Please use this identifier to cite or link to this item:
標題: 高頻通訊用可交聯型磷系低介電聚氧二甲苯與以木質素為基質之高剛性氣體分離膜之合成與性質研究
Synthesis and properties of crosslinkable phosphinated low-dielectric polyphenylene oxide for high frequency communication and lignin-based high rigid gas separation membrane
作者: 谷祖強
Zu-Chiang Gu
關鍵字: 聚氧二甲苯
polyphenylene oxide
Low dielectric
High thermal property
Epoxy resin
Gas separation
High thermal property
引用: 1. Shieh, J.-Y. and C.-S. Wang, Effect of the organophosphate structure on the physical and flame-retardant properties of an epoxy resin. Journal of Polymer Science Part A: Polymer Chemistry, 2002. 40(3): p. 369-378. 2. Wang, C.-S.S., J.-Y, Polymer. 1998: p. 39, (23), 5819-5826. 3. ougham, G.T., G.; Shaw, , Macromolecules 1994: p. 27, (13), 3642-3649. 4. Sasaki, S., Journal of Polymer Science Part C: Polymer Letter, 1986: p. (6), 249-252. 5. Nakamura, S.A., M, nternational Journal of Polymer Analysis and Characterization. 1995: p. 1, (1), 75-86. 6. Dershem, S.M., Hydrolytically resistant thermoset monomers. p. US834407. 7. Hwang, H.-J.L., C.-H.; Wang, C.-S., Polymer International, 2006: p. 55, (11), 1341-1349. 8. Hwang, H.-J.H., S.-W.; Chung, C.-L.; Wang, C.-S. , Hwang, H.-J.; Hsu, S.-W.; Chung, C.-L.; Wang, C.-S. . Polymers, 2008: p. 68, (8), 1185-1193. 9. Polyphenyl ether resin composite and prepreg and copper clad laminate made of polyphenyl ether resin composite. p. US20140044918. 10. Ishii, K.N., Y.; Ohno, D.; Miyamoto, M. , Vinyl compound and cured product thereof.: p. US6995195. 11. Hay, A.S., Polymerization by oxidative coupling: Discovery and commercialization of PPO® and Noryl® resins. Journal of Polymer Science Part A: Polymer Chemistry, 1998. 36(4): p. 505-517. 12. Endres, G.F., A.S. Hay, and J.W. Eustance, Polymerization by Oxidative Coupling. V. Catalytic Specificity in the Copper-Amine-catalyzed Oxidation of 2,6-Dimethylphenol1a. The Journal of Organic Chemistry, 1963. 28(5): p. 1300-1305. 13. Risse, W., et al., Preparation and characterization of poly[oxy(2,6-dimethyl-1,4-phenylene)] with functional end groups. Die Makromolekulare Chemie, 1985. 186(9): p. 1835-1853. 14. Nava, H. and V. Percec, Functional polymers and sequential copolymers by phase transfer catalysis. 18. Synthesis and characterization of α,ω-bis(2,6-dimethylphenol)–poly(2,6-dimethyl-1,4-phenylene oxide) and α,ω-bis(vinylbenzyl)–poly(2,6-dimethyl-1,4-phenylene oxide) oligomers. Journal of Polymer Science Part A: Polymer Chemistry, 1986. 24(5): p. 965-990. 15. Connell, J.W., J.G. Smith Jr, and P.M. Hergenrother, Oxygen plasma-resistant phenylphosphine oxide-containing polyimides and poly(arylene ether heterocycle)s: 1. Polymer, 1995. 36(1): p. 5-11. 16. Nunoshige, J., et al., Mechanical and Dielectric Properties of a New Polymer Blend Composed of 1,2-Bis(vinylphenyl)ethane and Thermosetting Poly(phenylene ether) Copolymer Obtained from 2,6-Dimethylphenol and 2-Allyl-6-methylphenol. Polym. J, 2007. 39(8): p. 828-833. 17. Lin, K.-Y., et al., New manganese catalyzed regiocontrolled synthesis of poly(2,5-dialkyl-1,4-phenylene oxide)s. Journal of Applied Polymer Science, 2009. 