Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/99573
標題: 應用影像辨識技術來探討最適化固態培養灰白松露生長條件
Optimized Tuber borchii Culture Conditions on the Solid State Fermentation via Application of Image Recognition Technology
作者: 鄭欣怡
Sin-Yi Cheng
關鍵字: 影像辨識技術
灰白松露
固態培養
反應曲面法
Image recognition technology
Tuber borchii
Solid state fermentation
Response surface methodology
引用: [1]. Saritha, K., B. Prakash, G. Khedkar, and Y.M. Reddy, 'Mushrooms and Truffles: Role in the Diet', in Encyclopedia of Food and Health, B. Caballero, P.M. Finglas, and F. Toldrá, Editors. 2016, Kidlington, Oxford ; Waltham, MA : Academic Press is an imprint of Elsevier. p. 1-8. [2]. Volk, T.J., 'Fungi A2 - Levin, Simon A', in Encyclopedia of Biodiversity (Second Edition). 2013, Academic Press: Waltham. p. 624-640. [3]. Saltarelli, R., P. Ceccaroli, P. Cesari, E. Barbieri, and V. Stocchi, 'Effect of storage on biochemical and microbiological parameters of edible truffle species', Food Chemistry, 2008. 109(1): p. 8-16. [4]. Bahrani, Z., 'Race and ethnicity in Mesopotamian antiquity 1', World Archaeology, 2006. 38(1): p. 48-59. [5]. Bokhary, H.A. and S. Parvez, 'Chemical Composition of Desert Truffles Terfezia claveryi', Journal of Food Composition and Analysis, 1993. 6(3): p. 285-293. [6]. Wang, S. and M.F. Marcone, 'The biochemistry and biological properties of the world''s most expensive underground edible mushroom: Truffles', Food Research International, 2011. 44(9): p. 2567-2581. [7]. Dahham, S.S., S.S. Al-Rawi, A.H. Ibrahim, A.S. Abdul Majid, and A.M.S. Abdul Majid, 'Antioxidant, anticancer, apoptosis properties and chemical composition of black truffle Terfezia claveryi', Saudi Journal of Biological Sciences, 2016. [8]. Patel, S., 'Food, health and agricultural importance of truffles: a review of current scientific literature', Current Trends in Biotechnology and Pharmacy, 2012. 6(1): p. 15-27. [9]. Hamza, A., N. Zouari, S. Zouari, H. Jdir, S. Zaidi, M. Gtari, and M. Neffati, 'Nutraceutical potential, antioxidant and antibacterial activities of Terfezia boudieri Chatin, a wild edible desert truffle from Tunisia arid zone', Arabian Journal of Chemistry, 2016. 9(3): p. 383-389. [10]. Janakat, S., S. Al‐Fakhiri, and A.K. Sallal, 'A promising peptide antibiotic from Terfezia claveryi aqueous extract against Staphylococcus aureus in vitro', Phytotherapy Research, 2004. 18(10): p. 810-813. [11]. Dubost, N.J., B. Ou, and R.B. Beelman, 'Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity', Food Chemistry, 2007. 105(2): p. 727-735. [12]. Bellesia, F., A. Pinetti, B. Tirillini, and A. Bianchi, 'Temperature‐dependent evolution of volatile organic compounds in Tuber borchii from Italy', Flavour and Fragrance Journal, 2001. 16(1): p. 1-6. [13]. Culleré, L., V. Ferreira, B. Chevret, M.E. Venturini, A.C. Sánchez-Gimeno, and D. Blanco, 'Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography–olfactometry', Food Chemistry, 2010. 122(1): p. 300-306. [14]. Hussain, G. and I.M. Al-Ruqaie, 'Occurrence, chemical composition, and nutritional value of truffles: an overview', Pakistan Journal of Biological Sciences, 1999. 2(2): p. 510-514. [15]. Iotti, M., E. Lancellotti, I. Hall, and A. Zambonelli, 'The ectomycorrhizal community in natural Tuber borchii grounds', FEMS Microbiology Ecology, 2010. 72(2): p. 250-260. [16]. Bakker, M., J. Garbaye, and C. Nys, 'Effect of liming on the ectomycorrhizal status of oak', Forest Ecology and Management, 2000. 