Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/99491
DC FieldValueLanguage
dc.contributor黃智峯zh_TW
dc.contributor.author楊承翰zh_TW
dc.contributor.authorCheng-Han Yangen_US
dc.contributor.other化學工程學系所zh_TW
dc.date2017zh_TW
dc.date.accessioned2020-03-26T06:45:30Z-
dc.identifier.citation[1] 丁昭義, 木材化學 1990. [2] 王秀華, 木材化學及應用 2002. [3] B. L. Browning, Institute of Paper Chemistry, Appleton, Wisconsin. 1967. [4] E. M. Fernandes, R. A. Pires, J. F. Mano and R. L. Reis, Progress in Polymer Science 2013, 38, 1415-1441. [5] P. Ross, R. Mayer and M. Benziman, Microbiological Reviews 1991, 55, 35-58. [6] ASTM, American Society for Testing and Materials 2007, D1695-07. [7] R. H. Marchessault, F. F. Morehead and N. M. Walter, Nature 1959, 184, 632-633. [8] A. Sehlinger, O. Kreye and M. A. R. Meier, Macromolecules 2013, 46, 6031-6037. [9] N. Lin, J. Huang, P. R. Chang, L. Feng and J. Yu, Colloids and Surfaces B: Biointerfaces 2011, 85, 270-279. [10] a) C. A. Browne, Journal of the American Chemical Society 1906, 28, 453-469; b) A. J. Brown, Journal Chemistry Society 1886, 49, 432. [11] M. Nogi and H. Yano, Advanced Materials 2008, 20, 1849-1852. [12] I. Kalashnikova, H. Bizot, B. Cathala and I. Capron, Langmuir 2011, 27, 7471-7479. [13] D. Roy, J. T. Guthrie and S. Perrier, Macromolecules 2005, 38, 10363-10372. [14] D. Klemm, D. Schumann, U. Udhardt and S. Marsch, Progress in Polymer Science 2001, 26, 1561-1603. [15] P. Gatenholm and D. Klemm, MRS Bull. 2010, 35, 208-213. [16] H. Yano, J. Sugiyama, A. N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita and K. Handa, Advanced Materials 2005, 17, 153-155. [17] L. E. Wise, M. Murphy and A. A. D''Addieco, Paper Trade J. 1946, 122, 35-42. [18] M. Nogi, S. Iwamoto, A. N. Nakagaito and H. Yano, Advanced Materials 2009, 21, 1595-1598. [19] M. Nogi, C. Kim, T. Sugahara, T. Inui, T. Takahashi and K. Suganuma, Applied Physics Letters 2013, 102, -. [20] A. L. Houssine Sehaqui, Qi Zhou, and Lars A. Berglund, Biomacromolecules 2010, 11, 4. [21] A. E. J. de Nooy, A. C. Besemer and H. van Bekkum, Recueil des Travaux Chimiques des Pays-Bas 1994, 113, 165-166. [22] A. Isogai and Y. Kato, Cellulose 1998, 5, 153-164. [23] A. Isogai, T. Saito and H. Fukuzumi, Nanoscale 2011, 3, 71-85. [24] T. Saito and A. Isogai, Biomacromolecules 2004, 5, 1983-1989. [25] T. Saito, M. Hirota, N. Tamura and A. Isogai, Journal of Wood Science 2010, 56, 227-232. [26] T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux and A. Isogai, Biomacromolecules 2009, 10, 1992-1996. [27] S. Fujisawa, T. Ikeuchi, M. Takeuchi, T. Saito and A. Isogai, Biomacromolecules 2012, 13, 2188-2194. [28] H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto and A. Isogai, Biomacromolecules 2008, 10, 162-165. [29] I. Homma, H. Fukuzumi, T. Saito and A. Isogai, Cellulose 2013, 20, 2505-2515. [30] 西久保忠臣, 高分子化學 2014. [31] W. Huang, J.