Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/99499
DC FieldValueLanguage
dc.contributor林慶炫zh_TW
dc.contributorChing-Hsuan Linen_US
dc.contributor.author李冠緯zh_TW
dc.contributor.authorKuan-Wei Leeen_US
dc.contributor.other化學工程學系所zh_TW
dc.date2017zh_TW
dc.date.accessioned2020-03-26T06:45:33Z-
dc.identifier.citation1. Wang, P. J.; Lin, C. H.; Chang, S. L.; Shih, S.-J. Polymer Chemistry 2012, 3, (10), 2867. 2. Liu, Y.-L.; Hsiue, G.-H.; Lee, R.-H.; Chiu, Y.-S. Journal of Applied Polymer Science 1997, 63, (7), 895-901. 3. Cai, S. X.; Lin, C. H. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43, (13), 2862-2873. 4. Lin, C. H.; Cai, S. X.; Lin, C. H. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43, (23), 5971-5986. 5. Lin, C. H.; Tian, Y. W., Monofunctional, bifunctional, and multifunctional phosphinated phenols and their derivatives and preparation method thereof. Google Patents: 2014. 6. Yee, A. F.; Pearson, R. A. Journal of Materials Science 1986, 21, (7), 2462-2474. 7. Hedrick, J. L.; Yilgör, I.; Wilkes, G. L.; McGrath, J. E. Polymer Bulletin 1985, 13, (3), 201-208. 8. Zolotukhin, M. G.; Colquhoun, H. M.; Sestiaa, L. G.; Rueda, D. R.; Flot, D. Macromolecules 2003, 36, (13), 4766-4771. 9. Lin, C. H.; Wang, Y. R.; Feng, Y. R.; Wang, M. W.; Juang, T. Y. Polymer 2013, 54, (6), 1612-1620. 10. Lin, C. H.; Chen, J. C.; Huang, C. M.; Jehng, J. M.; Chang, H. C.; Juang, T. Y.; Su, W. C. Polymer 2013, 54, (26), 6936-6941. 11. Lin, C. H.; Chou, Y. C.; Shiao, W. F.; Wang, M. W. Polymer 2016, 97, 300-308. 12. Bogert, M. T.; Renshaw, R. R. Journal of the American Chemical Society 1908, 30, (7), 1135-1144. 13. Yeo, H.; Goh, M.; Ku, B.-C.; You, N.-H. Polymer 2015, 76, 280-286. 14. Dong, W.; Guan, Y.; Shang, D. RSC Advances 2016, 6, (26), 21662-21671. 15. Chung, C.-L.; Tzu, T.-W.; Hsiao, S.-H. Journal of Polymer Research 2006, 13, (6), 495-506. 16. Kumar, S. V.; Yu, H.-C.; Choi, J.; Kudo, K.; Jang, Y.-H.; Chung, C.-M. Journal of Polymer Research 2010, 18, (5), 1111-1117. 17. Yang, C.-P.; Su, Y.-Y. Polymer 2005, 46, (15), 5797-5807. 18. Hu, Z.; Wang, M.; Li, S.; Liu, X.; Wu, J. Polymer 2005, 46, (14), 5278-5283. 19. Yi, L.; Li, C.; Huang, W.; Yan, D. Polymer 2015, 80, 67-75. 20. Hougham, G.; Tesoro, G.; Shaw, J. Macromolecules 1994, 27, (13), 3642-3649. 21. Sasaki, S. Journal of Polymer Science Part C: Polymer Letters 1986, 24, (6), 249-252. 