Please use this identifier to cite or link to this item:
標題: 低介電聚醚醯亞胺及環氧樹脂水性化之界面活性劑製備及應用
Synthesis, characterization and application of low-dielectric Polyetherimide and surfactants for epoxy/water emulsion
作者: 廖婉琳
Wan-Lin Liao
關鍵字: 低介電常數
引用: 1.Edwards, W. M.; Robinson, I. M., Polyimides of pyromellitic acid. US2710853 A: 1955. 2.Sroog, C. E. E., A. L.; Abramo, S. V.; Berry, C. E.; Edwards, W. M.; Olivier, K. L. Aromatic polypyromellitimides from aromatic polyamic acids. J. Polym. Sci. 1965, 3, 1373-90. 3.Kumar, D. Condensation polymerization of pyromellitic dianhydride with aromatic diamine in aprotic solvent: A reaction mechanism. Journal of Polymer Science: Polymer Chemistry Edition 1981, 19 (3), 795-805. 4.Yeo, H.; Goh, M.; Ku, B.-C.; You, N.-H. Synthesis and characterization of highly-fluorinated colorless polyimides derived from 4,4′-((perfluoro-[1,1′-biphenyl]-4,4′-diyl)bis(oxy))bis(2,6-dimethylaniline) and aromatic dianhydrides. Polymer 2015, 76, 280-286. 5.Dong, W.; Guan, Y.; Shang, D. Novel soluble polyimides containing pyridine and fluorinated units: preparation, characterization, and optical and dielectric properties. RSC Advances 2016, 6 (26), 21662-21671. 6.Chung, C.-L.; Tzu, T.-W.; Hsiao, S.-H. Organosoluble, Low-Colored Fluorinated Polyimides Based on 1,1-Bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]-1-phenyl-2,2,2-trifluoroethane. Journal of Polymer Research 2006, 13 (6), 495-506. 7.Kumar, S. V.; Yu, H.-C.; Choi, J.; Kudo, K.; Jang, Y.-H.; Chung, C.-M. Structure–property relationships for partially aliphatic polyimides. Journal of Polymer Research 2011, 18 (5), 1111-1117. 8.Yang, C.-P.; Su, Y.-Y. Colorless polyimides from 2,3,3′,4′-biphenyltetracarboxylic dianhydride (α-BPDA) and various aromatic bis(ether amine)s bearing pendent trifluoromethyl groups. Polymer 2005, 46 (15), 5797-5807. 9.Hu, Z.; Wang, M.; Li, S.; Liu, X.; Wu, J. Ortho alkyl substituents effect on solubility and thermal properties of fluorenyl cardo polyimides. Polymer 2005, 46 (14), 5278-5283. 10.Yi, L.; Li, C.; Huang, W.; Yan, D. Soluble polyimides from 4,4′-diaminodiphenyl ether with one or two tert-butyl pedant groups. Polymer 2015, 80, 67-75. 11.Kotov, B. V.; Gordina, T. A.; Voishchev, V. S.; Kolninov, O. V.; Pravednikov, A. N. Aromatic polyimides as charge transfer complexes. Polymer Science U.S.S.R. 1977, 19 (3), 711-716. 12.Liou, G.-S.; Maruyama, M.; Kakimoto, M. A.; Imai, Y. Preparation and properties of new soluble aromatic polyimides from 2, 2′-bis (3, 4-dicarboxyphenoxy) biphenyl dianhydride and aromatic diamines. Journal of Polymer Science Part A Polymer Chemistry 1998, 36 (12), 2021-2027. 13.Yan, J.; Wang, Z.; Gao, L.; Ding, M. Polyimides Derived from 3, 3 ‘-Bis (N-aminophthalimide). Macromolecules 2006, 39 (22), 7555-7560. 14.Kudo, K.; Nonokawa, D.; Li, J.; Shiraishi, S. Synthesis of optically active alicyclic polyimides from a chiral, nonracemic dianhydride. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40 (22), 4038-4044. 15.Zheng, H. B.; Wang, Z. Y. Polyimides derived from novel unsymmetric dianhydride. Macromolecules 2000, 33 (12), 4310-4312. 16.Xu, J.; He, C.; Chung, T. S. Synthesis and characterization of soluble polyimides derived from [1,1′;4′,1″]terphenyl-2′,5′-diol and biphenyl-2,5-diol. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39 (17), 2998-3007. 17.Hsiao, S.-H.; Chung, C.-L.; Lee, M.