Please use this identifier to cite or link to this item:
標題: 高頻通訊用高交聯密度低介電聚氧二甲苯之合成與性質探討
Synthesis and properties of high-crosslink density, low-dielectric polyphenylene oxide for high-frequency communication application
作者: 鄭家凱
Jia-Kai Jheng
關鍵字: 聚氧二甲苯
polyphenylene oxide
active ester
high crosslink density
low dielectric
epoxy resin
引用: 1. Ishii, Y.; Oda, H.; Arai, T.; Katayose, T. Syntheses and Properties of Allylated Poly(2,6-dimethyl-1,4-phenylene ether). Microelectronics Technology 1995, 614 (614), 485-503. 2. Maex, K.; Baklanov, M. R.; Shamiryan, D.; lacopi, F.; Brongersma, S. H.; Yanovitskaya, Z. S. Low dielectric constant materials for microelectronics. Journal of Applied Physics 2003, 93 (11), 8793-8841. 3. Volksen, W.; Miller, R. D.; Dubois, G. Low Dielectric Constant Materials. Chemical Reviews 2010, 110 (1), 56-110. 4. J., M. S.; P., G. J.; E., M. M.; O., S. E.; H., T. P. Development of a Low‐Dielectric‐Constant Polymer for the Fabrication of Integrated Circuit Interconnect. Advanced Materials 2000, 12 (23), 1769-1778. 5. Hougham, G.; Tesoro, G.; Shaw, J. Synthesis and Properties of Highly Fluorinated Polyimides. Macromolecules 1994, 27 (13), 3642-3649. 6. Yuusuke, S.; Yuriko, O.; Izumi, I.; Ikuka, C.; Taketo, I.; Tohru, Y. Synthesis of Polyphenylene Ether Derivatives: Estimation of Their Dielectric Constants. Macromolecular Chemistry and Physics 2003, 204 (15), 1876-1881. 7. G., T. Epoxy resins‐chemistry and technology, 2nd Edition, Clayton A. May, Ed., Marcel Dekker, New York, 1988, 1,288 pp. . Journal of Polymer Science Part C: Polymer Letters 1988, 26 (12), 539-539. 8. Pierre, C. Process of preparing synthetic resins. US Patent 2324483A 1943. 9. Nakamura, S.; Arima, M. Network structure and glass transition of epoxy resins cured with active ester. Journal of Thermal Analysis 1993, 40 (2), 613-619. 10. Nakamura, S.; Arima, M. Characterization of the Network Structure o Epoxy Resins Cured with Active Esters. International Journal of Polymer Analysis and Characterization 1995, 1 (1), 75-86. 11. L., S. V. Internal plasticization: The effect of chemical structure. Journal of Polymer Science 1947, 2 (2), 142-156. 12. Takeuchi, K.; Suzuki, E.; Morinaga, K.; Arita, K. Active ester resin, method for producing the same, thermosetting resin composition, cured product of the thermosetting resin composition, semiconductor encapsulating material, pre-preg, circuit board, and build-up film. US Patent 8791214B2 2014. 13. Arita, K.; Suzuki, E. Thermosetting resin composition, cured product thereof, active ester resin, semiconductor encapsulating material, prepreg, circuit board, and build-up film. US Patent 8669333B2 2014. 14. Chen, C. H.; Gu, Z. C.; Tsai, Y. L.; Jeng, R. J.; Lin, C. H. Identification of the reaction mechanism between phenyl methacrylate and epoxy and its application in preparing low-dielectric epoxy thermosets with flexibility. Polymer 2018, 140, 225-232. 15. Dershem, S. M. Hydrolytically resistant thermoset monomers. U.S. Patent 8344076B2 2013. 16. Chen, C.-H.; Lee, K.-W.; Lin, C.-H.; Ho, M.-J.; Hsu, M.-F.; Hsiang, S.-J.; Huang, N.-K.; Juang, T.-Y. High-Tg, Low-Dielectric Epoxy Thermosets Derived from Methacrylate-Containing Polyimides. Polymers 2018, 10 (1), 27. 17. Chen, C.-H.; Liu, C.-H.; Ariraman, M.; Lin, C.-H.; Juang, T.-Y. Phosphinated Poly(aryl ether)s with Acetic/Phenyl Methacrylic/Vinylbenzyl Ether Moieties for High-Tg and Low-Dielectric Thermosets. ACS Omega 2018, 3 (6), 6031-6038. 18. Lin, C.-M.; Chen, C.-H.; Lin, C.-H.; Su, W. C.; Juang, T.-Y. Using Dicyclopentadiene-Derived Polyarylates as Epoxy Curing Agents To Achieve High Tg and Low Dielectric Epoxy Thermosets. ACS Omega 2018, 3 (4), 4295-4305. 