台灣林分結構生長模擬模式系統的建立

馮豐隆* 林子玉**

【摘要】

“林分結構生長模擬模式系統”(Stand & Tree Growth Simulated Modeling System, STGMS)為台灣森林資源經營決策系統的核心，與地理資訊系統（Forest Resource Geographic Information System, FRGIS）、經濟評估系統（Forest Resource Economic Evaluation System, FREES）合為森林資源經營決策支援系統的三大主要部分。STGMS為森林資源資料的建檔、分析工具，可提供台灣主要造林樹種和天然林型的林分結構與林分生長的資訊。本模式系統分成(1)資料庫 (2)基本模式庫 (3)應用模式庫 (4)資訊庫；資料庫係由造林樹種、天然林型分別建立；並收集建立其樹高曲線式、材積式、存活模式與生態曲線式等基本模式。應用模式庫則包括(1)以Weibull 函数來描述直徑分布的林分結構；(2)由直徑分布法掌握各種林分狀態、地理位置因子的林分蓄積；和 (3)由Schnute生長模式系統推算各單株或林分的生生長量。本模式系統的功能目前乃繼續改進，增強中，內容上尤其在人工林資料、模式收集整理，與不同育林處理上林分生長的反應，而天然林則著重在蓄積、生長推定；方式上則在系統的表達功能上下功夫，以促使表達更為清晰，操作更為方便，更具親和性。 中興大學實驗林研究報告 第十四卷，第二期：55～88 （民國81年9月）

Stand & Tree Growth Simulated Modeling System Built in Taiwan

Fong-Long Feng Tzu-Yuh Lin

本文承蒙農委會80農建-7.1-林-29(2)計畫補助, 深表萬分謝意
註:*國立中興大學森林系副教授
 **國立中興大學森林系教授
STGSMS (Stand & Tree Growth Simulated Modeling System) is the tree growth projection component of forest resource management decision support system (DSS) in Taiwan. The other components are Forest Resource Geographic Information System (FRGIS) and Forest Resource Economic Evaluation System (FREES). STGSMS would update, project and analyze forest resource information in Taiwan. This comprehensive growth modeling system, designed to analyze forest resources with stand structure, growing stock and stand growth. STGSMS was composed of (1) data base (2) basic model base (3) applied model base and (4) information base. Growing stock, stand structure and stand growth models' coefficients have been developed for tree species of plantation and forest types of natural forest. The system have been used to update forest inventories and project long-run timber output and growth response with stand characteristics. Work to enhance and refine the system's capabilities is continuing, and further progress has been made since the paper prepared for publication.

一、前言

目前求算蓄積量, 以林分結構為軸心的直徑分布法 (Diameter Distribution Method) 最有效, 而生長方面則史納德模式 (Schnute Growth Model) 最為理想 (馮 1990), 從數學觀點來看總生長量 (蓄積) 就是生長的積分 ; 生長為蓄積的微分 (Clutter 1963) 也就是直徑分布法和 Schnute 式間具有密切的関連性。而經研究得知百分數法 (Percentile Method) 和母數回覆模式 (Parameter Recovery Method, PRM) 是連結此兩模式以得林分結構生長、蓄積分布資訊的可行方法。

然而若要使此生長、收穫蓄積系統的學術成果, 利於實際上的應用, 必須靠電腦模式系統的建立, 使繁複的學理在有計劃的安排下, 以格式化的資料型態建構處理分析, 即能提供森林經營者有效的圖表資訊, 使其與地理資訊系統 (Geographic Information System, GIS) 共享提供森林經營決策者理想的資訊, 以擬定合理、有效的經營計劃並方便於執行。

STGSMS (Stand and Tree Growth Simulated Modeling System) 是推測林分、林木生長蓄積的電腦程式系統, 係由中興大學森林系調查測計研究室開發。STGSMS係以基於生長原則的 Schnute 生長模式, 且配合直徑分布法, 以求得詳細的各直徑級材積分布的資訊, 並由各直徑級材積累得單位林分材積。描述直徑分布的 Weibull 模式母數與台灣主要造林樹種與天然林型的樹高曲線式、材積式、地位指數式、存活模式均予收集彙聚成基本模式庫。使用者經由不同的資料來源——永久樣區、臨時樣區、
樹幹解析、生長錐心等並產生不同的結果表格型態(types of summaries)，以使STGSMS適合於各種不同需要使用者的使用。使用者不需有充分的程式設計知識，然若對資料處理的名詞熟悉的話，將有助於使用本程式集。

本報告首先將STGSMS系統架構(如圖3-1)提出，然後依資料建檔、輸入的格式；基本模式庫、林分結構、直徑分布法、生長模擬器、處理程序與處理結果產出，分別予說明。

系統架構(system organization)

![系統架構圖](image)

圖3-1：林分結構生長模擬模式系統(STGSMS)包括(一)資料庫(二)基本模式庫(三)應用模式(四)資訊庫。應用模式庫以Weibull函數探討直徑分布的林分結構，直徑分布法、全林分收益模式推算林分蓄積，Schnute生長模式求算林分生長與林木生長，並由百分數法整合生長模式與直徑分布法。

註：H:樹高，D:胸高直徑，V:單株材積，Nt:存活林木，t:時間，SI:地位指數，Hdt:優勢木、次優勢木平均樹高，a,b,c為Weibull函數的三個參數，V/ha:每公頃之材積量
四、研究方法

(一) 資料來源格式、建檔、輸入

1. 資料來源
　資料來源大體可分永久樣區、臨時樣區、樹幹解析、生長椎心等實際觀測值和以往之報告模式所推算之擬定值。

(1) 樣區資料
　A. 永久樣區格式

<table>
<thead>
<tr>
<th>樣種(林型)</th>
<th>經度</th>
<th>緯度</th>
<th>海拔高</th>
<th>坡向</th>
<th>坡度</th>
<th>實業區</th>
<th>林班</th>
<th>小班</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS(forest type)</td>
<td>Altitude</td>
<td>Longitude</td>
<td>Elevation</td>
<td>Aspect</td>
<td>Slope</td>
<td>WC.</td>
<td>Compt.</td>
<td>Subcompt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>year</th>
<th>age</th>
<th>nt</th>
<th>ntha</th>
<th>ntne</th>
<th>dsum</th>
<th>d</th>
<th>hsum</th>
<th>h</th>
<th>basum</th>
<th>ba</th>
<th>vsum</th>
<th>v</th>
<th>bha</th>
<th>vha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1933</td>
<td>5</td>
<td>88</td>
<td>1035</td>
<td>1.00</td>
<td>421.59</td>
<td>4.791</td>
<td>327.65</td>
<td>3.72</td>
<td>0.1708</td>
<td>0.0019</td>
<td>0.4194</td>
<td>0.0048</td>
<td>2.0097</td>
<td>0.0228</td>
</tr>
<tr>
<td>1934</td>
<td>6</td>
<td>88</td>
<td>1035</td>
<td>1.00</td>
<td>597.70</td>
<td>6.792</td>
<td>447.90</td>
<td>5.09</td>
<td>0.3479</td>
<td>0.0040</td>
<td>1.0553</td>
<td>0.0120</td>
<td>4.0927</td>
<td>0.0465</td>
</tr>
<tr>
<td>1935</td>
<td>7</td>
<td>88</td>
<td>1035</td>
<td>1.00</td>
<td>808.50</td>
<td>9.188</td>
<td>542.36</td>
<td>6.16</td>
<td>0.6236</td>
<td>0.0071</td>
<td>2.1777</td>
<td>0.0247</td>
<td>7.3366</td>
<td>0.0834</td>
</tr>
</tbody>
</table>

註：nt：樣區內林木株數　　d：胸高直徑
ntha：每單位面積之林木株數　　h：樹高
ntne：存活率　　ba：胸高斷面積
sum：樣區內性態值總合　　v：材積
vha：性態值*之每公頃平均值