-L. Synthesis and characterization of soluble polyimides derived from 2′,5′-bis(3,4-dicarboxyphenoxy)-p-terphenyl dianhydride. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (4), 1008-1017. 18.Liaw, D. J.; Liaw, B. Y.; Lai, S. H. Synthesis and Characterization of New Cardo Polyamides and Polyimides bearing a 4‐Phenylcyclohexylidene Unit. Macromolecular Chemistry and Physics 2001, 202 (6), 807-813. 19.Imai, Y.; Maldar, N. N.; Kakimoto, M.-A. Synthesis and characterization of soluble polymides from 2,5-bis(4-aminophenyl)-3,4-diphenylthiophene and aromatic tetracarboxylic dianhydrides. Journal of Polymer Science: Polymer Chemistry Edition 1984, 22 (9), 2189-2196. 20.Jeong, H.-J.; Oishi, Y.; Kakimoto, M.-A.; Imai, Y. Synthesis and characterization of new soluble aromatic polyimides from 3,4-bis (4-aminophenyl)-2,5-diphenylfuran and aromatic tetracarboxylic dianhydrides. Journal of Polymer Science Part A: Polymer Chemistry 1991, 29 (1), 39-43. 21.Jeong, H.-J.; Kakimoto, M.-A.; Imai, Y. Synthesis and characterization of new soluble aromatic polyimides from 3,4-bis(4-aminophenyl)-2,5-diphenylpyrrole and aromatic tetracarboxylic dianhydrides. Journal of Polymer Science Part A: Polymer Chemistry 1991, 29 (12), 1691-1695. 22.Kim, S. D.; Lee, S.; Heo, J.; Kim, S. Y.; Chung, I. S. Soluble polyimides with trifluoromethyl pendent groups. Polymer 2013, 54 (21), 5648-5654. 23.Yang, C.-P.; Su, Y.-Y.; Wen, S.-J.; Hsiao, S.-H. Highly optically transparent/low color polyimide films prepared from hydroquinone- or resorcinol-based bis(ether anhydride) and trifluoromethyl-containing bis(ether amine)s. Polymer 2006, 47 (20), 7021-7033. 24.Hougham, G.; Tesoro, G.; Shaw, J. Synthesis and Properties of Highly Fluorinated Polyimides. Macromolecules 1994, 27 (13), 3642-3649. 25.Chen, B.-K.; Fang, Y.-T.; Cheng, J.-R. Synthesis of Low Dielectric Constant Polyetherimide Films. Macromolecular Symposia 2006, 242 (1), 34-39. 26.Watanabe, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Synthesis and characterization of polyimides with low dielectric constants from aromatic dianhydrides and aromatic diamine containing phenylene ether unit. Polymer 2005, 46 (16), 5903-5908. 27.Watanabe, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Synthesis and Characterization of Novel Low-k Polyimides from Aromatic Dianhydrides and Aromatic Diamine Containing Phenylene Ether and Perfluorobiphenyl Units. Polym. J 2006, 38 (1), 79-84. 28.Wang, C.; Xu, C.; Li, Q.; Chen, W.; Zhao, X. Synthesis of new fluorene-based poly (aryl ether) containing pendant tert-butyl groups for low dielectric materials. Colloid & Polymer Science 2015, 293 (1), 313. 29.Min Chao , K. K., Guanglei Wu & Dongna Zhang. Synthesis and Characterization of Novel Sulfone-containing Polyimides Molding Powder Derived from 2, 2-Bis[4-(4-aminophenoxy) phenyl] Sulfone and Aromatic Dianhydrides. Journal of Macromolecular Science, Part A 2012, 49 (7), 578-585. 30.Lu, Y.; Xiao, G.; Chi, H.; Dong, Y.; Hu, Z. Effects of tert-butyl substitutes of fluorinated diamine on the properties of polyimides. High Performance Polymers 2013, 25 (8), 894-900. 31.Chern, Y.-T.; Tsai, J.-Y. Low Dielectric Constant and High Organosolubility of Novel Polyimide Derived from Unsymmetric 1,4-Bis(4-aminophenoxy)-2,6-di-tert-butylbenzene. Macromolecules 2008, 41 (24), 9556-9564. 32.Chen, C. H. Synthesis and characterization of low-dielectric Polyetherimide for high-frequency communication. 2016. 