-B. Kim, M. L. Bruening and G. L. Baker, Macromolecules 2002, 35, 1175-1179. [32] J.-K. Chen, C.-Y. Hsieh, C.-F. Huang, P. M. Li, S.-W. Kuo and F.-C. Chang, Macromolecules 2008, 41, 8729-8736. [33] C. Yoshikawa, S. Hattori, T. Honda, C.-F. Huang and H. Kobayashi, Materials Letters 2012, 83, 140-143. [34] X. Huang and M. J. Wirth, Macromolecules 1999, 32, 1694-1696. [35] a) M. Passerrini and L. Simone, Gazzetta Chimica Italiana 1921, 51, 126-129; b) M. Passerrini and G. Ragni, Gazzetta Chimica Italiana 1931, 61, 964-969. [36] S. S. Sheiko, B. S. Sumerlin and K. Matyjaszewski, Progress in Polymer Science 2008, 33, 759-785. [37] D. Roy, J. T. Guthrie and S. Perrier, Macromolecules 2005, 38, 10363-10372. [38] L. Fan, H. Chen, Z. Hao and Z. Tan, Journal of Polymer Science Part A: Polymer Chemistry 2013, 51, 457-462. [39] H. Liu, D. Liu, F. Yao and Q. Wu, Bioresour Technol 2010, 101, 5685-5692. [40] S. ZE, Toxicology. 2002 Oct;180(1):65-77. 2002 Oct. [41] M. r. D. Diaz Kirmser EM, MnC Gonzalez, Rosso JA, J Agric Food Chem 2010, 58, 12858-12862. [42] K. J. H. W.T. Tsai , Y.M. Chang, C.C. Lo, Bioresource Technology 2005, 96, 657-663. [43] N. Isobe, X. Chen, U. J. Kim, S. Kimura, M. Wada, T. Saito and A. Isogai, J Hazard Mater 2013, 260, 195-201. [44] K.-Y. A. Lin, Y.-T. Heish, T.-Y. Tsai and C.-F. Huang, Cellulose 2015, 22, 3261-3274. [45] P. Liu, K. Oksman and A. P. Mathew, J Colloid Interface Sci 2016, 464, 175-182. [46] a) ; b) B. I. S. H. I. X U E - P I N L I A O ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005, 39, 5. [47] 蔡宗運, 表面起始ATRP 於TEMPO 氧化改質之奈米纖維素及高透光光學紙膜之應用 2014. [48] 李育德、嚴文義、莊祖煌, 聚合物物性 2010. [49] K. Littunen, U. Hippi, T. Saarinen and J. Seppala, Carbohydr Polym 2013, 91, 183-190.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/99491-
dc.description.abstract本研究主要是探討纖維素氧化時間與奈米化程度的關係,並應用在除草劑吸附;另一主題也將兩種形式的奈米纖維做成複合材料,並分析複材性質差異。 將去除了木質素(Lingin)、半纖維素(Hemicellulose)以及礦物質等雜質的纖維素紙漿以TEMPO(2,2,6,6-tetramethylpiperidine-1-oxyl)進行表面改質,使纖維素上的羥基(-OH)經由氧化還原反應轉化為(-COONa)之官能基團,並得膠狀奈米纖維素(TEMPO-Oxidized Cellulose Nanofibers, TOCN),利用電導度滴定曲線可計算出改質分率,經由IR及碳譜分析來觀察其改質前後的變化,SEM下確實可見平均直徑隨氧化時間增加而變更細,並用XRD確認結晶度仍在72.4%以上。利用BET比表面積分析可得24小時氧化時間奈米纖維可以到達175.69 m2/g。 將TOCN水溶液凍乾後打粉,在巴拉刈溶液中進行吸附實驗,氧化24小時的TOCN吸附度能到93.6mg/g移除率96.8%,並可發現TOCN在中性及鹼性下吸附度較佳,酸性下幾乎不吸附巴拉刈;TOCN吸附巴拉刈行為在等溫吸附式中較接近Langmuir理論,並隨溫度升高越不利於吸附巴拉刈。 另外TOCN水膠再與BiB(2-bromoisobutyrylbromide)進行酯化反應,可使用化學分析影像能譜儀(ESCA)進行表面分析,觀察相關官能基比例的消長,並使用犧牲起始劑EBiB(Ethyl 2-bromoisobutyrate)進行奈米纖維素之甲基丙烯酸甲酯表面原子轉移自由基聚合(ICAR ATRP),可得分子量在14000到26000之間,PDI=1.17,我們可製備出聚甲基丙烯酸甲酯接枝之奈米級纖維素(Poly(methyl methacrylate)-grafted TOCN)。其一再將改質後的奈米纖維素與商品聚甲基丙烯酸甲酯(Mn=60K)混參形成複合材料,而另一對照是使用原TOCN直接混摻相同商品聚甲基丙烯酸甲酯,並摻入質量分率1、3、5、8%的奈米纖維或接枝奈米纖維。光學性質上接枝奈米纖維隨混摻比例增加,透光度由84%急遽下降到33%;而純奈米纖維複材透光度則是由79.5%降至62%。熱性質中Td 5%熱裂解溫度純奈米纖維320°C且混摻比例對熱裂解溫度影響不大,而接枝奈米纖維則從293°C下降到206°C。機械性質上接枝奈米纖維接枝纖維機械應力與應變量先增強後減弱,純奈米纖維則機械應力與應變量皆增強 (1~8%中)。zh_TW