國立中興大學
National Chung Hsing University

—58—
樣區調查表

<table>
<thead>
<tr>
<th>FIELD NAME</th>
<th>POS</th>
<th>LEN</th>
<th>TYPE</th>
<th>RAGE</th>
<th>性質</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPNO</td>
<td>1</td>
<td>8</td>
<td>C</td>
<td></td>
<td>KEY</td>
</tr>
<tr>
<td>PLOTNO</td>
<td>9</td>
<td>3</td>
<td>C</td>
<td>001-999</td>
<td>KEY</td>
</tr>
<tr>
<td>RECORDER</td>
<td>12</td>
<td>2</td>
<td>C</td>
<td>05-40</td>
<td>基本資料</td>
</tr>
<tr>
<td>SURVEYOR</td>
<td>14</td>
<td>2</td>
<td>C</td>
<td>05-40</td>
<td>基本資料</td>
</tr>
<tr>
<td>DATE</td>
<td>16</td>
<td>6</td>
<td>C</td>
<td></td>
<td>基本資料</td>
</tr>
<tr>
<td>ABSCISSA</td>
<td>22</td>
<td>6</td>
<td>C</td>
<td><147310</td>
<td>基本資料</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>325555</td>
<td></td>
</tr>
<tr>
<td>ORDINATE</td>
<td>28</td>
<td>7</td>
<td>C</td>
<td><2405880</td>
<td>基本資料</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>2821275</td>
<td></td>
</tr>
<tr>
<td>PLOTAREA</td>
<td>35</td>
<td>3</td>
<td>N</td>
<td>5,20,50,100</td>
<td>基本資料</td>
</tr>
<tr>
<td>ELEVATION</td>
<td>38</td>
<td>4</td>
<td>N</td>
<td>0-4000</td>
<td>GIS 資料</td>
</tr>
<tr>
<td>SLOP</td>
<td>42</td>
<td>2</td>
<td>N</td>
<td>0-90</td>
<td>GIS 資料</td>
</tr>
<tr>
<td>ASPECT</td>
<td>44</td>
<td>1</td>
<td>C</td>
<td>0-8</td>
<td>GIS 資料</td>
</tr>
<tr>
<td>LANDUSE</td>
<td>45</td>
<td>3</td>
<td>C</td>
<td>011-930</td>
<td>調查資料</td>
</tr>
<tr>
<td>TERRAINS</td>
<td>48</td>
<td>1</td>
<td>C</td>
<td>1-7</td>
<td>調查資料</td>
</tr>
<tr>
<td>AGE</td>
<td>49</td>
<td>2</td>
<td>C</td>
<td>01-99</td>
<td>調查資料</td>
</tr>
<tr>
<td>DENSITY</td>
<td>51</td>
<td>1</td>
<td>C</td>
<td>0-4</td>
<td>調查資料</td>
</tr>
<tr>
<td>STAND</td>
<td>52</td>
<td>1</td>
<td>C</td>
<td>0-5</td>
<td>調查資料</td>
</tr>
<tr>
<td>MAINCOVER</td>
<td>53</td>
<td>1</td>
<td>C</td>
<td>0-9</td>
<td>樣區資料</td>
</tr>
<tr>
<td>SECONDCOVER</td>
<td>54</td>
<td>1</td>
<td>C</td>
<td>0-9</td>
<td>樣區資料</td>
</tr>
<tr>
<td>COVERDESIITY</td>
<td>55</td>
<td>1</td>
<td>C</td>
<td>1-5</td>
<td>樣區資料</td>
</tr>
<tr>
<td>COVERHEIGHT</td>
<td>56</td>
<td>1</td>
<td>C</td>
<td>1-4</td>
<td>樣區資料</td>
</tr>
<tr>
<td>FIELD NAME</td>
<td>POS</td>
<td>LEN</td>
<td>TYPE</td>
<td>RANGE</td>
<td>性質</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MAPNO</td>
<td>1</td>
<td>8</td>
<td>C</td>
<td></td>
<td>KEY</td>
</tr>
<tr>
<td>PLOTNO</td>
<td>9</td>
<td>3</td>
<td>C</td>
<td>001-999</td>
<td>KEY</td>
</tr>
<tr>
<td>TREENO</td>
<td>12</td>
<td>3</td>
<td>C</td>
<td>001-999</td>
<td>KEY</td>
</tr>
<tr>
<td>RECTYPE</td>
<td>15</td>
<td>1</td>
<td>C</td>
<td>1-9</td>
<td>樣木資料</td>
</tr>
<tr>
<td>PLOTDISTANCE</td>
<td>16</td>
<td>4</td>
<td>N</td>
<td></td>
<td>樣木資料</td>
</tr>
<tr>
<td>TREEDIST</td>
<td>20</td>
<td>4</td>
<td>N</td>
<td></td>
<td>樣木資料</td>
</tr>
<tr>
<td>HISTORY</td>
<td>24</td>
<td>1</td>
<td>C</td>
<td>1-4</td>
<td>樣木資料</td>
</tr>
<tr>
<td>SPECIES</td>
<td>25</td>
<td>3</td>
<td>C</td>
<td>000-982</td>
<td>樣木資料</td>
</tr>
<tr>
<td>DBH</td>
<td>28</td>
<td>4</td>
<td>N</td>
<td>50-4000</td>
<td>樣木資料</td>
</tr>
<tr>
<td>TREEHEIGHT</td>
<td>32</td>
<td>2</td>
<td>N</td>
<td>0-70</td>
<td>樣木資料</td>
</tr>
<tr>
<td>BRANCHHEIGHT</td>
<td>34</td>
<td>2</td>
<td>N</td>
<td>0-60</td>
<td>樣木資料</td>
</tr>
<tr>
<td>CROWNCLASS</td>
<td>36</td>
<td>1</td>
<td>C</td>
<td>0-5</td>
<td>樣木資料</td>
</tr>
<tr>
<td>DEFECTRATIO</td>
<td>37</td>
<td>2</td>
<td>N</td>
<td>0-99</td>
<td>樣木資料</td>
</tr>
<tr>
<td>DEFECTCAUSE</td>
<td>39</td>
<td>1</td>
<td>C</td>
<td>0-9</td>
<td>樣木資料</td>
</tr>
<tr>
<td>QUALITY</td>
<td>40</td>
<td>1</td>
<td>C</td>
<td>0-3</td>
<td>樣木資料</td>
</tr>
<tr>
<td>UTILITY</td>
<td>41</td>
<td>2</td>
<td>N</td>
<td>0-99</td>
<td>樣木資料</td>
</tr>
<tr>
<td>MEMO</td>
<td>43</td>
<td>2</td>
<td>N</td>
<td>0-99</td>
<td>樣木資料</td>
</tr>
</tbody>
</table>
(2)樣木資料
A. 樹幹解析

<table>
<thead>
<tr>
<th>DBH</th>
<th>Height</th>
<th>Volume</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>TG</td>
<td>CAI</td>
<td>MAI</td>
</tr>
<tr>
<td>3</td>
<td>0.54</td>
<td>0.18</td>
<td>0.00001</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
<td>0.46</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>0.3</td>
<td>2.30</td>
</tr>
<tr>
<td>6</td>
<td>4.2</td>
<td>2.7</td>
<td>0.7</td>
</tr>
<tr>
<td>7</td>
<td>7.0</td>
<td>2.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

B. 生長椎心資料

<table>
<thead>
<tr>
<th>DBH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

(3)模擬資料：由以往國內有關各種樹種林型之生長收穫報告收集、整理，並利用該報告之模式與資料分布模擬產生資料，同時注重地點、位置等資料來源的林地樣區、樣木性質，以獲得台灣各種樹種、林型在各種地理位置、地位、環境下更多、更具代表性的資料。
一般以DbaseIII或Lotus 123建檔，然資料間要能轉換才能減少建檔與資料校正的時間與精力。但由於許多軟體棄用資料時皆以ASCII方式，所以DbaseIII，Lotus123與PEIII資料間的轉換成為相當重要的資料處理工作之一。

(二)基本模式庫(model base)

1.樹種組成(species composition)

林分的樹種組成，在人工林內依栽植樹種區分之，而天然林則以林型或類別區分之。依照(表4-1)1901-1986年台灣省針、闊葉樹、竹類造林面積之多寡順序，吾人於針、闊葉樹中各選取10種造林面積最廣之樹種和特殊造林樹種及刺竹、桂竹、麻竹、長枝竹、孟宗竹，分別予以收集、整理或建立單株林木模式(樹高曲線式、材積式)和林分性態值模式(林地指數式、存留林木模式、林分構成模式等)等基本模式與應用模式。至於天然林則依柳梧等(1965)對台灣森林林型的研究結果加以區分，往後若有需要再依群叢加以考量分析。

(1)人工林

表4-1 台灣省1901-1986年各現存造林樹種面積 (林務局資料)

(單位:公頃)

<table>
<thead>
<tr>
<th>代號</th>
<th>樹種</th>
<th>面積(合計)</th>
<th>代號</th>
<th>樹種</th>
<th>面積(合計)</th>
<th>代號</th>
<th>樹種</th>
<th>面積(合計)</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>柳杉</td>
<td>40735.2858</td>
<td>502</td>
<td>相思樹</td>
<td>26138.4758</td>
<td>703</td>
<td>莓竹</td>
<td>3407.9938</td>
</tr>
<tr>
<td>110</td>
<td>二葉松</td>
<td>30845.4537</td>
<td>516</td>
<td>光臘樹</td>
<td>11532.1892</td>
<td>806</td>
<td>桂竹</td>
<td>2968.7483</td>
</tr>
<tr>
<td>102</td>
<td>紅檜</td>
<td>23978.0277</td>
<td>507</td>
<td>赤楊</td>
<td>8669.2005</td>
<td>704</td>
<td>麻竹</td>
<td>1164.5992</td>
</tr>
<tr>
<td>106</td>
<td>杉類</td>
<td>10432.0870</td>
<td>506</td>
<td>楓香</td>
<td>6582.6245</td>
<td>961</td>
<td>龍眼</td>
<td>294.9092</td>
</tr>
<tr>
<td>117</td>
<td>柏木</td>
<td>9798.2765</td>
<td>202</td>
<td>檜木</td>
<td>6397.7285</td>
<td>愛玉子</td>
<td>151.2550</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>香杉</td>
<td>8200.2498</td>
<td>301</td>
<td>樟樹</td>
<td>4869.6100</td>
<td>701</td>
<td>長枝竹</td>
<td>98.1850</td>
</tr>
<tr>
<td>119</td>
<td>台灣杉</td>
<td>7413.1863</td>
<td>450</td>
<td>儲樹類</td>
<td>4722.7270</td>
<td>970</td>
<td>板栗</td>
<td>85.9000</td>
</tr>
<tr>
<td>108</td>
<td>琉球杉</td>
<td>4490.6945</td>
<td>350</td>
<td>楠木類</td>
<td>3622.5188</td>
<td>805</td>
<td>孟宗竹</td>
<td>81.9258</td>
</tr>
<tr>
<td>101</td>
<td>扁柏</td>
<td>3533.5497</td>
<td>515</td>
<td>油杉</td>
<td>2266.7042</td>
<td>900</td>
<td>其他竹</td>
<td>51.1600</td>
</tr>
<tr>
<td>115</td>
<td>雲杉</td>
<td>1903.8885</td>
<td>517</td>
<td>麻六甲</td>
<td>1538.0917</td>
<td>702</td>
<td>綠竹</td>
<td>43.0650</td>
</tr>
<tr>
<td>103</td>
<td>肖楠</td>
<td>1662.8457</td>
<td>600</td>
<td>其他闊葉樹</td>
<td>1316.3282</td>
<td>963</td>
<td>楠果</td>
<td>12.9700</td>
</tr>
</tbody>
</table>

人工林型如：
針葉樹的柳杉、二葉松、紅檜、松類、杉木、香杉、台灣杉、琉球杉、扁柏、雲杉、肖楠、
人工林等。
阔葉樹的相思樹、光腊樹、赤楊、楓香、樺木、樟樹、槭樹類、楠木類、柚木、麻六甲合歡
、鳥心石、桃花心木等。