111(3): p. 1501-1507. 18. 黃致僥, 新型具支鏈環氧基之聚氧二甲苯之合成、鑑定及其熱性質研究,國立嘉義大學應用化學研究所碩士論文. 民國96年. 19. Leu, T.S.W., C. S. J Appl Polym Sci. 2004: p. 92, 410. 20. Corporation, S.B.I., US 6,352,782 B2. 21. Huang, C.C.Y., M. S.; Liang, M. J Polym Sci Part A: Polym Chem. 2006: p. 44, 5875 22. Res., R.W.I.E.C., 2002: p. 1393−1411. 23. Brunetti, A.B., P.; Drioli, E.; Barbieri, G. Membrane Gas Separation; Wiley: Chichester, Membrane Handbook, Van Nostrand Reinhold, New York. 1992. 24. L.M. Robeson, J.M., Sci, 1991: p. 62, 165. 25. Lloyd M. Robeson, J.M., Sci, 2008: p. 320, 390. 26. Shaver, A., et al., Poly(2,6-dimethyl-1,4-phenylene oxide) blends with a poly(arylene ether ketone) for gas separation membranes. Polymer, 2017. 114: p. 135-143. 27. Langsam, M.B., W. F., nternational Congress on Membranes and Membrane Processes, Proceedings of ICOM ''90, Chicago. 1990: p. Vol. 1, pp 809– 811. 28. Song, G., et al., Gas transport properties of polyimide membranes based on triphenylamine unit. High Performance Polymers, 2016: p. 0954008316681061. 29. Ma, X., et al., Synthesis and Gas Transport Properties of Hydroxyl-Functionalized Polyimides with Intrinsic Microporosity. Macromolecules, 2012. 45(9): p. 3841-3849. 30. McKeown, N.B., et al., Polymers of Intrinsic Microporosity (PIMs): Bridging the Void between Microporous and Polymeric Materials. Chemistry – A European Journal, 2005. 11(9): p. 2610-2620. 31. Budd, P.M., et al., Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chemical Communications, 2004(2): p. 230-231. 32. Du, N., et al., Polymer nanosieve membranes for CO2-capture applications. Nat Mater, 2011. 10(5): p. 372-375. 33. Li, F.Y., et al., High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development. Macromolecules, 2012. 45(3): p. 1427-1437. 34. Fang, W., L. Zhang, and J. Jiang, Gas Permeation and Separation in Functionalized Polymers of Intrinsic Microporosity: A Combination of Molecular Simulations and Ab Initio Calculations. The Journal of Physical Chemistry C, 2011. 115(29): p. 14123-14130. 35. Tocci, E., et al., Intrinsic Microporosity Polymers (tb–pims) Membrane of New Generation: Molecular Modelling and Permeation Properties. Procedia Engineering, 2012. 44: p. 113-115. 36. Carta, M., et al., An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science, 2013. 339(6117): p. 303-307. 37. Bezzu, C.G., et al., A Spirobifluorene-Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation. Advanced Materials, 2012. 24(44): p. 5930-5933. 38. Dai*b, W.H.a.a.Y., Cavity partition and functionalization of a [2+3] organic molecular cage by inserting polar PQO bonds. The Royal Society of Chemistry 2016: p. 9267--9270. 39. Chatel, G. and R.D. Rogers, Review: Oxidation of Lignin Using Ionic Liquids An Innovative Strategy To Produce Renewable Chemicals. ACS Sustainable Chemistry & Engineering, 2013. 2(3): p. 322-339. 40. Alonso, D.M., S.G. Wettstein, and J.A. Dumesic, Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews, 2012. 41(24): p. 8075-8098. 