22. Hwang, H.-J.; Li, C.-H.; Wang, C.-S. Polymer International 2006, 55, (11), 1341-1349. 23. Hwang, H.-J.; Hsu, S.-W.; Chung, C.-L.; Wang, C.-S. Reactive and Functional Polymers 2008, 68, (8), 1185-1193. 24. Nakamura, S.; Arima, M. International Journal of Polymer Analysis and Characterization 1995, 1, (1), 75-86. 25. Takeuchi, K.; Suzuki, E.; Morinaga, K.; Arita, K., Active ester resin, method for producing the same, thermosetting resin composition, cured product of the thermosetting resin composition, semiconductor encapsulating material, pre-preg, circuit board, and build-up film. Google Patents: 2014. 26. Dershem, S. M., Hydrolytically resistant thermoset monomers. Google Patents: 2013. 27. Yeager, G. W.; Colborn, R. E., Poly(phenylene ether)-polyvinyl thermosetting resin. Google Patents: 2002. 28. Ishii, K.; Norisue, Y.; Ohno, D.; Miyamoto, M., Vinyl compound and cured product thereof. Google Patents: 2006. 29. Zhang, S.; Li, Y.; Ma, T.; Zhao, J.; Xu, X.; Yang, F.; Xiang, X.-Y. Polymer Chemistry 2010, 1, (4), 485-493. 30. Yi, L.; Li, C.; Huang, W.; Yan, D. Journal of Polymer Science Part A: Polymer Chemistry 2016, 54, (7), 976-984. 31. Chen, W.; Zhou, Z.; Yang, T.; Bei, R.; Zhang, Y.; Liu, S.; Chi, Z.; Chen, X.; Xu, J. Reactive and Functional Polymers 2016, 108, 71-77. 32. Maneesha Garg , A. S. J. K. Q. Pure & Applied Physics 2006, 44, Janury 2006, pp.66-70. 33. Chernykh, A.; Agag, T.; Ishida, H. Macromolecules 2009, 42, (14), 5121-5127. 34. Liu, Y. L.; Chou, C. I. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43, (21), 5267-5282. 35. Agag, T.; Takeichi, T. Macromolecules 2001, 34, (21), 7257-7263. 36. Jin, L.; Agag, T.; Yagci, Y.; Ishida, H. Macromolecules 2011, 44, (4), 767-772. 37. Oie, H.; Mori, A.; Sudo, A.; Endo, T. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50, (22), 4756-4761. 38. Liu, Y. L.; Yu, J. M. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, (6), 1890-1899. 39. Andreu, R.; Reina, J.; Ronda, J. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, (18), 6091-6101. 40. Agag, T.; Arza, C. R.; Maurer, F. H.; Ishida, H. Macromolecules 2010, 43, (6), 2748-2758. 41. Wang, C. F.; Su, Y. C.; Kuo, S. W.; Huang, C. F.; Sheen, Y. C.; Chang, F. C. Angewandte Chemie International Edition 2006, 45, (14), 2248-2251. 42. Kiskan, B.; Yagci, Y.; Ishida, H. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, (2), 414-420. 