(2)天然林林型：

A. 冷杉林型(Fir Type-Abies Kawakami(Hay.) Ito)
 (A) 海拔：分佈於海拔3000m以上
 (B) 位置：生於山脊或高山草原之邊緣
 (C) 伴生樹種：與雲杉及鐵杉混生

B. 雲杉林型(Spruce Type-Picea morisonicola Hay.)
 (A) 海拔：分佈於海拔2300〜3000m
 (B) 位置：生於山腰或山谷中
 (C) 伴生樹種：與鐵杉、扁柏混生

C. 鐵杉林型(Hemlock Type-Tsuga chinensis Pritz)
 (A) 海拔：分佈於海拔2000〜3000m
 (B) 位置：生於山腰或山谷地區
 (C) 伴生樹種：與扁柏、紅檜、冷杉混交

D. 高山松林型(Alpine Pine Type)
 (A) 海拔：華山松分佈海拔2000〜2800m；台灣五葉松800〜2300m；台灣二葉松750〜2800m
 (B) 位置：生於向陽山坡或山脊
 (C) 伴生樹種：與鐵杉、扁柏混生

E. 扁柏林型(Taiwan Cypress Type-Chamaecyparis taiwanensis Masam. et Suzuki)
 (A) 海拔：分佈於海拔1300〜2900m
 (B) 伴生樹種：與鐵杉、紅檜混生

F. 紅檜林型(Red Cypress-Chamaecyparis formosensis Mats.)
 (A) 海拔：分佈於海拔900〜2700m
 (B) 位置：山腰或山谷地區
 (C) 伴生樹種：與扁柏、鐵杉、松類及闊葉樹混生

G. 針葉樹混交林型(Mixed Coniferous Type)
 (A) 海拔：分佈於2000〜3000m
 (B) 伴生樹種：與鐵杉、扁柏、紅檜混交

H. 針闊葉樹混交林型(Conifer-Hardwood Type)
 主要樹種：紅檜、扁柏、鐵杉
(A) 海拔：分佈於海拔1500m以上
(B) 伴生樹種：與樺類及木荷混交

1. 溫帶闊葉樹林型(Temperate Hardwood Type)
 主要樹種：高山八角、木荷、台灣雲葉、殼斗科植物
 海拔：分佈於海拔1000～2400m

2. 亞熱帶闊葉樹林型(Subtropical Hardwood Type)
 主要樹種：楠木類、台灣黃杞、亞熱帶殼斗科植物
 海拔：分佈於海拔300～2000m

3. 熱帶闊葉樹林型(Tropical Hardwood Type)
 主要樹種：榕樹類、山黃麻、重陽木、白柵子類、大葉楠、瑞芳楠
 海拔：分佈於海拔600m以下

2. 單株基本模式

 (1) 樹高曲線式(diameter-height relationship curve)

 若要準確地量測樹高是相當耗費時間，所以森林從業人員通常不直接去量測。在這種情況下“樹高一直徑”模式就很普遍地被使用，即由直徑推算樹高或由其他林分變數求得。表示
 樹高曲線的模式很多，式中H有設定為總樹高，也有設定為胸高(1.3 m)以上的樹高(H-1.3).
 最常用者有下四端：(馮、羅 1986)

 \[H = 1.3 + aD + bD^2 \]
 \[H = a^{-1} + e^{-bD} \]
 \[H = e^{aD} \]
 \[H = 1.3 + h(1 - e^{-bD}) \]

 H:總樹高；D:胸高直徑；e:自然對數；a,b:參數

 擬由R值(多元相關係數)最大，S_{ij}(殘差之標準差)最小，且F值大於理論值，而NSE最小者去
 選取較佳的樹高曲線式。

 註：NSE：常態化標準偏差(normalize standard error ,NSE)

 \[NSE = \frac{\left(\Sigma (y_i - f(x_i))^2 \right)}{\Sigma (y_i - \bar{y})^2} \]

 式中的y:觀測值
 f(x):理論值

 y:觀測值的平均值
(2)材積式 (volume equation)

林木經營中瞭解林木的材積或重量 (生物量) 是必要的，而各立木的材積要如何求算，最常用的方法則為依照數學模式，由容易求得之林木性態值加以推算之，此謂材積式。

1. \(V = a + b \times (D^2H) \)
2. \(V = a + b \times D^2 + c \times H + d \times (D^2H) \)
3. \(V = a \times (D^3) \times (H') \)
4. \(V = a \times bD^2 \times H^d \)

\(V \): 表材積 (m³) 或重量 (kg) ; \(H \): 樹高；\(D \): 胸高直徑；\(a, b, c, d \): 常數
其判定準則為 \(R \) 值 (多元相關係數)，\(S_e \) (殘差之標準差) 小，\(F \) 值大於理論值，而常態化標準偏差 (normalize standard error, NSE) 最小者為較佳之材積式。

3. 林分基本模式

 預測某樹種或林型、群叢等樹種組成之林分結構、蓄積與生長的方法，大都由以下四個因子決定：①林齡 (異齡林為林齡分布) ②立地 (Site quality) : 土地內在生產潜力 ③林分密度 (Stand density or site occupancy) : 土地內在生產潛能被完全使用的程度 ④森林管理 (Tending of forests) : 撫育措施 (疏伐、施肥、競爭植物的控制等) 分別加以說明則如下：

(1) 林齡 (林分) 之查定，可依林齡組成區劃成同齡林與異齡林
 A. 同齡林 (even-aged stand) —— 由台帳或選取中等大小之樣木依單株推算之或選不同木
 小之林木平均或加權之。
 B. 異齡林 (uneven-age stand)

 以平均林齡之計算 —— 如 Heyer 氏之中央林齡，即以相同樹種、立地、每公頃材積
 之單純同齡林之年齡依株數、面積或材積等因素為比例，加權之。

(2) 地位之查定，地位為特殊種或林型在一生育期 (site) 的生產潛力。有關以數學式量化某一
 特定林齡優勢木和次優勢木樹高，以代表林地生產潛力，謂之地位指數式 (site index
 equation)。此即說明林地材積生長潛能與樹高生長成正相關的前題假設。大部分基於地位
 的評估皆以地位指數曲線 (site index curves) 表之，任何一組地位指數曲線係合提供參考
 的量化符號或數字，而最常使用的方法是在某一特定的基準林齡 (reference age) 下的林分
 平均樹高，此基準林齡一般都選擇接近輪伐期之林齡。查定地位指數的真正目的在於瞭解與
 推測未來林分平均樹高發展型態的選擇。

(3) 密度的查定
密度的表示方法可分 ① 每公頃的林木株數 ② 每公頃的斷面積 ③ 林木面積比例 (Tree-Area Ratio, TAR) ④ 空間指標或和對空間 (Spacing Index or Relative Spacing, SP, RS) ⑤ 樹冠競爭係數法 (Crown Competition factor, CCF) ⑥ 林分密度指數 (Stand Density Index, SDI)。而最常用者，則以每公頃的林木株數表之。

單位面積之林木株數，隨著時間進展而減少的過程，可以計算林木模式 (mortality prediction model) 處理。另一方面亦可由存活株數加以探討的存活模式 (survival prediction model) 求之。

本模式系統係以 Weibull 積累分布模式 (如 4-1 式) 為經騐式，加以探討比較存活問題，其實枯死率與存活率是一體兩面，而存活率 \(G(x) = 1 - \text{枯死率}(F(x)) \); 而存活率為倒 \(G(x) \) 字型所以用下式 (4-2) 表示之。

\[
\text{Weibull 枯死模式} \\
F(x) = 1 - \exp\left\{-\left[\frac{x-a}{b}\right]^c\right\} \hspace{1cm} (4-1) \\
G(x) = \exp\left\{-\left[\frac{x-a}{b}\right]^c\right\} \hspace{1cm} (4-2)
\]

式中：\(F(x) \): 枯死率
\(G(x) = N_t / N_0 \): 某一存活率時點，每公頃存留株數 \(N_t \)，
除以初栽植林分株數 \(N_0 \)
\(a, b, c \): 分別為 Weibull 的位置、尺度、形狀母數

(4) 森林撫育：依照競爭植物控制、施肥、間伐等撫育措施分別討論。

(三) 林分結構 (Stand Structure)

求算林分生長、蓄積，需要整合許多推測模式以成爲完整的生長系列系統，這些推測模式包括：(1) 樹高曲線式 (2) 材積式 (3) 地位指數式 (4) 自然間伐式 (natural thinning function) 或稱枯死模式 (mortality model)。若林分曾施行間伐則需要再增加間伐反應式 (thinning response function)；若是用直徑分布法來處理生長、態態問題，則描述直徑分布的機率密度函數皆是必備 (馮 1990)。林分結構，一般以直徑分布表示之，而描述直徑分布的機率密度函數中，以 Weibull 最爲方便使用 (馮 1990)。

1. Weibull係數求解模組 (module of estimating coefficients of Weibull function)
 Weibull 機率密度模式為:
\[f(x) = \frac{c}{b} \left[\frac{(x-a)/b}{(x-a)/b} \right]^{c} \exp\left\{ -\left[(x-a)/b \right]^{c} \right\} \quad (4-3) \]

式中：
\[c \geq a, \quad b > 0, \quad c > 0 \]

本模組為 Bailey (1974) 所收集，係配合與評估 Weibull 函数的程式。Weibull 函数二個或三個母數的推估皆由最大概似法 (maximum likelihood method) 求算之；其方法有四，依其處理性質分述如下：

1. Harter & Moore 程式：可固定一個或二個母數，一般使用，資料不要分級，需予初值 (initial guesses)，有調整取樣誤差 (sample bias)。
2. Wingo 程式：反覆運算 (疊代運算 iterations 次數少)，速度最快，資料不要分級，需予初值，無調整取樣誤差。
3. Fitter：可固定 a 或且 c 值，資料分不分級皆可，不需初值，有調整取樣誤差。
4. DAGOS 程式：速度很快，只具 b, c 兩個母數，資料分不分級皆可，需予初值，無調整取樣誤差。

於本程式所需資料先予排序，再利用 DAGOS 去得到初值，以為 Wingo 或 Harter 程式內最大概似法之疊代使用。由多次測試結果，顯示 Wingo 為 (Wingo, Fitter, Harter) 三個利用最大概似法推算副程式中最快者。但 Fitter 一般為最佳的選擇。

Fitter 有以下的優點

1. 無需初值 (initial gresses)
2. 可接受分級 (grouped) 或不分級 (ungrouped) 的資料。
3. 可同時固定 a 與 c 值，亦可固定其中任何一個 (a 或 c 值)。
4. 具有無偏估值之版本 (ITER-INB)。

