type small molecules in light-emitting electrochemical cells,' Chemical Communications, pp. 6594-6596 (2008). [54] P. R. Hammond, 'Laser dye DCM, its spectral properties, synthesis and comparison with other dyes in the red,' Optics Communications, Vol. 29, pp. 331-333 (1979). [55] B. E. Hardin, J.-H. Yum, E. T. Hoke, Y. C. Jun, P. Péchy, T. Torres, M. L. Brongersma, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, 'High excitation transfer efficiency from energy relay dyes in dye-sensitized solar cells,' Nano Letters, Vol. 10, pp. 3077-3083 (2010). [56] J.-H. Yum, B. E. Hardin, S.-J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, 'Panchromatic response in solid-state dye-sensitized solar cells containing phosphorescent energy relay dyes,' Angewandte Chemie International Edition, Vol. 48, pp. 9277-9280 (2009). [57] J.-H. Yum, E. Baranoff, B. E. Hardin, E. T. Hoke, M. D. McGehee, F. Nüesch, M. Grätzel, and M. K. Nazeeruddin, 'Phosphorescent energy relay dye for improved light harvesting response in liquid dye-sensitized solar cells,' Energy & Environmental Science, Vol. 3, pp. 434-437 (2010). [58] J.-H. Yum, B. E. Hardin, E. T. Hoke, E. Baranoff, S. M. Zakeeruddin, M. K. Nazeeruddin, T. Torres, M. D. McGehee, and M. Grätzel, 'Incorporating multiple energy relay dyes in liquid dye-sensitized solar cells,' ChemPhysChem, Vol. 12, pp. 657-661 (2011). [59] G. Y. Margulis, B. Lim, B. E. Hardin, E. L. Unger, J.-H. Yum, J. M. Feckl, D. Fattakhova-Rohlfing, T. Bein, M. Grätzel, A. Sellinger, and M. D. McGehee, 'Highly soluble energy relay dyes for dye-sensitized solar cells,' Physical Chemistry Chemical Physics, Vol. 15, pp. 11306-11312 (2013). [60] R. Gao, Y. Cui, X. Liu, and L. Wang, 'Multifunctional interface modification of energy relay dye in quasi-solid dye-sensitized solar cells,' Scientific Reports, Vol. 4, p. 5570 (2014). [61] M. M. Rahman, M. J. Ko, and J.-J. Lee, 'Novel energy relay dyes for high efficiency dye-sensitized solar cells,' Nanoscale, Vol. 7, pp. 3526-3531 (2015). [62] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk, and J. T. Hupp, 'Advancing beyond current generation dye-sensitized solar cells,' Energy & Environmental Science, Vol. 1, pp. 66-78 (2008). [63] J.-J. Cid, J.-H. Yum, S.-R. Jang, M. K. Nazeeruddin, E. Martínez-Ferrero, E. Palomares, J. Ko, M. Grätzel, and T. Torres, 'Molecular cosensitization for efficient panchromatic dye-sensitized solar cells,' Angewandte Chemie International Edition, Vol. 46, pp. 8358-8362 (2007). [64] J. Wu, G. Xie, J. Lin, Z. Lan, M. Huang, and Y. Huang, 'Enhancing photoelectrical performance of dye-sensitized solar cell by doping with europium-doped yttria rare-earth oxide,' Journal of Power Sources, Vol. 195, pp. 6937-6940 (2010). [65] J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, Y. Xiao, G. Yue, S. Yin, and T. Sato, 'Application of Y2O3:Er3+ nanorods in dye-sensitized solar cells,' ChemSusChem, Vol. 5, pp. 1307-1312 (2012). [66] N. Chander, A. F. Khan, and V. K. Komarala, 'Improved stability and enhanced efficiency of dye sensitized solar cells by using europium doped yttrium vanadate down-shifting nanophosphor,' RSC Advances, Vol. 5, pp. 66057-66066 (2015). [67] L. Da, D. Cairong, S. Hui, L. Yong, Z. Yueli, L. Ming, and Y. Jin, 'Large improvement of photon capture for a dye-sensitized solar cell integrated with a fluorescent layer,' Journal of Physics D: Applied Physics, Vol. 43, p. 015101 (2010). [68] T.