43. Tuzun, A.; Kiskan, B.; Alemdar, N.; Erciyes, A. T.; Yagci, Y. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, (19), 4279-4284. 44. Baqar, M.; Agag, T.; Ishida, H.; Qutubuddin, S. Polymer 2011, 52, (2), 307-317. 45. Agag, T.; Arza, C. R.; Maurer, F. H.; Ishida, H. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49, (20), 4335-4342. 46. Holly, F. W.; Cope, A. C. Journal of the American Chemical Society 1944, 66, (11), 1875-1879. 47. Burke, W. Journal of the American Chemical Society 1949, 71, (2), 609-612. 48. Ning, X.; Ishida, H. Journal of Polymer Science Part B: Polymer Physics 1994, 32, (5), 921-927. 49. Russell, V. M.; Koenig, J. L.; Low, H. Y.; Ishida, H. Journal of applied polymer science 1998, 70, (7), 1413-1425. 50. Brunovska, Z.; Liu, J. P.; Ishida, H. Macromolecular Chemistry and Physics 1999, 200, (7), 1745-1752. 51. Lin, C. H.; Chang, S. L.; Hsieh, C. W.; Lee, H. H. Polymer 2008, 49, (5), 1220-1229. 52. Takeichi, T.; Kano, T.; Agag, T. Polymer 2005, 46, (26), 12172-12180. 53. Lin, C. H.; Chang, S. L.; Shen, T. Y.; Shih, Y. S.; Lin, H. T.; Wang, C. F. Polymer Chemistry 2012, 3, (4), 935. 54. Nagai, A.; Kamei, Y.; Wang, X.-S.; Omura, M.; Sudo, A.; Nishida, H.; Kawamoto, E.; Endo, T. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, (7), 2316-2325. 55. Baqar, M.; Agag, T.; Ishida, H.; Qutubuddin, S. Polymer 2011, 52, (2), 307-317. 56. Takeichi, T.; Guo, Y.; Agag, T. Journal of Polymer Science Part A: Polymer Chemistry 2000. 57. Agag, T.; Arza, C. R.; Maurer, F. H. J.; Ishida, H. Macromolecules 2010, 43, (6), 2748-2758. 58. Agag, T.; Arza, C. R.; Maurer, F. H. J.; Ishida, H. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49, (20), 4335-4342. 59. Chang, S. L.; Lin, C. H. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, (11), 2430-2437. 60. A. P. Terent''ev, Y. D. M. Doklady Akad. Nauk. USSR 1955, 91, (103). 61. Endres, G. F.; Hay, A. S.; Eustance, J. W. The Journal of Organic Chemistry 1963, 28, (5), 1300-1305. 62. Paul D. Sybert, C. Y. H., Sterling B. Brown, Dennis J. McFay, William L. Gately, John A. Tyrell, Robert A. Florence, Polyphenylene ether-polyester copolymers, precursors therefor, compositions containing said copolymers, and methods for their preparation 1991. 63. Panayota Tsotra, F. S., Ulrich Weidmann.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/99499-