Fitter 唯一缺點為當 a 值推算之精密度 (precision) 需要時，速度很慢。以算式 (algorithm) 步驟由 0 上限 (bound) 一使用者所設定最大者，而以適當的增量如 0.01, 0.001..., 逐漸增加疊代運算。

本程式亦含有綜合統計表包括適合度測試值與平均值 (arithmetic & quadratic)，眾數 (mode)，變異數 (variable) 和任何特定百分數。
2. 使用 Weibull 步骤

(1) WEIB.EXE 用于产生 Weibull 参数 (a, b, c)

A. WEIB.EXE 的输入档名内定为 INPUT.DAT

故执行 WEIB.EXE 时的输入资料，其档名

就是 INPUT.DAT

B. INPUT.DAT 的输入格式

```
<table>
<thead>
<tr>
<th>N</th>
<th>AMax</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>F5.1</td>
</tr>
</tbody>
</table>

FREQ  VALUE  ......  FREQ  VALUE  ......  F  V
空3格

F  V  ....  F  V  F  V  ....  F  V
```

每列共10组资料，而 14 为长度最大为4的整数，F5.1 为长度最大5，小数位数1位的浮点数。FREQ 为出现次数，VALUE 为出现值。

(2) WEIB 执行后，可由键盘输入输出档之档名。

此输出档内含 4 组 a, b, c 的参数值，供 WEIBULLF.EXE 使用。

(3) WEIBULLF.EXE 需二个输入档，可产生分佈图及报告

A. 内含 a, b, c 三参数值及 P, Q, M, N, S 五参数值之档。

B. WEIB.EXE 所使用的输入档。

使用 WEIBULLF.EXE 之法

例：含 a, b, c 之档，档名为 IN.DAT

WEIB.EXE 所使用之输入档档名为 INPUT.DAT

则使用方式为 &WEIBULLF IN.DAT INPUT.DAT 即可执行。

C. 档 A. 之格式 (可在 PE2 或 CW1 下输入)
D. 檔B.中，若原WEIB所使用的輸入檔其資料中，FREQ及VALUE值有相連接的部份，需在PE2或
CWI下將此輸入檔中的數字資料一一以空白分開，可不遵守在WEIB下的格式。

3. 直徑分佈法之適合度測驗

Bliss和Reinker (1964) 曾用χ²(Chi-square) 檢驗去測試直徑分佈的適合性，但Bailey
和Dell (1973) 則建議用K-S(Kolmogorov-Smirnov test)去測試可獲直徑分佈之適合性。乃因 X
測試需有常態分佈作爲前提而K-S測試則不需要。此外連續變數資料(Continuous variable)用
用K-S test去測試均獲滿意結果。本實驗則分別以X測試和K-S測試進行測試。

4. a, b, c 母數發展變化表(developed table of Weibull parameters)百分位数(percentile)係由
描述直徑分佈的機率密度模式所導出的累積分佈函數(cumulative distribution function, CDF)算出。

Weibull函數的累積分佈函數為：

\[F(x) = 1 - \exp\left\{-\left[\frac{(x-a)}{b}\right]^c\right\} \](4-4)

設 \(x = Xp \)

則 \(1 - F(x) = \exp\left\{-\left[\frac{(x-a)}{b}\right]^c\right\} \)

成為 \(\ln(1-F(x)) = -\left[\frac{(Xp-a)}{b}\right]^c \)

\[-\ln(1-F(x))^{\frac{1}{c}} = \frac{(Xp-a)}{b} \]

則百分數 \(Xp = a + b\left(-\ln(1-F(x))\right)^{\frac{1}{c}} \)(4-5)

5. 百分數法(percentile method)

用百分數推算Weibull母數值，可以免除利用最大化似然法推算各組在直徑分布母數值的複
雜計算。百分數法的具體觀念為：若由3組百分數值已知，Weibull累積分佈函數，其a, b, c
三個母數可反覆算出。

Abernethy (1981) 基於24th, 63th, 93th百分數發展，推算三個母數Weibull 分布的動
量推算法(moment estimation). 基於此三個百分數的高效率，故本文擬採此三個百分數。所以
將 X.24，X.63，X.93三個百分數在時間歷程的變化資料，以新建模式第三模式來配合，則可得到一組三個百分數的生長模式，再利用此三條曲線式分別推測某未來時間的林分直徑分布的百分數，再以該百分數回復求算機率密度函數的母數，以爲直徑分布法(4-24式)f(X,θ)之用。這個由百分數回復求算機率密度函數母數的方法，稱做百分數法。(馮、林 1991)

四 生長模擬器 (Growth Simulator)

1. Schnute 林分生長模式

Schnute (1981) 研究魚類時，假定大小性態值 Y 的相對生長率 Z(\(Z=(1/Y) \times (dY/dt)\)) 對 Y 的相對生長率呈線性關係如下:

\[
(1/Z) \times (dZ/dt) = -(a \times bZ) \tag{4-6}
\]

式中的 a，b 爲母數.

因 (dY/dt) \times (1/Y) = Z \tag{4-7}

整理 (4-6) 式並做適當的代換，如下式:

\[
dY/dt = (dY/dt)[-(1-b)Z] \tag{4-8}
\]

解 (4-8) 式的微分方程，如下式:

\[
Y = \left[\frac{1 - e^{-b(r_1 - r_2)}}{1 - e^{-(r_1 - r_2)}}\right]^{1/b} \tag{4-9}
\]

式中：\(r_1, r_2\): 兩個不同林齡。

\(Y_1, Y_2\): 在 \(r_1, r_2\) 時的大小性態值。

且\(Y_2 > Y_1 > 0\) ，\(r_2 > r_1 > 0\)。

這個生長模式的曲線形狀，隨 a，b 值不同而變化。Bertalanffy 式、Gompertz 式、Richards 式、直線式等皆是其特例。(Bredenkamp & Gregorie 1988)。

史納德生長函數式，常用的曲線型態有下列四種：(楊、馮 1989，馮、楊 1990)
在標準形態下, 生長曲線的三項重要特徵值如下所示: (Schunte 1981, 馮 1990)。曲線與X軸的相交點(t)為:

$$t_0 = T_1 + T_2 - \frac{1}{a} \ln\left[\frac{e^{x_2} - e^{x_1}}{y_2 - y_1}\right] \ldots \ldots (4-10)$$

(2) 反曲點發生的年齡為:

$$t_{max} = T_1 + T_2 - \frac{1}{a} \ln\left[\frac{b(e^{x_2} - e^{x_1})}{y_2 - y_1}\right] \ldots \ldots (4-11)$$

(3) 達到漸近線時的材積為:
\[V_n = \frac{(e^{\alpha_2}y_2 - e^{\alpha_1}y_1)}{e^{\alpha_2} - e^{\alpha_1}} \quad a \neq 0, \ b \neq 0 \quad \ldots \ldots (4-12) \]

t_1的相對生長量為:
\[z = \frac{dW/dt_1}{W} = \frac{de^{-\alpha_t}}{cy_t} \]

t的相對生長量為:
\[z = \frac{dW/dt_1}{W} = \frac{de^{-\alpha_t}}{cy_t^2} \]
\[c = \begin{cases}
\frac{e^{-\alpha_2} - e^{-\alpha_1}}{a} & a \neq 0 \\
\frac{t_2 - t_1}{a} & a = 0
\end{cases} \]
反曲點的相對生長量為:
\[z^* = \frac{a}{1 - b} \]

達到反曲點的年齡為:
\[t^* - t_0 = \frac{1}{a \log(1/b)} \]

連年生長量達到最大時（總生長量的反曲點）之總生長量（y）對總生長量之漸近線值（\(y_0 \)）的比，即反曲點的相對位置為:
\[\frac{y^*}{y_0} = (1 - b)^{1/b} \]
\[d = \begin{cases}
\frac{(y_2 - y_1)}{b} & a \neq 0 \\
\log(y_1/y_2) & a = 0
\end{cases} \]

Schnute模式亦可導出Richards式、Monomolecular式、Gompartz式與Logistics式，其間之關係可參考馮1990博士論文。
詳細步驟:

1. LOTUS中之資料處理:
 (1) 取D1000之wk1 檔，將年代記在紙上，並將之轉為林齡; 則將之轉為年代列，並刪除所有通俗資料列。及 "D" (範例1.)
 (2) 將 "H" 列刪除之後，按/，選擇E 中之T
 即是將資料做180 度之轉向，使資料橫排變直排，直排變橫排，以適合做 SAS
 之所需，存成另一檔案。(範例2.)
 (3) 再取D1000之wk1 檔，刪除所有DBH 資料列，重複(2).
 (4) 將(2)(3)所建之檔轉成PRN 檔，按/，選擇P 中之F，範圍設定好之後按go，注意
 設檔名時，副檔名一定為PRN。

2. PE2中之資料處理:
 (1) 在PE2 下將兩個PRN 檔叫出，用林齡標
 示於各單株資料之左邊，並將各資料行
 標示 "D" 或 "H"，以示區別。(範例3.)
 (2) 將樹高之PRN 檔中之各單株資料COPY至
 DBH之PRN 檔中之各單株DBH 資料列之旁
 ，樹高與DBH 資料中間至少空一格，以
 示區別。(範例4.)
 (3) 將各單株之林齡、DBH、 樹高三列一同
 獨立建檔，檔名以樹號區別。注意：建
 檔前要把 "D" 及 "H" 刪除。(範例5.)
 (4) 將各單株之林齡、DBH、 樹高之最大及
 最小值分別記下 (T1、T2、Y1、Y2、H1、
 H2) (範例6.)
(1)進SAS後在第三視窗下“include’a:ysch.prg”把ysch.prg檔叫出，將其中要取資料之檔案名改為你在2.之(3)所設之各單株之檔案名及Y1、Y2、A、B、T1、T2等值。（A、B為係數之估值，參閱馮豐隆之博士論文）注意：Y1不可為零，若為零則改寫為0.000001等極小之數。