33.Zhang, S.; Li, Y.; Ma, T.; Zhao, J.; Xu, X.; Yang, F.; Xiang, X.-Y. Organosolubility and optical transparency of novel polyimides derived from 2[prime or minute],7[prime or minute]-bis(4-aminophenoxy)-spiro(fluorene-9,9[prime or minute]-xanthene). Polymer Chemistry 2010, 1 (4), 485-493. 34.呂錦山. 通往世界之路— 貨櫃航運. 科學發展 2011, (468). 35.Menger, F. M.; Keiper, J. S. Gemini Surfactants. Angewandte Chemie International Edition 2000, 39 (11), 1906-1920. 36.Zhou, T.; Yang, H.; Xu, X.; Wang, X.; Wang, J.; Dong, G. Synthesis, surface and aggregation properties of nonionic poly(ethylene oxide) gemini surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 317 (1), 339-343. 37.Bunton, C. A.; Robinson, L. B.; Schaak, J.; Stam, M. F. Catalysis of nucleophilic substitutions by micelles of dicationic detergents. The Journal of Organic Chemistry 1971, 36 (16), 2346-2350. 38.Menger, F. M.; Littau, C. A. Gemini surfactants: a new class of self-assembling molecules. Journal of the American Chemical Society 1993, 115 (22), 10083-10090. 39.Krishnan, R. S. G.; Thennarasu, S.; Mandal, A. B. Self-Assembling Characteristics of A New Nonionic Gemini Surfactant. The Journal of Physical Chemistry B 2004, 108 (26), 8806-8816. 40.Acharya, D. P.; Gutierrez, J. M.; Aramaki, K.; Aratani, K.; Kunieda, H. Interfacial properties and foam stability effect of novel gemini-type surfactants in aqueous solutions. Journal of colloid and interface science 2005, 291 (1), 236-43. 41.Kumar, N.; Tyagi, R. Industrial Applications of Dimeric Surfactants: A Review. Journal of Dispersion Science and Technology 2014, 35 (2), 205-214. 42.Shigeru, O.; Naomichi, F. The Mechanism of the Alkaline Fusion of Diphenylsulfone. Bulletin of the Chemical Society of Japan 1966, 39 (10), 2260-2263. 43.Holmberg, K.; Jönsson, B.; Kronberg, B.; Lindman, B., Front Matter. In Surfactants and Polymers in Aqueous Solution, John Wiley & Sons, Ltd: 2003; pp i-xvi. 44.Hellgren, A.-C.; Weissenborn, P.; Holmberg, K. Surfactants in water-borne paints. Progress in Organic Coatings 1999, 35 (1), 79-87. 45.Klein, D. H.; Jörg, K. Two-component aqueous epoxy binders free of volatile organic content (VOC). Progress in Organic Coatings 1997, 32 (1), 119-125. 46.Elmore, J. D.; Kincaid, D. S.; Komar, P. C.; Nielsen, J. E. Waterborne epoxy protective coatings for metal. Journal of Coatings Technology 2002, 74 (931), 63-72. 47.Jim D. Elmore, L. S. C., Jerry R. Hite. EPOXY SYSTEMS AND AMINE POLYMER SYSTEMS AND METHODS FOR MAKING THE SAME 2013. 48.Guan, J.; Song, Y.; Lin, Y.; Yin, X.; Zuo, M.; Zhao, Y.; Tao, X.; Zheng, Q. Progress in Study of Non-Isocyanate Polyurethane. Industrial & Engineering Chemistry Research 2011, 50 (11), 6517-6527. 49.Steblyanko, A.; Choi, W.; Sanda, F.; Endo, T. Addition of five-membered cyclic carbonate with amine and its application to polymer synthesis. Journal of Polymer Science Part A: Polymer Chemistry 2000, 38 (13), 2375-2380. 50.Ochiai, B.; Inoue, S.; Endo, T. One-pot non-isocyanate synthesis of polyurethanes from bisepoxide, carbon dioxide, and diamine. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43 (24), 6613-6618. 51.Patist, A.; Bhagwat, S. S.; Penfield, K. W.; Aikens, P.; Shah, D. O. On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. Journal of Surfactants and Detergents 2000, 3 (1), 53-58. 52.Kartar S. Arora; Wiggins, M. S., Self-dispersing curable epoxy resin dispersions and coating compositions made therefrom US5760108 A: 1997.