-H. Wang, T.-W. Huang, Y.-C. Tsai, Y.-W. Chang, and C.-S. Liao, 'A photoluminescent layer for improving the performance of dye-sensitized solar cells,' Chemical Communications, Vol. 51, pp. 7253-7256 (2015). [69] D. M. Han, H.-J. Song, C.-H. Han, and Y. S. Kim, 'Enhancement of the outdoor stability of dye-sensitized solar cells by a spectrum conversion layer with 1,8-naphthalimide derivatives,' RSC Advances, Vol. 5, pp. 32588-32593 (2015). [70] F. Odobel, Y. Pellegrin, and J. Warnan, 'Bio-inspired artificial light-harvesting antennas for enhancement of solar energy capture in dye-sensitized solar cells,' Energy & Environmental Science, Vol. 6, pp. 2041-2052 (2013). [71] S. Itzhakov, S. Buhbut, E. Tauber, T. Geiger, A. Zaban, and D. Oron, 'Design principles of FRET-based dye-sensitized solar cells with buried quantum dot donors,' Advanced Energy Materials, Vol. 1, pp. 626-633 (2011). [72] J. Liu, Q. Yao, and Y. Li, 'Effects of downconversion luminescent film in dye-sensitized solar cells,' Applied Physics Letters, Vol. 88, p. 173119 (2006). [73] N. Hirata, J.-J. Lagref, E. J. Palomares, J. R. Durrant, M. K. Nazeeruddin, M. Gratzel, and D. Di Censo, 'Supramolecular control of charge-transfer dynamics on dye-sensitized nanocrystalline TiO2 films,' Chemistry – A European Journal, Vol. 10, pp. 595-602 (2004). [74] Y. Q. Gao and R. A. Marcus, 'Theoretical Investigation of the Directional Electron Transfer in 4-Aminonaphthalimide Compounds,' The Journal of Physical Chemistry A, Vol. 106, pp. 1956-1960 (2002). [75] G. Wulff, 'Selective binding to polymers via covalent bonds. The construction of chiral cavities as specific receptor sites,' Pure and Applied Chemistry, Vol. 54, pp. 2093-2102 (1982). [76] L. I. Bosch, M. F. Mahon, and T. D. James, 'The B–N bond controls the balance between locally excited (LE) and twisted internal charge transfer (TICT) states observed for aniline based fluorescent saccharide sensors,' Tetrahedron Letters, Vol. 45, pp. 2859-2862 (2004). [77] S. Trupp, P. Hoffmann, T. Henkel, and G. J. Mohr, 'Novel pH indicator dyes for array preparation via NHS ester activation or solid-phase organic synthesis,' Organic & Biomolecular Chemistry, Vol. 6, pp. 4319-4322 (2008). [78] H.-H. Lin, Y.-C. Chan, J.-W. Chen, and C.-C. Chang, 'Aggregation-induced emission enhancement characteristics of naphthalimide derivatives and their applications in cell imaging,' Journal of Materials Chemistry, Vol. 21, pp. 3170-3177 (2011). [79] Y.-J. Lin, C.-C. Chang, S.-J. Cherng, J.-W. Chen, and C.-M. Chen, 'Manipulation of light harvesting for efficient dye-sensitized solar cell by doping an ultraviolet light-capturing fluorophore,' Progress in Photovoltaics: Research and Applications, Vol. 23, pp. 106-111 (2015). [80] P.-K. Chuang, Y.-J. Lin, C.-M. Chen, and C.