(2)修改之後，將單株資料檔放入A磁碟機中，按F10即開始跑SAS。

(3)修改之後，將游標移至第一視窗，在箭頭之後接“file’a:...”（*為檔名）即將結果存檔。

(4)在任一視窗之箭頭下接“endsas”即可離開SAS。

4. SAS跑出資料之處理:

(1)在PE2下將SAS結果檔叫出，將不要之資料刪除；在每個跳頁符號後加上樹號以區別。（範例7.）

(2)將各單株之Y1、Y2、A、B、及DF、Sum of Square、Mean Square等copy出，集合成一表，在加上樹號、T1、T2之各值。存檔。（範例8.）

5. 求算Richards及Schnute模式之係數:

(1)在LOTUS下將Richards及Schnute模式之WK1檔叫出，將游標移至空白處，其右邊及下面容許4.之(2)所建之檔轉換進來。

(2)按F 中之I 之N 即可將PE2之表格轉進。

(3)將各單株之Y1、Y2、A、B、及DF、Sum of Square、Mean Square、樹號、T1、T2移至設定之列。
(4) 利用已寫好之算式 COPY 在新資料之後，
即可算出 Richards 及 Schnute 模式之係數。注意各列、列之相對位置。

(五) 直徑分布法 (Diameter Distribution Approach)

直徑分佈法 (diameter distribution approach) 係利用有效描述胸高直徑分佈的機率密度函數的母數，配合樹高曲線式，材積式，以求算出各直徑級材積的分佈情形，進而累計成每單位材積和總材積或斷面積。此方法使得經營者有能力去掌握目前和未來林分所能提供的總材量，更可了解每單位面積紙漿材、桿材或製作材木的蓄積量，以便擬定多種材種 (multi-production) 最佳組合之計劃，並可由不同林齡、地位、密度來決定收穫時的成本。 Bailey and Dell (1973) 用
Weibull 函數來描述直徑分布，Smalley and Bailey (1974) 則利用 Weibull 函數，某一區級的累積分佈函數值 (P(l < x < U)) 以求得長葉松造林地各直徑階的頻率。由於 Weibull 函數具有 (1). 各區間 (直徑階) 的機率易求得，(2). 各母數皆代表著何意義，(3). 累積分佈函數 (cumulated distribution function) 易於求解，(4). 配置同齡林、異齡林的直徑分佈效果甚佳，等優點，所以廣為使用 (馮 1990)。直徑分佈法一般以連續機率密度函數 (probability density function, pdf) 來表示直徑分佈，再利用其函數中母數來做估測，或推測的工具，以了解林分生長收穫的情形。若用數學模式可以表示如下：

\[Y_{ij} = N_t \int_{D_{ij}}^{D_{ij}} g_i(x)f(x, \theta_t)dx \quad \ldots \quad (4-24) \]

\[Y_{ij} : \text{每單位面積 } j \text{ 直徑階的收穫表現值材積或斷面積} \]
\[N_t : \text{在 } t \text{ 時每單位面積之林木株數} \]
\[D_{ij} : \text{第 } j \text{ 階直徑級的新 } (l = i + \epsilon/2), i \text{ 為 } j \text{ 階的中值} \]
\[D_{ij} : \text{第 } j \text{ 階直徑級的下限 } (u = i - \epsilon/2) \]
\[x : \text{胸高直徑 } (D \leq X \leq D) \]
\[g_i(x) : \text{胸高直徑的可能函數如樹高曲線，材積式} \]
\[\theta_t : \text{描述 } t \text{ 時直徑分佈的機率密度模式的母數向量，即 } (4-25) \text{ 式中的 } a, b, c \text{ 值} \]
\[f(x, \theta_t) : \text{描述 } t \text{ 時直徑分佈的機率密度模式，如 } Weibull \text{ 函數} \]
Weibull 機率密度模式為:

\[f(x) = \frac{c}{b}[(x-a)/b]^{c-1}\exp\{-(x-a)/b\} \] \hspace{1cm} (4-25)

式中：
- \(c > x \geq a \)
- \(b > 0 \)
- \(c > 0 \)

Weibull 累積分佈函數可由下列式表示之

\[F(x) = 1 - \exp\{-(x-a)/b\} \] \hspace{1cm} (4-26)

式中：
- \(x \geq a > 0 \)
- \(b > 0 \)
- \(c > 0 \)

某區間（直徑階）的累積分佈模式

\[P(D_l < X < D_u) = \exp\{-(D_l-a)/b\} - \exp\{-(D_u-a)/b\} \] \hspace{1cm} (4-27)

利用直徑分佈法做森林收穫預測時，一定得根據預測每單位面積株數（N）和描述直徑分佈之機率密度模式的參數（\(\theta \)）的未來值，而推測 \(\theta \) 的方法有兩類：(1) 直接預測未來分層屬性的“母數預測模式”（Parameter Prediction Model，PPM）(2) 使用平均林分因子求出直徑生長及直徑分佈的“母數回復模式”（Parameter Recovery Method，PRM）（楊、馮 1989a）。

1. 利用 Bailey (1974) 以四種最大概似法（maximum likelihood）所設之求解 Weibull 機率密度函數的 a, b, c 三參數的公式。並繪出觀測值-預測值比較圖和最佳配合度測試（goodness-to-fit）Kolomogov Skirnov test 和 \(X^2 \) test 的資訊。
2. 將求得的 a, b, c 值和每單位面積的林分株數，該樹種或該類樹型的樹高曲線式 (H = e^{kx \pm t})

與材積式 (V = mD^{p}H^{q})，建立各直徑階材積分佈表。

五、結果與討論

(一) 結果

1. 處理程序與處理結果產生（Process Order & Output）
表5-1 各造林樹種類別之材積式與樹高曲線式

<table>
<thead>
<tr>
<th>樹種、林型</th>
<th>樹種</th>
<th>材積式</th>
<th>樹高曲線式</th>
<th>立木材積式來源</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)118 根杉</td>
<td>61</td>
<td>(Y = 0.0000597 \times D^{0.396})</td>
<td>(H = 1 \times D)</td>
<td>稱信標、潘魯隆編(1986)</td>
</tr>
<tr>
<td>(2)110 二葉松</td>
<td>60</td>
<td>(Y = 0.0001548 \times D^{0.396})</td>
<td>(H = 1 \times D)</td>
<td>稱信標、潘魯隆編(1986)</td>
</tr>
<tr>
<td>(3)516 光葉樹</td>
<td>22</td>
<td>(Y = 0.0000772 \times D^{0.396})</td>
<td>(H = 1 \times D)</td>
<td>稱信標、潘魯隆編(1986)</td>
</tr>
<tr>
<td>(4)502 相思樹</td>
<td>20</td>
<td>(Y = 0.0002045 \times D^{0.396})</td>
<td>(H = 1 \times D)</td>
<td>稱信標、潘魯隆編(1986)</td>
</tr>
<tr>
<td>(5)102 / 103 / 119</td>
<td>19</td>
<td>(Y = 0.0000996 \times D^{0.396})</td>
<td>(H = 1 \times D)</td>
<td>稱信標、潘魯隆編(1986)</td>
</tr>
<tr>
<td>紅檜 / 周樟 / 台灣杉</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)100 其他闊葉樹</td>
<td></td>
<td>(Y = 0.0000862 \times D^{0.396})</td>
<td>(H = 1 \times D)</td>
<td>稱信標、潘魯隆編(1986)</td>
</tr>
</tbody>
</table>

表5-2 各天然林樹種類別之材積式與樹高曲線式

<table>
<thead>
<tr>
<th>樹種、林型</th>
<th>製材</th>
<th>材積式</th>
<th>標準誤差</th>
<th>複相關係數</th>
<th>F 值</th>
<th>立木材積式來源</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7)102紅檜、119台灣杉</td>
<td>773</td>
<td>(Y = 0.000944 \times D^{0.396})</td>
<td>0.65360</td>
<td>0.989919</td>
<td></td>
<td>林務局(1973)</td>
</tr>
<tr>
<td>(8)104香杉、118鐵杉</td>
<td></td>
<td>(Y = 0.000728 \times D^{0.396})</td>
<td></td>
<td></td>
<td></td>
<td>林務局(1973)</td>
</tr>
<tr>
<td>(9)108雜木松</td>
<td></td>
<td>(Y = 0.000502 \times D^{0.396})</td>
<td></td>
<td></td>
<td></td>
<td>劉俊孝、林子玉(1970)</td>
</tr>
<tr>
<td>(10)120其他松類</td>
<td></td>
<td>(Y = 0.000625 \times D^{0.396})</td>
<td></td>
<td></td>
<td></td>
<td>劉俊孝、林子玉(1970)</td>
</tr>
<tr>
<td>(11)600一般闊葉樹</td>
<td></td>
<td>(Y = 0.000464 \times D^{0.396})</td>
<td></td>
<td></td>
<td></td>
<td>劉俊孝、林子玉(1968)</td>
</tr>
<tr>
<td>(12)301、350-352種樹類</td>
<td></td>
<td>(Y = 0.000863 \times D^{0.396})</td>
<td></td>
<td></td>
<td></td>
<td>劉俊孝、林子玉(1972)</td>
</tr>
<tr>
<td>(13)450種樹類</td>
<td></td>
<td>(Y = -4.003857 \times D^{0.396})</td>
<td>0.4959</td>
<td>0.98874</td>
<td>16806.16</td>
<td>林子玉(1975)</td>
</tr>
<tr>
<td>(14)510木榆樹</td>
<td>773</td>
<td>(Y = 4.10545 \times D^{0.396})</td>
<td>0.4959</td>
<td>0.98874</td>
<td>16806.16</td>
<td>林子玉、楊鳳昌(1978)</td>
</tr>
<tr>
<td>(15)502相思樹</td>
<td>788</td>
<td>(Y = 4.08211 \times D^{0.396})</td>
<td>0.04848</td>
<td>0.99140</td>
<td>22519.65</td>
<td>林子玉、楊鳳昌(1978)</td>
</tr>
</tbody>
</table>

註1： 1%顯著水準

註2： 樹種前號碼為樹種代號
2. 地位指數式

<table>
<thead>
<tr>
<th>樹種</th>
<th>地位指數式</th>
<th>基準林齡</th>
<th>地位範圍</th>
<th>資料種類</th>
</tr>
</thead>
<tbody>
<tr>
<td>柳杉</td>
<td>$H_d = \frac{S_i \cdot \left[1 - 0.9 \exp(-0.16(t-3))\right]^{1/l - 0.4}}{1 - 0.9 \exp(-0.16(t-3))^{1/l - 0.4}}$</td>
<td>40</td>
<td>21～30</td>
<td>$H_{dom + codom}$</td>
</tr>
</tbody>
</table>