摘要: [Part I] 本實驗以 2,6-di-tert-butyl-4-methoxyphenol 及3-tert-butyl-4-hydroxy-anisole為原料,經由四步驟合成四系列二胺單體。 接著將二胺單體與市售二酸酐以熱閉環法製備聚醚醯亞胺。 S-series擁有柔軟的核心,因此擁有較佳的有機溶解度,而F-series的核心較為剛硬,因此擁有較優異的玻璃轉移溫度,且導入雙官能第三丁基會使其醚鍵轉動不易,主鏈剛硬性提升,玻璃轉移溫度因而增加。而導入雙官能第三丁基之聚醯亞胺,因增加其立體障礙,自由體積因而增加,因此其溶解度較佳,同時,自由體積增加,使介電常數較低,其最低可達2.56。   [Part II] 本實驗以1,4-丁二醇二缩水甘油醚在二氧化碳(CO2)環境下形成環碳酸酯(Cyclic Carbonates),再與胺基反應形成末端具有胺基之前驅物,接著再與環氧樹脂反應即可得到具有親水核心鏈段與疏水末端環氧鏈端之界面活性劑(C-4 Oxyalkylene Epoxy)。 將合成之C-4 Oxyalkylene Epoxy添加至環氧樹脂與水中可使環氧樹脂水性化,且添加 3 Wt % 即可達到最小粒徑,目前此概念已由長春人造樹脂集團開發當中。
[Part I]Synthesis, characterization and application of low dielectric Polyetherimide Four novel aromatic diamines (S-T-NH2, F-T-NH2, S-DT-NH2, and F-DT-NH2) were successfully synthesized through four steps from 3-tert-butyl-4-hydroxyl-anisole. Two series of polyimides (S and F-series polyimide) were prepared based the four dimaines and three commercial dianhydride (PMDA, ODPA, and 6FDA). S-polyimides are soluble in common organic solvents because of the non-coplanar conformation of diphenylsulfone (ph-SO2-ph) linkage that retards the stacking of polyimide chains. On the other hand, F-polyimides has a better glass transition temperature due to the more coplanar conformation of perfluorobiphenyl linkage. The introduction of di-tert-butyl groups to increase the free volume, and thus improved the dielectric properties. Polyimides with dielectric constant as low as 2.56 U and dissipation factor as low as 4 mU can be obtained.  [Part II] Surfactants for epoxy/water emulsion A gemini surfactant (C-4-Oxyalkylene-Epoxy) with a core of hydroxyl urethane was successfully prepared through three steps from 1,4-butanediol diglycidyl ether. An emulsion of bisphenol A-type epoxy in water can be obtained using 3 wt% C-4-Oxyalkylene-Epoxy as a surfactant. The particle size of the emulsion is 760 nm, and does not precipitate during storage. After curing with a water-soluble hardener, epoxy thermosets with adhesion 5B can be achieved.
文章公開時間: 2020-07-28
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.