水黃皮種子發芽過程水分及貯藏養分含量的變化

陳美清 1) 許博行 2)

【摘要】

水黃皮種子於發芽過程中，水分含量、鮮重、乾重及貯藏物質的變化如下：
1. 水分含量於子葉及胚軸皆呈增加之趨勢；胚軸之鮮重與乾重亦顯著增加，而子葉則變化不明顯。
2. 胚軸與子葉之油脂含量均減少，且胚軸較子葉顯著。
3. 糧粉含量於胚軸及子葉中均減少。
4. 還原糖含量於胚根突出及胚芽伸長時顯著增加。

【關鍵詞】

水黃皮、種子發芽、貯藏養分。

Changes of water content and storage materials in seed of *Pongamia pinnata* during germination

Mei-Ching Chen 1) Bor-Hung Sheu 2)

國立中興大學

National Chung Hsing University

1) 臺灣省林業試驗所
 Taiwan Forestry Research Institute, Taipei.
2) 國立中興大學森林學系
 Dept. of Forestry, NCHU., Taichung.
【Abstract】

Water content, fresh weight, dry weight and storage materials in seeds of Pongamia pinnata were examined during germination. The results of experiment are as follows:

1. Water content increased significantly in hypocotyl and in cotyledon during germination. Fresh weight and dry weight rose very rapidly in hypocotyl, however, no significant changes in cotyledon.

2. Lipid content decreased in cotyledon and especially in hypocotyl during germination.

3. Starch content in hypocotyl and in cotyledon decreased during germination.

4. It was clear to find that the reducing sugar content in hypocotyl increased rapidly when radicle emerged and plumule elongated. Large amounts of the reducing sugar were present in cotyledon on the day that plumule elongated.

【Keywords】

Pongamia pinnata (L.) Merr, seed germination, storage materials.

一、前言：

本試驗旨在探討水黃皮（Pongamia pinnata (L.) Merr）種子發芽期間，胚軸（hypocotyl）及子葉（cotyledon）之水分含量、鮮重及乾物量的變化，與種子貯藏物質之油脂、澱粉及還原糖含量的變化，以了解種子發芽過程，貯藏物質的消長情形。

二、材料與方法：

(一) 材料：

供試種子採自中興大學校園。新鮮種子以 5 %之硫酸銅溶液消毒清洗後，播種於內置砂之培養皿中，置於植物生長箱，箱內溫度及照光時間分別設定為白天 30 ℃ 12 小時，暗夜 25 ℃ 12 小時。種子取出測定的日期分別為播種前及播種後第 2、4、6、8、10、12 天。
(2)方法：

1. 水分含量、鮮重及乾重之測定

取每一時期之水黃皮種子10粒，去其種皮，並分離胚軸及子葉，分別秤其總重量，即其鮮重。然後再將各樣品置於85℃烘箱中，經24小時烘乾後，再秤其乾重量，是為乾重。由鮮重與乾重求其含水量。每一時期以重複3次測定之。

2. 油脂含量之測定

此油脂含量之測定方法係參考Ching (1966) ，並經稍加修改後測定之：

(1)將方法1.烘乾之樣品分別置入三角錐瓶中，加50ml乙醚攪碎。
(2)攪碎的樣液分別盛裝於圓筒濾紙內，裝入脂肪抽出器（Soxhlet apparatus），注入約100ml乙醚，接上冷凝管。
(3)將油脂收集瓶置於45±5℃的定溫水浴上加熱，使乙醚沸騰，產生迴流以抽出樣品中的油脂。
(4)樣品經過16小時的抽取後，將收集瓶內之油脂洗出，置於蒸發皿中，再置於於50℃烘箱內，讓乙醚蒸發後，移至乾燥器中冷卻，秤其重量，除去蒸發皿重，即為樣品之全脂量。

3. 還原糖含量之測定

此還原糖含量之測定方法係參考Miller (1959)，並經稍加修改後測定之。

(1)秤取0.025g經乾燥之樣品，加入少許液態氫及8ml磷酸緩衝液（0.1M，pH4.6）研磨均勻後，以2800rpm離心10分鐘，收集上層液，重複3次後定量為25ml。
(2)取樣液0.2ml加DNS(0.1g之3,5 Dinitrosalicylic acid加入20ml 2N NaOH及50ml dis. H₂O後，加熱溶解，再加入30g Potassium sodium tartrate，最後定量為100ml) 2ml充分震盪後，置於沸水中加熱5分鐘，冷卻後在波長570nm讀取吸光度。以葡萄糖為標準液定量之。

4. 蛋白質含量之測定

(1)將方法3. 離心後之沉澱物30℃下烘乾，冷卻後加入2ml dis. H₂O，置於沸水浴中加熱15分鐘，取出加入70%(V/V) HClO₄，2ml後置於沸水中加熱15分鐘，取出再加入2ml 35%(V/V) HClO₄，再置於沸水中加熱15分鐘，冷卻後濾取，取1ml定量為25ml，再稀釋為300倍備用。
(2)取稀釋後之樣液 2ml加50 μl的90%酚（phenol），充分混合後，再以5ml濃硫酸(96%)於15～20秒內加完，靜置於室溫下30分鐘後，於波長485nm讀取吸光度。以葡萄糖為標準液定量之（Kochert，1987）。
三、結果與討論：

(一) 含水量、鮮重與乾重的變化

1. 含水量的變化：

水黃皮種子置於發芽皿中，子葉與胚軸的含水量即急速增加（圖 1），顯示種子吸水迅速，
而此吸水速度在子葉則於第 2 天即趨飽和，但胚軸則持續至第 4 天才達最大值。此結果與 Ching
（1966）以花旗松種子及 Ingle 等（1964）以玉米為材料的研究結果相吻合，也更進一步證實在
種子發芽過程，胚軸的吸水量較子葉為多。