3. 存留林木模式

表5-3 配合各種不同密度之柳杉存活率之Weibull函數與指數模式推算值

<table>
<thead>
<tr>
<th>樹種</th>
<th>栽植距離</th>
<th>栽植株數</th>
<th>Weibull存活林木模式 $N_t/N_0 = \exp\left{-\left[(\text{Age}-a)/b\right]^c\right}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>a b c DF MSE F</td>
</tr>
<tr>
<td>柳杉</td>
<td>3.13.1</td>
<td>1035</td>
<td>1.999995 78.75340 1.905052 28 0.000665 13183.86</td>
</tr>
<tr>
<td></td>
<td>2.32.3</td>
<td>2044</td>
<td>0.345902 65.14528 1.490947 28 0.002626 2796.334</td>
</tr>
</tbody>
</table>
4. 林分結構 Weibull 母數發展變化表

描述直徑分布的 Weibull 函數有關的統計值
\[f(x) = \left(\frac{c}{b}\right) \left(\frac{x-a}{b}\right)^c \exp\left\{-\left(\frac{x-a}{b}\right)^c\right\} \]
\[\infty > x \geq a, \quad b > 0, \quad c > 0 \]

<table>
<thead>
<tr>
<th>形狀母數 c 值的初值</th>
<th>0.0737</th>
</tr>
</thead>
<tbody>
<tr>
<td>反覆運算(疊代)次數</td>
<td>8.0000</td>
</tr>
<tr>
<td>位置母數 A 值</td>
<td>0.0000</td>
</tr>
<tr>
<td>尺度母數 B 值</td>
<td>34.9693</td>
</tr>
<tr>
<td>形狀母數 C 值</td>
<td>1.4891</td>
</tr>
<tr>
<td>衆數</td>
<td>16.5558</td>
</tr>
<tr>
<td>頻度最多之直徑階</td>
<td>2.1270</td>
</tr>
<tr>
<td>平均直徑</td>
<td>31.2307</td>
</tr>
<tr>
<td>標準偏差</td>
<td>24.4004</td>
</tr>
<tr>
<td>歪度</td>
<td>47360.6445</td>
</tr>
<tr>
<td>峰度</td>
<td>7953716.0000</td>
</tr>
<tr>
<td>X 值</td>
<td>1027.7085</td>
</tr>
<tr>
<td>K-S 測驗之D₀.₀5值</td>
<td>0.1435</td>
</tr>
<tr>
<td>K-S 測驗之D₀.₀05值</td>
<td>0.0375</td>
</tr>
<tr>
<td>K-S 測驗之D₀.₀1值</td>
<td>0.0313</td>
</tr>
<tr>
<td>百分數10%</td>
<td>7.7153</td>
</tr>
<tr>
<td>百分數24%</td>
<td>14.6745</td>
</tr>
<tr>
<td>百分數50%</td>
<td>27.3395</td>
</tr>
<tr>
<td>百分數63%</td>
<td>34.8342</td>
</tr>
<tr>
<td>百分數93%</td>
<td>67.4438</td>
</tr>
</tbody>
</table>
表5-4 Weibull函数配合不同密度、不同林龄之柳杉人工林直徑分佈之母数推算値

<table>
<thead>
<tr>
<th>栽植距离 (年)</th>
<th>林龄</th>
<th>Weibull 模式</th>
<th>百分数</th>
<th>K-S 測驗</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>X.24</td>
</tr>
<tr>
<td>3.1×3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.00</td>
<td>10.0782</td>
<td>4.2600</td>
<td>7.4398</td>
</tr>
<tr>
<td>10</td>
<td>5.30</td>
<td>16.5550</td>
<td>5.6667</td>
<td>13.1775</td>
</tr>
<tr>
<td>12</td>
<td>7.70</td>
<td>19.9195</td>
<td>6.4474</td>
<td>16.2997</td>
</tr>
<tr>
<td>14</td>
<td>8.40</td>
<td>22.5626</td>
<td>6.7806</td>
<td>18.6454</td>
</tr>
<tr>
<td>20</td>
<td>9.00</td>
<td>26.3310</td>
<td>7.1885</td>
<td>21.9962</td>
</tr>
<tr>
<td>24</td>
<td>6.70</td>
<td>28.4783</td>
<td>6.8841</td>
<td>23.6016</td>
</tr>
<tr>
<td>40</td>
<td>7.60</td>
<td>32.1470</td>
<td>6.5661</td>
<td>26.4008</td>
</tr>
<tr>
<td>53</td>
<td>9.40</td>
<td>37.1008</td>
<td>6.1894</td>
<td>30.1061</td>
</tr>
<tr>
<td>58</td>
<td>9.40</td>
<td>38.9488</td>
<td>5.7707</td>
<td>31.1302</td>
</tr>
<tr>
<td>2.3×2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.30</td>
<td>9.0237</td>
<td>4.4042</td>
<td>6.7279</td>
</tr>
<tr>
<td>10</td>
<td>4.70</td>
<td>14.6070</td>
<td>5.4854</td>
<td>11.5395</td>
</tr>
<tr>
<td>12</td>
<td>0.10</td>
<td>17.2305</td>
<td>6.0436</td>
<td>13.9117</td>
</tr>
<tr>
<td>14</td>
<td>6.00</td>
<td>19.2247</td>
<td>5.6838</td>
<td>15.3130</td>
</tr>
<tr>
<td>20</td>
<td>1.50</td>
<td>22.2889</td>
<td>5.3847</td>
<td>17.5308</td>
</tr>
<tr>
<td>40</td>
<td>4.60</td>
<td>29.3911</td>
<td>4.6675</td>
<td>22.2793</td>
</tr>
<tr>
<td>58</td>
<td>7.60</td>
<td>35.9917</td>
<td>4.6167</td>
<td>27.1999</td>
</tr>
</tbody>
</table>

國立中興大學
National Chung Hsing University
表5-5 各直徑階材積分佈表

THE VOLUME DISTRIBUTION TABLE OF DIAMETER CLASSES

<table>
<thead>
<tr>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
<th>(12)</th>
<th>(13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBH</td>
<td>DBH</td>
<td>Pi</td>
<td>N Pi</td>
<td>NPi+NPi-1</td>
<td>Di</td>
<td>H</td>
<td>Yi</td>
<td>V/ha</td>
<td>CV</td>
<td>TV</td>
<td>CTV</td>
</tr>
<tr>
<td>Li(cm)</td>
<td>Ui(cm)</td>
<td>(cm)</td>
<td>(m)</td>
<td>(m³)</td>
<td>(m³/ha)</td>
<td>(m³)</td>
<td>(m³/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0.003223</td>
<td>3.539</td>
<td>3.538529</td>
<td>1</td>
<td>1.60</td>
<td>0.000143</td>
<td>0.000507</td>
<td>0.0005</td>
<td>0.9122</td>
<td>0.9122</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.020747</td>
<td>22.780</td>
<td>26.318959</td>
<td>3</td>
<td>2.15</td>
<td>0.001376</td>
<td>0.031355</td>
<td>0.0319</td>
<td>56.4122</td>
<td>57.3244</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.051944</td>
<td>57.035</td>
<td>83.353954</td>
<td>5</td>
<td>2.47</td>
<td>0.003941</td>
<td>0.224770</td>
<td>0.2566</td>
<td>404.3976</td>
<td>461.7220</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0.090784</td>
<td>99.681</td>
<td>183.034222</td>
<td>7</td>
<td>2.71</td>
<td>0.007880</td>
<td>0.785482</td>
<td>1.0421</td>
<td>1413.2076</td>
<td>1874.9296</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>0.127972</td>
<td>140.514</td>
<td>323.547835</td>
<td>9</td>
<td>2.90</td>
<td>0.013222</td>
<td>1.857838</td>
<td>2.9000</td>
<td>3342.5478</td>
<td>5217.4774</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0.152890</td>
<td>167.874</td>
<td>491.421529</td>
<td>11</td>
<td>3.06</td>
<td>0.019988</td>
<td>3.355388</td>
<td>6.2553</td>
<td>6036.8793</td>
<td>11254.3567</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>0.157623</td>
<td>173.070</td>
<td>664.491901</td>
<td>13</td>
<td>3.20</td>
<td>0.028195</td>
<td>4.876454</td>
<td>11.1350</td>
<td>8779.2626</td>
<td>20033.6193</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>0.140877</td>
<td>154.683</td>
<td>819.174833</td>
<td>15</td>
<td>3.32</td>
<td>0.038577</td>
<td>5.855860</td>
<td>16.9908</td>
<td>10535.6299</td>
<td>30569.2491</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
<td>0.108338</td>
<td>119.613</td>
<td>938.782239</td>
<td>17</td>
<td>3.44</td>
<td>0.048988</td>
<td>5.856905</td>
<td>22.8505</td>
<td>10542.3665</td>
<td>41111.6156</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>0.072479</td>
<td>79.582</td>
<td>1018.369875</td>
<td>19</td>
<td>3.54</td>
<td>0.061598</td>
<td>4.902035</td>
<td>27.7525</td>
<td>8819.5453</td>
<td>49931.1609</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>0.041172</td>
<td>45.207</td>
<td>1063.577012</td>
<td>21</td>
<td>3.64</td>
<td>0.075696</td>
<td>3.422005</td>
<td>31.1745</td>
<td>6156.7336</td>
<td>56087.8945</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>0.019791</td>
<td>21.730</td>
<td>1085.307323</td>
<td>23</td>
<td>3.73</td>
<td>0.091292</td>
<td>1.983812</td>
<td>33.1583</td>
<td>3569.1948</td>
<td>59657.0894</td>
</tr>
<tr>
<td>24</td>
<td>26</td>
<td>0.007971</td>
<td>8.753</td>
<td>1094.059837</td>
<td>25</td>
<td>3.82</td>
<td>0.108394</td>
<td>0.948724</td>
<td>34.1070</td>
<td>1706.9068</td>
<td>61363.9961</td>
</tr>
<tr>
<td>26</td>
<td>28</td>
<td>0.002663</td>
<td>2.924</td>
<td>1096.983395</td>
<td>27</td>
<td>3.90</td>
<td>0.127010</td>
<td>0.371321</td>
<td>34.4783</td>
<td>668.0656</td>
<td>62032.0617</td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>0.000730</td>
<td>0.801</td>
<td>1097.784599</td>
<td>29</td>
<td>3.97</td>
<td>0.147146</td>
<td>0.117894</td>
<td>34.5962</td>
<td>212.1096</td>
<td>62244.1714</td>
</tr>
<tr>
<td>30</td>
<td>32</td>
<td>0.000162</td>
<td>0.178</td>
<td>1097.962777</td>
<td>31</td>
<td>4.04</td>
<td>0.168808</td>
<td>0.030078</td>
<td>34.6263</td>
<td>54.1148</td>
<td>62298.2862</td>
</tr>
<tr>
<td>32</td>
<td>34</td>
<td>0.000029</td>
<td>0.032</td>
<td>1097.994574</td>
<td>33</td>
<td>4.11</td>
<td>0.192003</td>
<td>0.006105</td>
<td>34.6324</td>
<td>10.9841</td>
<td>62309.2703</td>
</tr>
<tr>
<td>34</td>
<td>36</td>
<td>0.000004</td>
<td>0.005</td>
<td>1097.999076</td>
<td>35</td>
<td>4.18</td>
<td>0.216737</td>
<td>0.000976</td>
<td>34.6334</td>
<td>1.7556</td>
<td>62311.0259</td>
</tr>
<tr>
<td>36</td>
<td>38</td>
<td>0.000000</td>
<td>0.001</td>
<td>1097.999957</td>
<td>37</td>
<td>4.24</td>
<td>0.243014</td>
<td>0.001222</td>
<td>34.6335</td>
<td>0.2186</td>
<td>62311.2445</td>
</tr>
<tr>
<td>38</td>
<td>40</td>
<td>0.000000</td>
<td>0.000</td>
<td>1097.999961</td>
<td>39</td>
<td>4.30</td>
<td>0.270841</td>
<td>0.001012</td>
<td>34.6335</td>
<td>0.0210</td>
<td>62311.2655</td>
</tr>
<tr>
<td>40</td>
<td>42</td>
<td>0.000000</td>
<td>0.000</td>
<td>1097.999962</td>
<td>41</td>
<td>4.36</td>
<td>0.300221</td>
<td>0.000001</td>
<td>34.6335</td>
<td>0.0015</td>
<td>62311.2670</td>
</tr>
</tbody>
</table>