-C. Chang, 'Improved power conversion efficiency of dye-sensitized solar cells by fluorophore-assisted spectrum down-conversion,' Journal of the Electrochemical Society, Vol. 161, pp. H404-H409 (2014). [81] C. Siegers, U. Würfel, M. Zistler, H. Gores, J. Hohl-Ebinger, A. Hinsch, and R. Haag, 'Overcoming Kinetic Limitations of Electron Injection in the Dye Solar Cell via Coadsorption and FRET,' ChemPhysChem, Vol. 9, pp. 793-798 (2008). [82] P. M. Sommeling, B. C. O''Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, and J. A. M. van Roosmalen, 'Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells,' The Journal of Physical Chemistry B, Vol. 110, pp. 19191-19197 (2006). [83] T. C. Wei, C. C. Wan, and Y. Y. Wang, 'Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells,' Applied Physics Letters, Vol. 88, p. 103122 (2006). [84] M. Ikegami, K. Miyoshi, T. Miyasaka, K. Teshima, T. C. Wei, C. C. Wan, and Y. Y. Wang, 'Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells,' Applied Physics Letters, Vol. 90, pp. 153122-153123 (2007). [85] T.-C. Wei, C.-C. Wan, Y.-Y. Wang, C.-M. Chen, and H.-S. Shiu, 'Immobilization of poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium−tin oxide glass and its application in dye-sensitized solar cells,' The Journal of Physical Chemistry C, Vol. 111, pp. 4847-4853 (2007). [86] J.-L. Lan, C.-C. Wan, T.-C. Wei, W.-C. Hsu, and Y.-H. Chang, 'Durability test of PVP-capped Pt nanoclusters counter electrode for highly efficiency dye-sensitized solar cell,' Progress in Photovoltaics: Research and Applications, Vol. 20, pp. 44-50 (2012). [87] F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, and J. Bisquert, 'Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy,' Physical Chemistry Chemical Physics, Vol. 13, pp. 9083-9118 (2011). [88] J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff, and E. C. Pereira, 'Doubling exponent models for the analysis of porous film electrodes by impedance. relaxation of TiO2 nanoporous in aqueous solution,' The Journal of Physical Chemistry B, Vol. 104, pp. 2287-2298 (2000). [89] J. Bisquert, 'Influence of the boundaries in the impedance of porous film electrodes,' Physical Chemistry Chemical Physics, Vol. 2, pp. 4185-4192 (2000). [90] J. Bisquert, 'Theory of the impedance of electron diffusion and recombination in a thin layer,' The Journal of Physical Chemistry B, Vol. 106, pp. 325-333 (2002). [91] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, 'Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy,' Solar Energy Materials and Solar Cells, Vol. 87, pp. 117-131 (2005).
摘要: 本論文探討1,8-naphthalimide derivative有機螢光團引發之螢光共振能量轉移(fluorescence resonance energy transfer, FRET)效應於染料敏化太陽能電池(dye-sensitized solar cell, DSSC)之應用,研究內容主要依有機螢光團有無羧基概分為二。研究主題一採用無羧基之有機螢光團(簡稱N-Bu)摻雜於網印之中孔二氧化鈦光電極中,摻雜方法為將二氧化鈦光電極進行兩步驟依序浸泡於螢光染料N-Bu及敏化染料N719溶液中。在照光的情況下,N-Bu螢光團會吸收紫外光成為激發態,由於N-Bu螢光團之放射光譜與敏化染料N719之吸收光譜緊密重疊,當N-Bu與N719分子相距於Förster radius內,激發態之N-Bu會經由FRET方式將能量傳遞予N719,驅使N719產生更多電子,提升DSSC於紫外光區間之光捕獲強度,同時提升紫外光區間之光電轉化效率(incident photon to current conversion efficiencies, IPCE)。當使用10-4 M之N-Bu溶液摻雜螢光團,DSSC之能量轉換效率(power conversion efficiencies, PCE)可由7.63 %提升至8.13 %,改善幅度約為6.6 %。 主題二使用含有羧基之有機螢光團(1,8-naphthalimide derivative with carboxylic group, 簡稱N-COOH),透過羧基與二氧化鈦的附著力,使摻雜之N-COOH能與N719共同吸附在二氧化鈦表面,藉此增強FRET效應,摻雜方法可簡化為光電極浸泡於敏化染料N719與螢光團N-COOH混合液中之一步驟共吸附方式。N-COOH光學性質相似於研究主題一之N-Bu,因此N-COOH亦會吸收紫外光並經由FRET方式將能量傳遞予N719。研究結果發現在N-COOH與N719共吸附過程中,N-COOH不會影響N719於二氧化鈦薄膜中之吸附量,且吸附N-COOH可減少二氧化鈦直接與電解液之接觸面積,減少電子逆反應發生。採用最佳混合比例之溶液(N719:N-COOH = 5:1)進行共吸附,DSSC於1 sun (AM1.5G)下其能量轉換效率改善幅度達10.8 % (從9.16 %提升至10.15 %),優於主題一的改善幅度。而在600 lux之T5燈具(600 lux之三波長)下其能量轉換效率改善幅度達21 % (PCE從16.46 %提升至19.92 %),Pmax可由31.77 μW/cm2提升至38.44 μW/cm2。