![Graph showing water content (%) over days of germination](image)

圖1. 水黃皮種子發芽過程之含水量變化

2. 鮮重的變化：

鮮重的變化是以播種前（即第 0 天）為基準，每時期相對於第 0 天鮮重的百分比計之，結果
如圖 2。圖中顯示胚軸的鮮重在發芽的前 2 天幾無變化，惟至第 4 天開始增加之趨勢呈極為快速，
且此鮮重的增加持續至第 12 天。而子葉的鮮重在整個發芽過程則變化不明顯。種子吸收水分為
發芽過程的第一步，種子自開始吸水起，便因含水量的增加，重量不斷上升（Ching，
1966；Ingle et al., 1964）。其中尤以胚的鮮重變化更為明顯（Kao et al., 1980）。本試驗
的結果亦顯現在種子發芽過程中，胚軸的鮮重增加較顯著。

—74—
3. 乾重的變化：

乾重的變化亦以播種前（即第 0 天）為基準，每時期相對於第 0 天乾重的百分比計之，結果如圖 3 所示。水黃皮種子在發芽過程，胚軸乾重的增加情形與鮮重的增加情形具相同的趨勢，即乾重的增加在胚軸的變化非常顯著，但子葉中則變化不明顯。此因種子發芽初期，貯藏物質供胚軸發育使用，胚軸細胞急速分裂，使乾物量增加，致鮮重與乾重皆顯著增加。若與含水量的變化比較，可發現胚軸的含水量在第 4 天後即已達最高值，但此時鮮重與乾重還不斷上昇，顯示此上昇係由於胚軸細胞不斷分裂增加所形成的。
(二) 油脂含量之變化

種子發芽時，其油脂代謝過程中的第一個步驟，是藉油脂分解酵素作用，水解為一分子甘油與三分子脂肪酸以供發芽所需 (Wang et al., 1972；蘇禎揚，1972)。因此，發芽時，種子貯藏的油脂含量，一般會降低。依Kao (1973)之試驗指出，台灣二葉松發芽時，胚乳內的油脂由3.5 mg降至0.2 mg，而胚內油脂含量無顯著的變化。台灣五葉松之發芽種子，油脂亦於貯藏組織中遞減而胚內變化不顯著 (Kao et al., 1980)。本試驗結果則顯示 (圖4) 水黃皮的種子在發芽過程中，子葉的油脂含量由乾重之32.00%降至25.59%，胚軸則下降更鉅，自36.26%減至1.78%。顯然水黃皮種子發芽時，胚軸自身貯藏的油脂供應自身發育的量甚多，因此含量顯著較子葉下降為多，尤其於發芽的前4天，胚軸油脂的下降更形顯著。觀察本樹種種子發芽的情形，可發現種子置於發芽皿後，第4天胚根開始突出，此結果與油脂含量於發芽前4天的急速下降相比較，或可推論發芽的前4天胚軸的活性甚高，胚軸於此時期迅速生長，需要大量的養分供應，導致油脂含量於此時期急速下降。

![Graph](image)

圖4. 水黃皮種子發芽過程之油脂含量變化

(三) 澱粉含量之變化

種子發芽過程中，另一種貯藏物質——碳水化合物的消長，亦與發芽有關。種子內貯藏的碳水化合物主要以澱粉型式存在，當發芽所需時，會水解成簡單的糖類供生長之用 (Ching, 1966；Kao, 1969)。因此在種子發芽過程，澱粉含量會下降。本試驗以水黃皮為材料，亦可發現，不論於子葉或胚軸，澱粉含量皆因發芽經過時間的增加而下降（圖5），尤其是發芽的前4天下降更形顯著，如前所述，因本樹種種子發芽迅速，第4天即已見胚根突出，因此在前4天期間，大量的澱粉水
解供生長所需，致含量顯著下降。

![Graph showing starch content](image)

圖5. 水黃皮種子發過程之澱粉含量變化

四、還原糖含量之變化

還原糖含量的變化由圖6顯示，當種子發芽的第4天，亦即胚根突出時，還原糖含量在胚軸顯著增加，但子葉變化不顯著。發芽至第8天時，胚芽伸長，此時胚軸及子葉的還原糖含量又再度昇高。顯現在胚根及胚芽快速生長時，需有多量的能量供給發育所需，因此有較多的還原糖存在於胚軸或子葉中。

![Graph showing reducing sugars](image)

圖6. 水黃皮種子發過程之還原糖含量變化
四、參考文獻：

1. 郭幸榮 1976 不同產地杉木種子發芽及油脂含量之研究 台大農院研究報告 16(1), 45-51
2. 曾潤翔 1980 臺灣相思樹種子發芽時化學成分變化之探討 中國文化學院園藝學部研究生植物學組博士論文，152p
3. 劉清德 1988 種子生理，76-173 五洲出版社
4. 劉嘉昌 1963 林木種子發芽與水分之關係 台大實驗林林業研究 30, 1-7
5. 蘇穎揚 1972 種子發芽時的物質代謝 台大實驗林通訊 58, 1-4
6. Chang, Y. F., Cheng, T. C., and Ho, H. 1963 Biochemical studies on fat and carbohydrate metabolism during peanut seed germination. 台大農院研究報告 7(2), 12-25
10. Kao, C. 1969 Metabolic changes in seeds of Acacia confusa Merr. during germination (I) 台大實驗林研究報告 72, 1-6
17. Wang, T. T., Su, J. Y., and Kao, C. 1972 Biochemical changes in seed of Taiwan red pine during germination. 中華林學季刊 5(1), 37-44

（民國八十一年十二月二十三日收稿）