dc.description.abstract第一部份為以一鍋法製備磷系含羥基的雙胺單體1,並以一步溶液閉環法製備具有重複單元中含有羥基的磷系聚醯亞胺,本研究將重覆單元中的羥基分別以甲基丙烯酸酐 ( Methacrylic anhydride ) 和3-苯基-2-丙烯醯氯 ( Cinnamoyl chloride ) 進行酯化,將羥基取代成具活性酯基的Methacrylic結構 ( P3-MMA P4-MMA) 和 Cinnamoyl 結構 ( P3-cin和P4-cin ) 的聚醯亞胺。 同時,會將市售含羥基的雙胺單體,核心分別為CH3和CF¬3,並以一步溶液閉環法製備成含羥基的聚醯亞胺,再將羥基以甲基丙烯酸酐酯化 ( B4-MMA和F4-MMA ),討論並觀察核心結構的改變,對熱性質和介電性質的影響。   利用活性酯基與市售環氧樹脂HP7200進行固化,避免高極性二級醇生成,同時,氫鍵含量下降,固化後熱性質也會下降,因此本研究導入的 Methacrylic結構 和 Cinnamoyl 結構皆本身帶有C=C雙鍵,自身可進行交聯固化,使固化物擁有更高交聯密度,進而保有良好熱性質並提升介電性質。 第二部分為研究將市售的2,6二甲基苯醚結構的雙酚寡具物SA90 末段進行改質,先以親核取代後再氫化還原,合成出鄰位無甲基的二胺寡聚物,分別成功合成出末端具有Benzoxazine 結構的寡聚物和合成出主鏈型Polybenzoxazine,並與市售環氧樹酯HP7200在無催化劑下進行交聯固化,同時,Benzoxazine 結構可自身加熱開環交聯固化,使固化物擁有更高的交聯密度,進而提升熱性質,且相較於市售的SA90與市售環氧樹酯HP7200固化物,有較佳的熱性質和介電性質。zh_TW
dc.description.abstractPart I. Synthesis and characterization of low-dielectric crosslinkable phosphinated polyimides for high-frequency communication. In the first part of this work, a phosphinated hydroxy diamine was prepared via a one-pot procedure. Based on the phosphinated hydroxy diamine, a series of polyimides with hydroxy linkage in the repeat unit was prepared by thermal imidization. The esterification of hydroxy unit with methacrylic anhydride and cinnamoyl chloride were performed to generate active ester-containing polyimides with methacrylic moiety ( P3-MMA and P4-MMA ) and cinnamoyl moiety ( P3-cin and P4-cin ) in the repeat unit. The other two other active ester-containing polyimides with methacrylic moiety ( B4-MMA and F4-MMA ) in the repeat unit were also prepared for property comparison. The active ester –containing polyimides with active ester act as epoxy harderner for a commercial epoxy resin, HP7200. Epoxy thermosets with high-Tg and moderate-to-low dielectric properties can be achieved. Part II. Synthesis and characterization of oligo(phenylene oxide)s-containing benzoxazine for high-frequency communication. In the second part of this work, a benzoxazine (BZSA90) and polybenzoxazine (PBZSA90) based on a amine-end capped oligo (2,6-dimethyl phenylene) (HSA90), which was prepared from the a phenol-end capped oligo (2,6-dimethyl phenylene) (SA 90). After self-curing or curing with epoxy resin (HP 7200), thermosets with high-Tg and very low dissipation factor can be obtained. Through comparing the data bwteen the BZSA90-cured epoxy thermoset and the SA90-cured epoxy thermoset, we found the Tg was significatnt enhanced, while the good dielectric properties can be maintained.en_US