41. Alunga, K.R., et al., Catalytic Oxidation of Lignin-Acetoderivatives: A Potential New Recovery Route for Value-Added Aromatic Aldehydes from Acetoderivatives. Catalysis Science & Technology, 2015. 42. Zakzeski, J., et al., The catalytic valorization of lignin for the production of renewable chemicals. Chemical reviews, 2010. 110(6): p. 3552-3599. 43. Gosselink, R., et al., Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN). Industrial Crops and Products, 2004. 20(2): p. 121-129. 44. Chakar, F.S. and A.J. Ragauskas, Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 2004. 20(2): p. 131-141. 45. Wang, S., Y. Lin, and F. Chu. Molecular cloning of caffeoyl-CoA-3-O-methyltransferase gene from Chamaecyparis formosensis and lignin analyzing in its transgenic tobacco. in The Secondary International Symposium on Research into. 2006. 46. Fache, M., et al., Vanillin, a promising biobased building-block for monomer synthesis. Green Chemistry, 2014. 16(4): p. 1987-1998. 47. da Silva, E.B., et al., An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chemical Engineering Research and Design, 2009. 87(9): p. 1276-1292. 48. Ramachandra Rao, S. and G.A. Ravishankar, Vanilla flavour: production by conventional and biotechnological routes. Journal of the Science of Food and Agriculture, 2000. 80(3): p. 289-304. 49. Wong, Z., K. Chen, and J. Li, Formation of vanillin and syringaldehyde in an oxygen delignification process. Bioresources, 2010. 5(3): p. 1509-1516. 50. Pinto, P.C.R., C.E. Costa, and A.E. Rodrigues, Oxidation of lignin from Eucalyptus globulus pulping liquors to produce syringaldehyde and vanillin. Industrial & Engineering Chemistry Research, 2013. 52(12): p. 4421-4428. 51. Benitez, F.J., et al., Oxidation of acetovanillone by photochemical processes and hydroxyl radicals. Journal of Environmental Science and Health, Part A, 2005. 40(12): p. 2153-2169. 52. Harrison, B.M. and F.G. Priest, Composition of Peats Used in the Preparation of Malt for Scotch Whisky Production Influence of Geographical Source and Extraction Depth. Journal of agricultural and food chemistry, 2009. 57(6): p. 2385-2391. 53. Gonter, K., E. Takács, and L. Wojnárovits, High-energy ionising radiation initiated decomposition of acetovanillone. Radiation Physics and Chemistry, 2012. 81(9): p. 1495-1498. 54. Zhu, H., et al., Lignin depolymerization via an integrated approach of anode oxidation and electro-generated H 2 O 2 oxidation. RSC Advances, 2014. 4(12): p. 6232-6238. 55. Sanders, D.F., et al., Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer, 2013. 54(18): p. 4729-4761.
摘要: Part I : 本論文探討工程塑膠聚氧二甲苯(PPO)的改質與合成,一般聚氧二甲苯因製備時分子量過大導致於黏性太高難以加工,並且在使用時必須而外添加阻燃劑,但添加阻燃劑會使得工程塑膠的熱穩定性下降,所以本篇利用低分子量的聚氧二甲苯衍生物(SA90)經由溴化反應,導入溴原子關能基團,接著把具有阻燃效果的磷系單體(DOPO)導入於低分子量的聚氧二甲苯衍生物,其聚氧二甲苯主鍊具有阻燃的效果並且使用此種磷系單體可以使得聚氧二甲苯衍生物的熱穩定性上升。 將得到的聚氧二甲苯經由末端改直再藉由與環氧樹脂或是交聯劑(TAIC)固化後可得具有高玻離轉移溫度且低介電常數與損失以及低吸水性的工程塑膠聚氧二甲苯。 Part II : 薄膜分離技術廣泛應用於海水淡化,血液透析,以及氣體分離如O2/N2分離,CO2/CH4分離,以及H2/CH4分離等。薄膜分離不需經由相轉變即可進行分離,為一節省能源之程序。薄膜材料是決定氣體分離效果的主要因素,高的氣體穿透率及選擇率,良好的機械性質以及耐久性為重要的特性因此本實驗設計出由木質素提煉出來之香草醛單體來製備出高剛性氣體分離膜,已達到氣體分離的效果。
文章公開時間: 2020-07-28
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.