p : 0.470187 m : 0.0000996 n : 1.850521 k : 0.7734283

NOTE: (1)樹高曲線式：H Curve : EXP(p*q*log(D))

(2)材積式：Vol.eq. : V = m*(D^n) * (H^k)
(4)乃利用(2)(3)的L.U.配合已求得的Weibull機率密度函數的參數b,c以下式求之:

\[P_i(L < x < U) = \exp[-(L/b)^c] - \exp[-(U/b)^c] \]

(5)由(4)求得之P_i×每公頃之株數N得NP_i。

(6)由NP_i+NP_{i-1}得之。

(7)\left[(2) + (3)\right]/2 = (L + U)/2 = D_i

(8)由已求得之樹高曲線之H=f(D_i)將(7)之D_i代入得H_i。

(9)依已求得之材積式V_i=f(D,H_i)將(7)(8)代入求得V_i。

(10)乃以各階V_i×(5)。

(11)由(10)×面積

(12)由(11)×面積
The Parameters of Feng Function

\[
W = \left[W_i s + (W_i s - W_i s) \right] \frac{1 - e^{-(r(t - T_i))}}{1 - e^{-(r(T_i - T_i))}} \right]^{(1/s)}
\]

- **t**: age of interest
- **T_i**: age at beginning of interval
- **T_2**: age at end of interval
- **W_i**: dbh at age \(T_i \)
- **W_2**: dbh at age \(T_2 \)
- \(r \): relative rate of the relative growth rate
- \(s \): incremental acceleration of the relative growth rate

RRG of RRG

INCREMENT RRG of RRG

\[
\text{Inf.} \frac{\text{p} \cdot T(T)}{\text{as} \cdot \text{y} \cdot \text{u} \cdot \text{o}}: \text{yo} = 1 + T_2 - r^{(1)} \ln \left(\frac{s}{e^{(r(T_2))} - e^{(r(T_1))} - W_i s} \right) \frac{(W_i s - W_i s)}{W_i s - W_i s}
\]

\[
\text{asy. value} (\text{W}o) = 1 + T_2 - r^{(1)} \ln \left(\frac{s}{e^{(r(T_2))} - e^{(r(T_1))} - W_i s} \right) \frac{(W_i s - W_i s)}{W_i s - W_i s}
\]

\[
\text{interest.(to)}: \text{Yo} = T + T_2 - r^{(1)} \ln \left(\frac{s}{e^{(r(T_2))} - e^{(r(T_1))} - W_i s} \right) \frac{(W_i s - W_i s)}{W_i s - W_i s}
\]

\[
\text{Inf. value} (\text{W}u): \text{Yo} = 1 + T_2 - r^{(1)} \ln \left(\frac{s}{e^{(r(T_2))} - e^{(r(T_1))} - W_i s} \right) \frac{(W_i s - W_i s)}{W_i s - W_i s}
\]

\[
\text{exp} \left(e^{(r(T_2))} \ln \left(\frac{s}{e^{(r(T_2))} - e^{(r(T_1))} - W_i s} \right) \frac{(W_i s - W_i s)}{W_i s - W_i s} \right) - 1
\]

\[
\text{r} > 0, s > 0
\]

\[
\text{c} = c = e^{(r(T_2))} - e^{(r(T_1))} - \ln (r(T_1)) \text{ or } r > 0
\]

\[
\text{d} = d = e^{(r(T_2))} - e^{(r(T_1))} - \ln (r(T_1)) \text{ or } s > 0
\]

\[
\text{RGR} _{RZ} (T_i) = \frac{d + e^{(r(T_2))} - \ln (r(T_1))}{c + y_i r(T_1)}
\]

<table>
<thead>
<tr>
<th>Character</th>
<th>Density</th>
<th>Age</th>
<th>T1</th>
<th>T2</th>
<th>W1</th>
<th>W2</th>
<th>r</th>
<th>s</th>
<th>SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBH</td>
<td>1000</td>
<td>6-26</td>
<td>6</td>
<td>26</td>
<td>6.70758269</td>
<td>27.04467789</td>
<td>0.14440868</td>
<td>0.81411797</td>
<td>1.0341442</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>6-26</td>
<td>6</td>
<td>26</td>
<td>5.72296744</td>
<td>22.58357132</td>
<td>0.10742317</td>
<td>1.48007794</td>
<td>0.9399125</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>6-26</td>
<td>6</td>
<td>26</td>
<td>0.2159912092</td>
<td>-0.02242145</td>
<td>3.04481622</td>
<td>1.1702987</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>6-26</td>
<td>6</td>
<td>26</td>
<td>4.65698119</td>
<td>19.83782839</td>
<td>0.06393792</td>
<td>1.57706515</td>
<td>1.2434661</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>6-26</td>
<td>6</td>
<td>26</td>
<td>3.58767407</td>
<td>20.04096485</td>
<td>-0.07455813</td>
<td>3.40624259</td>
<td>1.7441025</td>
</tr>
</tbody>
</table>

Calculated Value of Parameters of Richards Model (D11SP)

\[
\text{Wo} = A \left[1 - B \exp \left(-k T_T \right) \right] \left(1 - m \right)
\]

\[
A = \left(\frac{n}{k} \right) \left(1 \left(1 - m \right) \right)
\]

\[
B = \left(1 - m \right) \left(k \right)
\]

\[
C = \left(1 - m \right) \left(W_0 \right) \left(1 - m \right)
\]

\[
W_0 = \left(\frac{n}{k} \cdot c \right) \left(1 - m \right)
\]

\[
A = \frac{A'B}{A - B'} \left(1 - m \right) - 1
\]

<table>
<thead>
<tr>
<th>Character</th>
<th>Density</th>
<th>Age</th>
<th>A</th>
<th>B</th>
<th>K</th>
<th>To</th>
<th>M</th>
<th>SSE</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBH</td>
<td>1000</td>
<td>6-26</td>
<td>28.37</td>
<td>1.6434</td>
<td>0.144409</td>
<td>3.44019</td>
<td>0.185882</td>
<td>1.0341442</td>
<td>15 0</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>6-26</td>
<td>24.30</td>
<td>0.6810</td>
<td>0.107423</td>
<td>4.83526</td>
<td>0.480078</td>
<td>0.9399125</td>
<td>15 0</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>6-26</td>
<td>ERR</td>
<td>0.8741</td>
<td>-0.022421</td>
<td>6.00000</td>
<td>-2.044816</td>
<td>1.1702987</td>
<td>15 0</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>6-26</td>
<td>23.98</td>
<td>1.3545</td>
<td>0.063638</td>
<td>4.76845</td>
<td>-0.577065</td>
<td>1.2434661</td>
<td>15 0</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>6-26</td>
<td>ERR</td>
<td>0.6456</td>
<td>-0.074558</td>
<td>5.86842</td>
<td>-2.406243</td>
<td>1.7441025</td>
<td>15 0</td>
</tr>
</tbody>
</table>
注：
- T₁: 初期調查時間
- T₂: 期末調查時間
- T₃: 反曲點的時間
- Wₚ: 反曲點時的總生長量
- Zₚ: 反曲點時的生長率
- T₄: 曲線與軸的交點，即起始時間
- W₄: 渐進值
- Z₄: T₁的生長率
- Z₅: T₂時的生長率
- ERR: 沒達預期
- SSE: 殘差平方和
- MSE: 殘差的均差
- df: 自由度
- A, B, K, M: Richards模式的常數
- W₅, W₆, r, s: 新建模式的常數
- η, γ, m: Bertalanffy模式的常數