dc.description.tableofcontents摘要 i Abstract iii 目錄 v Scheme 目錄 x Figure 目錄 xiii Table 目錄 xvi Part I. Synthesis and characterization of low-dielectric crosslinkable phosphinated Polyimides for high-frequency communication. 1 一、研究主旨 2 二、文獻回顧 3 2.1 環氧樹脂 3 2.1.1 環氧樹脂簡介 3 2.1.2 環氧樹脂硬化劑 4 2.1.3 環氧樹脂增韌劑改質 8 2.1.4 具活性官能基聚醚高分子 9 2.2聚醯亞胺 12 2.2.1聚醯亞胺簡介 12 2.2.2具活性官能基聚醯亞胺 15 2.3 低介電常數材料 16 2.4 研究動機 26 三、研究方法與步驟 28 3.1 藥品及溶劑 28 3.2 儀器設備 30 3.3 化合物合成 35 3.3.1含酚雙胺單體的合成單體(1) 35 3.3.2 Polyimide P3的合成 36 3.3.3 Polyimide P3 MMA化 37 3.3.4 Polyimide P3 Cinnamoyl化 38 3.3.5 Polyimide P4的合成 39 3.3.6 Polyimide P4 MMA化 40 3.3.7 Polyimide P4 Cinnamoyl化 41 3.3.8 Polyimide B4的合成 42 3.3.9 Polyimide B4 MMA化 43 3.3.10 Polyimide F4的合成 44 3.3.11 Polyimide F4 MMA化 45 3.4 薄膜與厚膜製備 46 3.4.1 E-P3、E-P3-MMA、E-P3-cin、E-P4、E-P4-MMA、E-P4-cin、E-B4-MMA與E-F4-MMA固化物 46 3.4.2 C-P3-MMA、C-P3-cin、C-P4-MMA與C-P4-cin固化物 46 四、結構鑑定與分析 48 4.1 P3光譜鑑定與分析 48 4.1.1 1H-NMR光譜鑑定分析 48 4.1.2 31P-NMR光譜鑑定分析 49 4.1.3傅立葉轉換紅外線光譜(FTIR)鑑定 50 4.1.4膠體滲透層析儀光譜(GPC)鑑定 51 4.2 P3-MMA光譜鑑定與分析 52 4.2.1 1H-NMR光譜鑑定分析 52 4.2.2 31P-NMR光譜鑑定分析 53 4.2.3傅立葉轉換紅外線光譜(FTIR)鑑定 54 4.2.4膠體滲透層析儀光譜(GPC)鑑定 55 4.3 P3-cin光譜鑑定與分析 56 4.3.1 1H-NMR光譜鑑定分析 56 4.3.2 31P-NMR光譜鑑定分析 57 4.3.3傅立葉轉換紅外線光譜(FTIR)鑑定 58 4.3.4膠體滲透層析儀光譜(GPC)鑑定 59 4.4 P4光譜鑑定與分析 60 4.4.1 1H-NMR光譜鑑定分析 60 4.4.2 31P-NMR光譜鑑定分析 61 4.4.3傅立葉轉換紅外線光譜(FTIR)鑑定 62 4.4.4膠體滲透層析儀光譜(GPC)鑑定 63 4.5 P4-MMA光譜鑑定與分析 64 4.5.1 1H-NMR光譜鑑定分析 64 4.5.2 31P-NMR光譜鑑定分析 65 4.5.3傅立葉轉換紅外線光譜(FTIR)鑑定 66 4.5.4膠體滲透層析儀光譜(GPC)鑑定 67 4.6 P4-cin光譜鑑定與分析 68 4.6.1 1H-NMR光譜鑑定分析 68 4.6.2 31P-NMR光譜鑑定分析 69 4.6.3傅立葉轉換紅外線光譜(FTIR)鑑定 70 4.6.4膠體滲透層析儀光譜(GPC)鑑定 71 4.7 B4光譜鑑定與分析 72 4.7.1 1H-NMR光譜鑑定分析 72 4.7.2傅立葉轉換紅外線光譜(FTIR)鑑定 73 4.7.3膠體滲透層析儀光譜(GPC)鑑定 74 4.8 B4-MMA光譜鑑定與分析 75 4.8.1 1H-NMR光譜鑑定分析 75 4.8.2傅立葉轉換紅外線光譜(FTIR)鑑定 76 4.8.3膠體滲透層析儀光譜(GPC)鑑定 77 4.9 F4光譜鑑定與分析 78 4.9.1 1H-NMR光譜鑑定分析 78 4.9.2 傅立葉轉換紅外線光譜(FTIR)鑑定 79 4.9.3膠體滲透層析儀光譜(GPC)鑑定 80 4.10 F4-MMA光譜鑑定與分析 81 4.10.1 1H-NMR光譜鑑定分析 81 4.10.2傅立葉轉換紅外線光譜(FTIR)鑑定 82 4.10.3膠體滲透層析儀光譜(GPC)鑑定 83 五、結果與討論 84 5.1 單體(1)的合成探討 84 5.2 Polyimide PI MMA 合成探討 85 5.3聚醯亞胺溶解度測試 89 5.4 Polyimide PI固化條件探討 91 5.4.1 P3- series、P4- series、B4- series與 F4- series固化物 91 5.4.2 DSC測試 95 5.4.3 PI-MMA DMA 測試 98 5.5 廣角X-Ray測試 104 5.6熱性質分析 108 5.6.1 P3-series 和P4-series之熱性質探討 108 5.6.2 B4-series 和F4-series之熱性質探討 109 5.7熱穩定性分析 114 5.7.1 P3-series 和P4-series之熱穩性探討 114 5.7.2 B4-series 和F4-series之熱性質探討 115 5.8 材料親疏水性測試 121 5.9薄膜介電常數分析 123 5.9.1 P3-series和P4-series薄膜介電常數分析 123 5.9.2 B4-series和F4-series薄膜介電常數分析 124 六、結論 127 Part II. Synthesis and characterization of oligo(phenylene oxide)s-containing benzoxazine for high-frequency communication. 