dc.description.abstractIn this study, we mainly discussed the relationship between the oxidation time of cellulose and the degree of nanocrystallization, and applied it to the herbicide. Another theme also made two kinds of nanofibers into composite materials and analyzed the difference of the properties of the composites. The surface of cellulose pulp, which removes impurities such as Lingin, Hemicellulose and minerals, is modified with TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), and the cellulose (-OH) is converted into a functional group of (-COONa) by a redox reaction and a rhodium-like cellulose (TEMPO-Oxidized Cellulose Nanofibers, TOCN) can be used to determine the modified fraction. The results show that the average diameter increases with the increase of the oxidation time, and the crystallinity is confirmed by XRD, and the crystallinity is still above 72.4%. Using BET specific surface area analysis, the nanofibers can reach 175.69 m2 / g for 24 hours. The TOCN solution was lyophilized and then pulverized. The adsorption experiment was carried out in the Bala mash solution. The TOCN adsorption rate was 93.6mg / g for 24 hours, and the removal rate was 96.8%. It can be found that the adsorption of TOCN in neutral and alkaline is better, and there is almost no adsorption of barrageon under acidity. TOCN adsorption is more similar to the theory of Langmuir in isothermal adsorption, and with the temperature rising is not conducive to adsorption of Bala. In addition, TOCN water gel was further reacted with BiB (2-bromoisobutyrylbromide), an esterification reaction, and the surface analysis was carried out using a chemical analysis image energy spectrometer (ESCA) to observe the growth and decline of the relevant functional groups, and used sacrificial starter EBiB (Ethyl 2-bromoisobutyrate) for methylcellulose methyl methacrylate surface atomic transfer radical polymerization (ICAR ATRP), which could get molecular weight between 14000 and 26000, PDI = 1.17. We can prepare poly (methyl methacrylate) -grafted TOCN grafted with polymethyl methacrylate. The one was the modified nano-cellulose and commercial product polymethyl methacrylate (Mn = 60K)which was mixed with the formation of composite materials, while the other control was the use of the original TOCN which was directly mixed with the same commodity polymethyl methacrylate, and was mixed with the mass fraction of 1,3,5,8% of the nanofibers or grafted nanofibers. The