This dissertation investigates the application of the fluorescence resonance energy transfer (FRET) effect induced by an organic fluorophores (1,8-naphthalimide derivative) in dye-sensitized solar cell (DSSC). There are two parts of research in this dissertation based on two organic fluorophores with and without a carboxylic group. In Part I, an organic fluorophore without a carboxylic group, named as N-Bu, is doped into a mesoporous TiO2 photoanode by a two-step dipping procedure sequentially in the N-Bu and N719 solutions. The N-Bu fluorophore can be excited via absorbing ultraviolet light and then transfers the absorbed energy to the N719 sensitizing dye by means of the FRET effect when the N-Bu and N719 molecules are within the Förster radius. The high spectral overlap between the emission spectrum of fluorophore and the absorption spectrum of sensitizing dye is also advantageous for the FRET effect. Therefore, the FRET effect promotes the light harvesting of DSSC in the ultraviolet spectrum range and the incident photon to current conversion efficiencies (IPCE). An improved power conversion efficiency (PCE) of 8.13% is obtained for the fluorophore-doped (10-4 M) DSSC as compared with that without the doping of fluorophore (7.63%). In Part II, a 1,8-naphthalimide derivative with a carboxylic group, N-COOH, is doped into a mesoporous TiO2 film together with N719 by a co-adsorption method which is performed by dipping the mesoporous TiO2 photoanodes into the mixed solutions of N719 and N-Bu. The photobehavior of N-COOH is similar to the N-Bu fluorophore which is used in the Part I. Hence, the N-COOH fluorophore can also absorb the ultraviolet light and transit the absorbed energy to N719 by means of FRET. Because the N-COOH fluorophore can adsorb on the TiO2 surface with its carboxylic group as N719 does, an in-situ FRET system can be built up to induce more efficient energy transfer from the FRET donor (N-COOH) to the FRET acceptor (N719). The co-adsorption of N-COOH with N719 does not influence the dye-loading amount of N719 in the mesoporous TiO2 film, and it can further inhibit charge recombination owing to reduced contact area between TiO2 and electrolyte. The results show that the DSSCs with doping of the N-COOH fluorophore are efficient for 1 sun (AM1.5G) and indoor lighting conditions. Upon using optimal mixed solution (N719:N-COOH = 5:1), the PCE of DSSC under 1 sun illumination increases by 10.8 % (from 9.16 to 10.15 %), and that for T5 fluorescent lamps of 600 lux increases by 21 % (PCE from 16.46 to 19.92 % and Pmax from 31.77 to 38.44 μW/cm2), as compared with that adsorbing N719 only.
URI: http://hdl.handle.net/11455/99454
文章公開時間: 10000-01-01
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.