132 一、研究主旨 133 二、文獻回顧 135 2.1氧代氮代苯并環己烷( Benzoxazine ) 135 2.1.1 Benzoxazine簡介 135 2.1.2 高分子型 Benzoxazine 預聚物 140 2.1.3 合成含 Benzoxazine 結構之高分子材料 143 2.2 Benzoxazin結構與環氧樹脂之反應 148 2.3聚氧二甲苯(PPO)介紹 150 2.4研究動機 152 三、研究方法與步驟 153 3.1 藥品及溶劑 153 3.2 儀器設備 155 3.3 化合物合成 159 3.3.1雙硝基寡聚物NSA90的合成 159 3.3.2雙胺基寡聚物HSA90的合成 160 3.3.3寡聚物BSA90的合成 161 3.3.4寡聚物3BZSA90的合成 162 3.3.5寡聚物1BZSA90的合成 163 3.3.6聚合物PBZSA90的合成 164 3.4 薄膜與厚膜製備 165 3.4.1 E-SA90、E-3BZSA90、E-1BZSA90與E-PBZSA90固化物 165 3.4.2 C-3BZSA90、C-1BZSA90與C-PBZSA90固化物 165 四、結構鑑定與分析 167 4.1 NSA90光譜鑑定與分析 167 4.1.1 1H-NMR光譜鑑定分析 167 4.1.2 傅立葉轉換紅外線光譜(FTIR)鑑定 168 4.2 HSA90光譜鑑定與分析 169 4.2.1 1H-NMR光譜鑑定分析 169 4.2.2 傅立葉轉換紅外線光譜(FTIR)鑑定 170 4.3 BSA90光譜鑑定與分析 171 4.3.1 1H-NMR光譜鑑定分析 171 4.3.2 傅立葉轉換紅外線光譜(FTIR)鑑定 172 4.4 3BZSA90光譜鑑定與分析 173 4.4.11H-NMR光譜鑑定分析 173 4.4.2 傅立葉轉換紅外線光譜(FTIR)鑑定 174 4.5 1BZSA90光譜鑑定與分析 175 4.5.11H-NMR光譜鑑定分析 175 4.5.2 傅立葉轉換紅外線光譜(FTIR)鑑定 176 4.6 PBZSA90光譜鑑定與分析 177 4.6.11H-NMR光譜鑑定分析 177 4.6.2 傅立葉轉換紅外線光譜(FTIR)鑑定 178 五、結果與討論 179 5.1 Benzoxazine合成探討 179 5.2 Benzoxazine溶解度測試 180 5.3 Benzoxazine固化條件探討 181 5.3.1 SA90、3BZSA90、1BZSA90與PBZSA90固化物 181 5.3.2 DSC 測試 184 5.3.3傅立葉轉換紅外線光譜(FTIR)鑑定與分析 187 5.4熱性質分析 189 5.5熱穩定性分析 193 5.6介電常數分析 197 六、結論 198 七、參考資料 201zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2020-07-28起公開。zh_TW
dc.subject聚醯亞胺zh_TW
dc.subject環氧樹酯zh_TW
dc.subject活性酯zh_TW
dc.subject低介電zh_TW
dc.subject聚氧二甲苯zh_TW
dc.subject氧代氮代苯并環己烷zh_TW
dc.subjectpolyimideen_US
dc.subjectepoxy resinsen_US
dc.subjectactive esteren_US
dc.subjectlow-dielectricen_US
dc.subjectphenylene oxideen_US
dc.subjectbenzoxazineen_US
dc.title高頻軟性印刷電路板用低介電交聯型磷系聚醯亞胺及含氧二甲苯寡聚物之氧代氮代苯并環己烷合成與性質研究zh_TW
dc.titleSynthesis and characterization of low-dielectric crosslinkable phosphinated polyimides and oligo(phenylene oxide)s-containing benzoxazine for high-frequency communication.en_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2020-07-28zh_TW
dc.date.openaccess2020-07-28-
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館

Show simple item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.