126(2): p. 121-131. [17]. Soccol, C.R., E.S.F.d. Costa, L.A.J. Letti, S.G. Karp, A.L. Woiciechowski, and L.P.d.S. Vandenberghe, 'Recent developments and innovations in solid state fermentation', Biotechnology Research and Innovation, 2017. [18]. Sabella, E., E. Nutricati, A. Aprile, A. Miceli, C. Negro, P. Rampino, M. Lenucci, and L. De Bellis, 'Tuber borchii Vitt. mycorrhiza protects Cistus creticus L. from heavy metal toxicity', Environmental and Experimental Botany, 2016. 130: p. 181-188. [19]. Leonardi, P., M. Iotti, S. Donati Zeppa, E. Lancellotti, A. Amicucci, and A. Zambonelli, 'Morphological and functional changes in mycelium and mycorrhizas of Tuber borchii due to heat stress', Fungal Ecology, 2017. 29: p. 20-29. [20]. Yeh, C.-W., S.-C. Kan, C.-C. Lin, C.-J. Shieh, and Y.-C. Liu, 'Polyhydroxylated steroids and triterpenoids from an entophytic fungus, Hypocreales sp. NCHU01 isolated from Tuber magnatum', Journal of the Taiwan Institute of Chemical Engineers, 2016. 64: p. 22-30. [21]. Zhang, Y., L. Wang, and H. Chen, 'Correlations of medium physical properties and process performance in solid-state fermentation', Chemical Engineering Science, 2017. 165: p. 65-73. [22]. 陳麗奾,在未設限環境下車牌的定位與辨識,資訊教育學系,1999,國立臺灣師範大學,p. 1-67。 [23]. 許伯誠,車牌辨識系統,電腦與通訊工程學系,2007,國立高雄第一科技大學,p. 1-73。 [24]. üge Çarıkçı, M. and F. Özen, 'A Face Recognition System Based on Eigenfaces Method', Procedia Technology, 2012. 1: p. 118-123. [25]. 李亭緯,利用人臉五官為特徵之人臉辨識系統,資訊工程學系,2008,國立中央大學,p. 1-51。 [26]. 黃崇竣,應用影像位移偵測於居家防盜系統,電子工程學系,2016,健行科技大學,p. 1-32。 [27]. 邱柏訊,陳信銘,鍾承君,簡大為與朱國華,'影像式火焰及煙霧偵測方法',前瞻科技與管理,2013. 3(1):p. 149-163。 [28]. Nguyen, K., C. Fookes, R. Jillela, S. Sridharan, and A. Ross, 'Long range iris recognition: A survey', Pattern Recognition, 2017. 72: p. 123-143. [29]. Chen, J.-H., M.-C. Su, R. Cao, S.-C. Hsu, and J.-C. Lu, 'A self organizing map optimization based image recognition and processing model for bridge crack inspection', Automation in Construction, 2017. 73: p. 58-66. [30]. Zhou, S.K., 'Chapter 1 - Introduction to Medical Image Recognition, Segmentation, and Parsing', in Medical Image Recognition, Segmentation and Parsing. 2016, Academic Press. p. 1-21. [31]. Hu, Y. and L. Nie, 'An aerial image recognition framework using discrimination and redundancy quality measure', Journal of Visual Communication and Image Representation, 2016. 37: p. 53-62. [32]. Ambra, R., B. Grimaldi, S. Zamboni, P. Filetici, G. Macino, and P. Ballario, 'Photomorphogenesis in the hypogeous fungus Tuber borchii: isolation and characterization of Tbwc-1, the homologue of the blue-light photoreceptor of Neurospora crassa', Fungal Genetics and Biology, 2004. 41(7): p. 688-697. [33]. Zhao, Z.-Y., Q. Zhang, Y.-F. Li, L.-L. Dong, and S.-L. Liu, 'Optimization of ultrasound extraction of Alisma orientalis polysaccharides by response surface methodology and their antioxidant activities', Carbohydrate Polymers, 2015. 119: p.101-109. [34]. Liu, Z., X. Ma, B. Deng, Y. Huang, R. Bo, Z. Gao, Y. Yu, Y. Hu, J. Liu, and Y. Wu, 'Development of liposomal Ganoderma lucidum polysaccharide: Formulation optimization and evaluation of its immunological activity', Carbohydrate Polymers, 2015. 117: p. 510-517. [35]. Gupta, V.K., M.W. Assmus, T.E. Beckert, and J.C. Price, 'A novel pH-and time-based multi-unit potential colonic drug delivery system. II. Optimization of multiple response variables', International Journal of Pharmaceutics, 2001. 213(1): p. 93-102. [36]. Ghadiri, M., S. Fatemi, A. Vatanara, D. Doroud, A.R. Najafabadi, M. Darabi, and A.A. Rahimi, 'Loading hydrophilic drug in solid lipid media as nanoparticles: Statistical modeling of entrapment efficiency and particle size', International Journal of Pharmaceutics, 2012. 424(1): p. 128-137. [37]. Yang, S., J. Chen, D. Zhao, D. Han, and X. Chen, 'Comparative study on preparative methods of DC-Chol/DOPE liposomes and formulation optimization by determining encapsulation efficiency', International Journal of Pharmaceutics, 2012. 