19. Terent''ev, A. P.; Mogilyanskii, Y. D. Doklady Akademii Nauk SSSR 1955, 103. 20. Hay, A. S.; Blanchard, H. S.; Endres, G. F.; Eustance, J. W. POLYMERIZATION BY OXIDATIVE COUPLING. Journal of the American Chemical Society 1959, 81 (23), 6335-6336. 21. J., S.; E., K. F.; J., M. W. Dynamic mechanical properties of poly(2,6‐dimethyl‐1,4‐phenylene ether)‐polystyrene blends. Polymer Engineering & Science 1970, 10 (3), 133-138. 22. Wilhelm, R.; Walter, H.; Dieter, F.; Ludwig, B. Preparation and characterization of poly[oxy(2,6‐dimethyl‐1,4‐phenylene)] with functional end groups. Die Makromolekulare Chemie 1985, 186 (9), 1835-1853. 23. Hildeberto, N.; Virgil, P. Functional polymers and sequential copolymers by phase transfer catalysis. 18. Synthesis and characterization of α,ω‐bis(2,6‐dimethylphenol)–poly(2,6‐dimethyl‐1,4‐phenylene oxide) and α,ω‐bis(vinylbenzyl)–poly(2,6‐dimethyl‐1,4‐phenylene oxide) oligomers. Journal of Polymer Science Part A: Polymer Chemistry 1986, 24 (5), 965-990. 24. van Aert, H. A. M.; van Genderen, M. H. P.; van Steenpaal, G. J. M. L.; Nelissen, L.; Meijer, E. W.; Liska, J. Modified Poly(2,6-dimethyl-1,4-phenylene ether)s Prepared by Redistribution. Macromolecules 1997, 30 (20), 6056-6066. 25. Hann‐Jang, H.; Su‐Wen, H.; Chun‐Shan, W. Low dielectric and flame‐retardant properties of thermosetting redistributed poly(phenylene oxide). Journal of Vinyl and Additive Technology 2009, 15 (1), 54-59. 26. Lin, C.-Y.; Huang, C.-H.; Hu, C.-C.; Liu, Y.-L. Self-crosslinkable nitroxide-functionalized poly(2,6-dimethyl-1,4-phenylene oxide) through atom transfer radical coupling reaction. Polymer 2018, 135, 154-161. 27. Lee, T.-J.; Fang, Y.-D.; Yuan, W.-G.; Wei, K.-M.; Liang, M. Synthesis, structures and thermal properties of new class epoxide-terminated telechelic poly(2,6-dimethyl-1,4-phenylene oxide)s. Polymer 2007, 48 (3), 734-742. 28. Chih‐Chiao, H.; Ming‐Syun, Y.; Mong, L. Synthesis of new thermosetting poly(2,6‐dimethyl‐1,4‐phenylene oxide)s containing epoxide pendant groups. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (20), 5875-5886. 29. Wang, Y.; Cheng, S.; Li, W.; Huang, C.; Li, F.; Shi, J. Synthesis and Properties of Thermosetting Modified Polyphenylene Ether. Polymer Bulletin 2007, 59 (3), 391-402. 30. Ishii, K.; Norisue, Y.; Ohno, D.; Miyamoto, M. US Patent 6995195 B2 2006. 31. Fisher, S.; H. G., M. J.; Peters, E.; Plastics, S. I. Polyphenylene Ether Macromonomer: X. Vinyl Terminated Telechelic Macromers. 69th Annual Technical Conference of the Society of Plastics Engineers 2011 (ANTEC 2011), Boston, Mass., USA 2011, 2819-2822. 32. Yeager, G. W.; Colborn, R. E. US Patent 6352782 B2 2002. 33. Nunoshige, J.; Akahoshi, H.; Ueda, M. Molecular Weight Control of Thermosetting Poly(phenylene ether) Copolymer Produced by Heterogeneous Oxidative Coupling Polymerization. High Performance Polymers 2010, 22 (4), 458-467. 34. Chi, Y. M.; Tomoya, H.; Wen, S. H.; Mitsuru, U.; Wen‐Chang, C. Crosslinked copolymer with low dielectric constant and dissipation factor based on poly(2,6‐Dimethylphenol‐co−2,6‐Diphenylphenol) and a crosslinker. Journal of Polymer Science Part A: Polymer Chemistry 2016, 54 (19), 3218-3223. 35. Wang, Y.; Tao, Y.; Zhou, J.; Sun, J.; Fang, Q. Biobased Anethole-Functionalized Poly(phenylene oxides): New Low Dielectric Materials with High Tg and Good Dimensional Stability. ACS Sustainable Chemistry & Engineering 2018, 6 (7), 9277-9282. 36. René, N.; Helmut, K.; Hartwig, H. Synthesis of block copolymers with thermodynamically compatible chain segments: di‐ and triblock copolymers of polystyrene and poly(2,6‐dimethyl‐1,4‐phenylene oxide). Polymer International 2006, 55 (1), 108-117. 