optical properties of the grafted nanofibers increased with the mixing ratio, and the transmittance decreased from 84% to 33%, while the transmittance of the pure nanofibers decreased from 79.5% to 62%. The decompositional temperature of pure nanofibers of Td 5% thermal was 320 ° C, and the mixing ratio had little effect on the thermal deconpositional temperature, while the grafted nanofibers decreased from 293 ° C to 206 ° C. The mechanical stress and strain of the grafted nanofibers first increased and then decreased, and the mechanical stress and strain both increased (1 ~ 8%).en_US
dc.description.tableofcontents摘要 i 英文摘要 iii 總目錄 v 圖目錄 viii 表目錄 xii 第一章、緒論 1 第二章、文獻回顧 2 2.1纖維素及其衍生物 2 2.1.1 木質素 (Lignin) 3 2.1.2 半纖維素 (Hemicellulose) 4 2.1.3 纖維素 (Cellulose) 5 2.1.4 全纖維素(holocellulose)分類介紹 7 2.2 纖維素奈米化 8 2.2.1 強酸水解法 (Nanocrystal cellulose (NCC)) 8 2.2.2 細菌培養法 (Bacterial nanocellulose (BNC)) 9 2.2.3 強鹼降解法 11 2.2.4 TEMPO氧化法(TEMPO-Oxidized Cellulose Nanofibrils (TOCN)) 13 2.3 原子轉移自由基聚合 16 2.4 接枝方法 19 2.5 高分子摻合 21 2.6 奈米纖維素混摻於聚甲基丙烯酸甲酯 22 2.7 奈米纖維素應用於巴拉刈去除 28 2.7.1巴拉刈(paraquat)毒性機理 28 2.7.2 巴拉刈吸附材料種類 29 2.7.3 吸附原理及吸附方程式 31 2.8 研究動機 35 第三章、實驗內容 36 3.1 藥品及溶劑 36 3.2 儀器設備 37 3.3 實驗步驟 41 3.3.1 以酯化反應對奈米纖維素進行表面改質 42 3.3.2 酯化後奈米纖維素之接枝 43 3.3.3 TOCN-g-PMMA檢量線製作 44 3.3.4 TOCN-g-PMMA與TOCN混摻市售PMMA 44 3.3.5 製備奈米纖維素吸附材料 45 3.3.6 巴拉刈吸附校正曲線之建立 45 3.3.7 巴拉刈吸附 45 第四章、結果與討論 47 4.1 纖維素奈米化改質測定 47 4.1.1 氧化分率(Degree of oxidation (DO)) 47 4.1.2 奈米纖維素羧酸化度(degree of carboxylic acid) 48 4.1.3 SEM微結構測定 51 4.1.4 FT-IR官能基鑑定 55 4.1.5 XRD圖譜 56 4.1.6 奈米纖維素水溶液UV/Vis測定 58 4.1.7 奈米纖維比表面積分析 59 4.2 巴拉刈吸附測試 62 4.2.1 不同氧化時間奈米纖維素對巴拉刈吸附測試 62 4.2.2 奈米纖維素於不同酸鹼度吸附現象 64 4.2.3 等溫吸附式(Adsorption isotherm) 66 4.2.4 動力吸附模式 69 4.2 奈米纖維複合材料開發 71 4.2.1 奈米纖維素之酯化反應 71 4.2.2 表面起始之原子轉移自由基聚合(SI-ATRP) 76 4.2.3 TOCN-g-PMMA接觸角測試 84 4.2.4 TOCN-g-PMMA分散性測試 86 4.2.5 奈米纖維複合材料外觀 90 4.2.6 奈米纖維複合材料 TGA測試 92 4.2.7 奈米纖維複合材料DMA測試 94 4.2.8 奈米纖維複合材料拉伸測試 96 第五章、結論 98 第六章、參考文獻 100zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2017-07-31起公開。zh_TW
dc.subject奈米纖維素zh_TW
dc.subject巴拉刈吸附zh_TW
dc.subject表面改質zh_TW
dc.subject引發劑連續產生活化劑的原子轉移自由基聚合zh_TW
dc.subject奈米纖維複合材料zh_TW
dc.subjectcellulose nanofiberen_US
dc.subjectparaquat adsorptionen_US
dc.subjectsurface modificationen_US
dc.subjectInitiators for Continuous Activator Regenerationen_US
dc.subjectnanocompositesen_US
dc.title以TEMPO氧化法調控奈米纖維素改質率於吸附巴拉刈之應用與其結合表面起始ATRP用於製備PMMA奈米複合材料zh_TW
dc.titleModifications of Nanocelluloses via TEMPO-oxidized Method to the Application of Paraquat Removal and Its Combination of Surface-initiated ATRP to the Preparation of PMMA Nanocompositesen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2017-07-31zh_TW
dc.date.openaccess2017-07-31-
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.