434(1): p. 155-160. [38]. 黃嘉駿,嗜酸乳桿菌胞外多醣體醱酵製程,純化與結構鑑定,化學工程學系,2013,國立中興大學,p. 1-205。 [39]. 林純卉,探討 Aspergillus niger 和 Bacillus sp. 混菌在紡織染料中脫色與降解效果,生物科技學系,2010,國立台灣科技大學,p. 1-93。 [40]. 葉怡成,高等實驗計畫法,2009:五南圖書出版有限公司,p. 1-452。 [41]. Vadde, K.K., V.R. Syrotiuk, and D.C. Montgomery, 'Optimizing protocol interaction using response surface methodology', IEEE Transactions on Mobile Computing, 2006. 5(6): p. 627-639. [42]. Box, G.E. and D.W. Behnken, 'Some new three level designs for the study of quantitative variables', Technometrics, 1960. 2(4): p. 455-475. [43]. Box, G.E. and K.B. Wilson, 'On the experimental attainment of optimum conditions', in Breakthroughs in Statistics. 1992, Springer. p. 270-310. [44]. St, L. and S. Wold, 'Analysis of variance (ANOVA)', Chemometrics and Intelligent Laboratory Systems, 1989. 6(4): p. 259-272. [45]. Saltarelli, R., P. Ceccaroli, E. Polidori, B. Citterio, L. Vallorani, and V. Stocchi, 'A high concentration of glucose inhibits Tuber borchii mycelium growth: a biochemical investigation', Mycological Research, 2003. 107(1): p. 72-76
摘要: 固態基質培養是目前台灣商業化食用真菌培養的主流,本研究分三階段依序建構灰白松露菌(Tuber borchii)最適化固態生長培養基配方的生長模型,第一階段應用商業影像處理軟體及編寫影像數值分析程式來驗證目標圖形面積,驗證結果顯示影像分析面積與真實面積相差0.092 %,可靠性高。第二階段以PDA培養基培養灰白松露菌來驗證時間對菌絲擴散的微生物生長模型,研究結果表示灰白松露菌在PDA上的初始平均接菌面積為47.290 ± 9.532 mm2時,第24天平均生長面積為2640.785 ± 113.215 mm2,平均比生長速率為0.174 ± 0.0114 day-1。最後一階段探討灰白松露菌的最佳比生長速率的固態培養基組成成分,以Box-Behnken實驗設計法設計三階三變培養基配方,反應曲面法擬合比生長速率模型、變異數分析、脊型分析探討和模型驗證。研究結果顯示培養基中的Malt extract與Potato starch對灰白松露菌生長具有顯著性影響,而Glucose則沒有顯著性影響。RSM預測最佳的灰白松露菌比生長速率為0.211 day-1,而實際培養灰白松露菌的比生長速率結果為0.230 ± 0.0172 day-1。顯然培養基預測與實驗結果非常接近。因此,透過數學模型擬合能充分說明其可以作為預測灰白松露菌在Glucose、Malt extract和Potato starch三種培養基組合的比生長速率。
The solid state fermentation is the mainstream of commercial edible fungus cultiva-tion in Taiwan. In this study, the growth model of solid-type growth medium formula was established in three stages. The first step was to use the commercial image processing software, and writing an image analysis program to verify the target graphics area. The results showed the image analysis gave the real area where a difference of 0.092 % with high reliability. In the second step, the fungi growth model of mycelial was verified by culturing Tuber borchii in PDA medium. The results showed that the average area of the inoculated area was 47.290 ± 9.532 mm2 on the PDA. The average growth area was 2640.785 ± 113.215 mm2 on the 24th day, and its average specific growth rate was 0.174 ± 0.0114 day-1. The final step studied the compositions of the solid state medium of the optimized specific growth rate for Tuber borchii. The Box-Behnken experimental design method was used to design the Three-level three-factor for the recipes of culture medium. The response surface methodology was used to fit specific growth rate model, analysis of variance, path of steepest ascent, and model validation. The results showed that malt ex-tract and potato starch in the culture medium had significant effects on the growth of Tuber borchii, but glucose had no significant effect. The RSM predicted the specific growth rate of Tuber borchii was 0.211 day-1, and the specific growth rate of Tuber borchii was 0.230 ± 0.0172 day-1 by experiment. Obviously the prediction and experi-mental results matched very well. Therefore, the mathematic model could be used to fully predict the specific growth rate of the three medium combinations of glucose, malt extract and potato starch.
URI: http://hdl.handle.net/11455/99573
文章公開時間: 2020-08-25
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.