<table>
<thead>
<tr>
<th>df</th>
<th>MSE</th>
<th>Ts(yr.)</th>
<th>W₀∞</th>
<th>T₀</th>
<th>Wₛ</th>
<th>C</th>
<th>d</th>
<th>Zₛ</th>
<th>Z</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.068942</td>
<td>4.86427</td>
<td>28.37984</td>
<td>3.44019</td>
<td>3.59250379</td>
<td>-2.74935</td>
<td>12.2127491</td>
<td>-0.77688</td>
<td>-0.39661</td>
<td>-0.00709</td>
</tr>
<tr>
<td>15</td>
<td>0.062660</td>
<td>1.18526</td>
<td>24.30352</td>
<td>4.83526</td>
<td>ERR</td>
<td>-4.31626</td>
<td>59.2108374</td>
<td>ERR</td>
<td>-0.54454</td>
<td>-0.00832</td>
</tr>
<tr>
<td>15</td>
<td>0.078019</td>
<td>55.65961</td>
<td>ERR</td>
<td>6.00000</td>
<td>32.9369092</td>
<td>-28.8710</td>
<td>3797.96994</td>
<td>-0.01096</td>
<td>ERR</td>
<td>-0.02037</td>
</tr>
<tr>
<td>15</td>
<td>0.082896</td>
<td>-2.39026</td>
<td>23.985951</td>
<td>4.76845</td>
<td>ERR</td>
<td>-7.72246</td>
<td>63.3569530</td>
<td>ERR</td>
<td>-0.49495</td>
<td>-0.01410</td>
</tr>
<tr>
<td>15</td>
<td>0.116273</td>
<td>22.30673</td>
<td>ERR</td>
<td>5.86842</td>
<td>17.9743854</td>
<td>-72.2153</td>
<td>7964.25432</td>
<td>-0.03098</td>
<td>-2.42406</td>
<td>-0.02816</td>
</tr>
</tbody>
</table>

\[Wₛ = W₅ \]

\[Zₛ = r/m \] 最大生長率

\[bₖ = \text{最大連生長量} \]

\[= 2s × \frac{dWs}{dt} \]

\[= \frac{(dWs/dt)/Wₛ}{Ws} \]

\[= dW/dt \]

<table>
<thead>
<tr>
<th>MSE</th>
<th>η</th>
<th>γ</th>
<th>/γ</th>
<th>Ts</th>
<th>W₀∞</th>
<th>Wₛ</th>
<th>A⁺</th>
<th>K⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06894</td>
<td>2.70288</td>
<td>0.17738</td>
<td>15.23777</td>
<td>4.86427</td>
<td>28.37984</td>
<td>3.59250379</td>
<td>28.37984</td>
<td>0.14441</td>
</tr>
<tr>
<td>0.06266</td>
<td>8.16041</td>
<td>0.07258</td>
<td>112.43419</td>
<td>1.18526</td>
<td>24.30352</td>
<td>ERR</td>
<td>24.30352</td>
<td>0.10742</td>
</tr>
<tr>
<td>0.07801</td>
<td>ERR</td>
<td>-0.00736</td>
<td>ERR</td>
<td>55.65961</td>
<td>ERR</td>
<td>32.9369092</td>
<td>ERR</td>
<td>-0.00224</td>
</tr>
<tr>
<td>0.08289</td>
<td>6.05689</td>
<td>0.04035</td>
<td>150.10098</td>
<td>-2.39026</td>
<td>23.98951</td>
<td>ERR</td>
<td>23.98951</td>
<td>0.06364</td>
</tr>
<tr>
<td>0.11627</td>
<td>ERR</td>
<td>-0.02189</td>
<td>ERR</td>
<td>22.30673</td>
<td>ERR</td>
<td>17.9743854</td>
<td>ERR</td>
<td>-0.07456</td>
</tr>
</tbody>
</table>
本生長收穫系統係利用 C 語言，整合資料輸入、修正各種處理林分生長蓄積的基本模式與應用模式之模組，產出之圖、表資訊庫。資料處理的目的大體可歸納為(一)樹種組成(二)林分結構、蓄積和(三)林分生長。樹種組成依人工林、天然林分別處理之；人工林則以樹種再分別之；天然林則以樹種再分別細分。而各種林分結構、蓄積和林分生長的問題皆以樹種、林型分別加以探討。於永久樣區、臨時樣區、樣木的資料輸入、建檔、修正上，可透過各種套裝軟體如 Lotus 123、Quatrato、Dbase 或 PE2 進行，再以 ASCII 方式加以處理之。在林分結構、蓄積的處理上，以最常用來描述林分性態值（如胸高直徑、樹高、斷面積、材積等）的 Weibull 機率密度函數再加以配合以求得函數的母數，並以 K-S 難度測驗選出最佳母數組。欲欲瞭解林分蓄積情形，可以透過描述直徑分布的最佳 Weibull 母數組，配合該樹種、林型的樹高曲線、材積式、單位面積之林木株數密度，以直徑分布法處理之，即可得到該林分調查當時每公頃各直徑級材積分布表和累加蓄積量的推估值。

倘若吾人欲探測、預測各林木、林分性態值，或對直徑級材積分布的變化有興趣的話，則在資料許可下以透過具有生物意義的 Schnute 生長模式系統，求算生長模式的母數與統計測驗，再由該母數透過“林分生長性質表”可掌握生長型態、生長的性質最大生長量、最終生長總量或過大之樹種、林高之林分性態值。亦可利用生長、次長勢木之林分樹高進入此模組以求得最大值指數的引導線，用以建立脈絡指數線圖、式，以瞭解各林地的生產力。

另外有關生長蓄積推測亦可由實驗式模組，配合林分的性質—一樹種、林型、林高、地位、密度、處理等因素——一建立全林分生長模式，方便推測之。

2. 於資料庫的彙整方面，盡量能收集彙整曾經做過分析的調查資料；若原始資料取得有困難，則吾人將利用模擬（simulation）技巧，將模式、資料分布之統計值反推成所需的資料，彙整各資料成重要樹種、林型於台灣各地區位置、調查生長、蓄積之資料庫，再利用本模式系統進行分析，以獲得更具代表性模式的母數，更而建立森林經營之資訊庫，以方便森林資源經營上之使用。

3. 希望利用以往的研究成果或資料，再透過本生長收穫系統，以建立台灣各主要樹種、林型的生長、收穫模式母數庫，以方便林業經營計劃之用。此模式母數庫包括基本模式—一樹高曲線式、材積式、地位指數式、存活模式和描述林分結構的 Weibull 母數，與 Schnute 函數之母數。

4. 有關本模式系統、生長的模組，目前乃於 SAS 套裝軟體內處理，所以獲得之報表資訊乃需靠人工整理成模式母數庫。此系統仍需繼續改善，可能解決方法為：利用 SYSTAT 的 NLN 和 GRAF 模組配合利用 C 語言編寫之連結程式加以處理之。

5. 有關基本模式庫中樹高曲線、材積式，已由一對一的程式集完成；地位指數式、存活模式部分，目前亦利用 SAS 套裝軟體處理，此部分有兩種解決方案，或配合生長模組或依處理樹高曲
線式、材積式之方式另列一對談式之程式集，目前尚在評估設計中。

6. 經處理後之林木、林分生長變化推估值，目前皆以各樹種、林型於不同林分條件—地型、林齡、株數密度下正常生長為其前提假設來加以討論。

7. 一個生長收穫模式系統的建立，並不是短期所能完成，需經長久的測試應用改進，才能成爲一個完整的系統。希望往後能繼續維護、改進，使之本系統更具清晰性、親和性，以適廣為台灣林業界所使用。

8. 重视空間的資料，如地點、位置、坡度、坡向、海拔高等與樹種組成、林分結構、林分生長上的關係。以方便與地理資訊系統(GIS)結合，更而全面的掌握生長、收穫資訊，並可結合生態模式以更利於森林資源多項資源的經營與管理。

六、結論

本模式系統STGSMS包含資料庫，基本模式庫與應用模式庫林分結構、林分蓄積與林分生長。系統中以Weibull函數為軸心探討直徑分布之林分結構；以直徑分布法推算求得林分蓄積，亦由Schunke模式探討森林樹種、林型生長變化情形，更由百分數法整合林分蓄積與林分生長模式，以完成較完整的生長模式系統。資料庫、模式庫皆分別以人工林的樹種、天然林的林型歸類表列出。有關資料庫方面，由於本省各研究、學術單位資料延續記載與互通有無上已相當保守，不輕易轉換使用，所以本系統欲研發由以往研究成果報告內的模式和其材料性質分布，經模擬系統產生林分屬性資料。同時注重其材料來源的地理、位置等空間資料。

基本模式庫、應用模式庫與資訊庫方面亦依台灣目前主要森林狀況，人工林以樹種，天然林以林型分別加以區分收集整理之。將不同型態的模式先予模擬推算出原族群的資料，再以本STGSMS模式系統分別求出各類模式的母數，以建立全省性模式母數庫，方便查詢使用。更而提供森林資源經營之重要資料。

七、引用文獻

1. 林子玉 1975 臺灣區天然生儲欄類樹種材積表之編製 國立中興大學農學院森林學系 pp148-190
2. 林子玉 楊豐昌 伍木林 1978 臺灣產相思樹材積表 中興大學農學院研究報告第171號 pp32
3. 林子玉 楊豐昌 伍木林 1978 臺灣產相思樹材積表 林務局研究報告 171:32pp
4. 陳松藩 1970 臺灣產殼斗科樹種材積表及形數表之編製研究 臺灣省林業試驗所報告
5. 鮮豐隆 羅紹麟 1986 臺灣第一次林相變更造林木生長情形及生長量調查 農委會計劃報告
11. 黄嵐鴻 1970 臺灣二葉松林分分攤及材積表之編製 臺灣省林業試験所研究報告 第193 號 pp44
12. 楊榮啓 馮豐隆 1989 母數預測模式及母數回復模式在研究台灣林木生長及林分結構分析上之應用 中華林學季刊 23(1):53-71
13. 劉慎孝 林子玉 1970 臺灣北部琉球松林分分攤表及材積表 臺灣省立中興大學農學院森林學系
15. 臺灣省林務局 1973 臺灣各主要樹種主木材積表 臺灣省林務局編印