37. Bernhard, N.; Wolfgang, S. Simple Method for the Esterification of Carboxylic Acids. Angewandte Chemie International Edition in English 1978, 17 (7), 522-524. 38. Dı́ez-Barra, E.; Fraile, J. M.; Garcı́a, J. I.; Garcı́a-Verdugo, E.; Herrerı́as, C. I.; Luis, S. V.; Mayoral, J. A.; Sánchez-Verdú, P.; Tolosa, J. Polymer immobilization of bis(oxazoline) ligands using dendrimers as cross-linkers. Tetrahedron: Asymmetry 2003, 14 (7), 773-778. 39. Holger, S.; Claude, F.; Beat, R. P.; Dieter, S. Immobilization of BINOL by Cross‐Linking Copolymerization of Styryl Derivatives with Styrene, and Applications in Enantioselective Ti and Al Lewis Acid Mediated Additions of Et2Zn and Me3SiCN to Aldehydes and of Diphenyl Nitrone to Enol Ethers. Chemistry – A European Journal 2000, 6 (20), 3692-3705. 40. Seebach, D. TADDOL and titanium ( ) taddolate dendrimers and composition. U.S. Patent 6441112 B1 2002. 41. Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A. Introduction to Spectroscopy 2015, 5th Edition, 67. 42. Ariraman, M.; Sasikumar, R.; Alagar, M. Shape memory effect on the formation of oxazoline and triazine rings of BCC/DGEBA copolymer. RSC Advances 2015, 5 (85), 69720-69727. 43. Periyasamy, T.; Asrafali, S. P.; Muthusamy, S. New benzoxazines containing polyhedral oligomeric silsesquioxane from eugenol, guaiacol and vanillin. New Journal of Chemistry 2015, 39 (3), 1691-1702. 44. Liu, Y.; Zhang, J.; Li, Z.; Luo, X.; Jing, S.; Run, M. A pair of benzoxazine isomers from o-allylphenol and 4,4′-diaminodiphenyl ether: Synthesis, polymerization behavior, and thermal properties. Polymer 2014, 55 (7), 1688-1697.
摘要: 本論文將市售寡聚物型雙酚聚氧二甲苯(SA90)進行改質,成功製備出比市售產品OPE-2St更優異之塑膠材料,且具有能與環氧樹脂反應之官能基,優異的電氣性質使其更適合作為電子產品之材料。 首先合成具有苯乙烯結構之羧酸單體,並與SA90進行Steglich酯化反應,使材料含有活性酯基,且末端分別具有雙官能及四官能苯乙烯結構。自身交聯或與環氧樹脂反應之固化物具有優異的熱性質,其中C-OPE-E-2St、C-OPE-E-4St玻璃轉移溫度可達258 oC,熱膨脹係數為62 ppm/oC,Td5%為504 oC,而焦炭殘餘率於氮氣下可達36%。且因固化物具有高交聯密度,使得材料具有低透氧率(4.8 barrer)。 活性酯基之導入,使材料可與環氧樹脂反應,而與環氧樹脂反應之固化物E-OPE-E-2St、E-OPE-E-4St具有優異的電氣性質,介電常數(Dk)可達2.46,介電損失(Df)為千分之7。此外,所得固化物具有優異的機械性質,拉伸強度可高達98.89 MPa,斷裂延伸率可達8.71 %。
In this research, a commercially available oligo(2,6-dimethyl phenylene oxide) (SA90) was successfully modified into OPE-E-2St, OPE-E-4St. Esterified styrene having better curing thermosetting properties compare to commercially available OPE-2St, what esterified styrene having active ester functional group, which enable its capability to reacting with epoxy resin, and it gives excellent electrical properties, is more suitable for electronic products. First, a carboxylic acid containing styrene under go esterification with SA90 to carried out active ester based styrene. Two kind of compounds are prepared i) difunctional and ii) tetrafunctional styrene structures, respectively. The cured products under go crosslink themselves. It gives excellent thermal properties, C-OPE-E-2St and C-OPE-E-4St have a high glass transition temperature of 258 oC and coefficient of thermal expansion is 62 ppm/oC. Td5% is 504 oC, and their chair yield 36% at 600 oC under nitrogen. This characteristic nature is due to the high cross-link density of the cured thermosets, also it has low oxygen permeability (4.8 barrer). The introduction of active ester groups are reactive toward epoxy in forming a polymeric network thermoset. This cured thermosets like wise E-OPE-E-2St and E-OPE-E-4St have excellent electrical properties, such as dielectric constant (Dk) of 2.46, dielectric loss (Df) is 0.007. In addition, the resulting cured thermosets having excellent mechanical properties, also good tensile strength of up to 98.89 MPa, and also good tensile elongation of 8.71 %.
文章公開時間: 2021-07-30
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.