Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10068
標題: Study of the series-connection InGaN optoelectronic devices
氮化銦鎵串極之光電元件研究
作者: 黃建飛
Huang, Chien-Fei
關鍵字: 氮化鎵;GaN;太陽能電池;高電壓;Solar cell;High voltage
出版社: 材料科學與工程學系所
引用: [01] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN”, Appl. Phys Lett., vol. 80, pp.3967 (2002). [02] Misra, C. Boney, N. Medelci, D. Starikov, A. Freundlich, and A. Bensaoula, “Fabrication and characterization of 2.3eV InGaN photovoltaic devices”, Photovoltaic Specialists Conference, 2008. PVSC ''08. 33rd IEEE, no. 11, pp.1 (2009) [03] Sheng-wei Zeng, Xiao-mei Cai, and Bao-ping Zhang, ” Demonstration and Study of Photovoltaic Performances of InGaN p-i-n Homojunction Solar Cells”, IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 46, pp.783 (2010) [04] Han Cheng Lee, Yan Kuin Su, Wen How Lan, Jia Ching Lin, Kuo Chin Huang, Wen Jen Lin, Yi Cheng Cheng, and Yu Han Yeh, “Study of Electrical Characteristics of GaN-Based Photovoltaics With Graded InGaN Absorption Layer”, IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 23, pp.347 (2011) [05] Matioli, Elison,Neufeld, Carl; Iza, Michael Cruz, Samantha C., Al-Heji, Ali A., Chen, Xu, Farrell, Robert M., Keller, Stacia, DenBaars, Steven, Mishra, Umesh, Nakamura, Shuji, Speck, James Weisbuch, Claude, “High internal and external quantum efficiency InGaN/GaN solar cells”, APPLIED PHYSICS LETTERS, vol. 98, pp.021102 (2011). [06] Omkar jani, Christiana Honsberg, Yong Huang, June-O Song, Lan Ferguson, Gon Namkoong, Elaissa Trybus, Alan Doolittle, Sarah Kurtz, “Design, Growth, Fabrication and Characterization of High-Band Gap InGaN/GaN Solar Cells”, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, vol. 01, pp20.(2006). [07] R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths”, Appl. Phys. Lett., Vol.94, pp.063505 (2009) [08] C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, Peichen Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template”, Appl. Phys. Lett. Vol.93, pp.081108 (2008) [09] H. Y. Gao, F. Yan, Y. Zhang, J. M. Li, Y. P. Zeng, and G. H. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale”, J. Appl. Phys. Vol.103, pp.014314 (2008) [10] Tae Su OH, Seung Hwan Kim, Tae Ki Kim, Yong Seok Lee, Hyun Jeong, Gye Mo Yang, and Eun-Kyung Suh, Jpn., J. Appl. Phys., Vol. 47, No. 7 (2008) [11] K. Y. Zang, S. J. Chua, J. H. Teng, N. S. S. Ang, A. M. Yong, and S. Y. Chow, “Nanoepitaxy to improve the efficiency of InGaN light-emitting diodes”, Appl. Phys. Lett. Vol.92, pp.243126 (2008) [12] W. C. Peng and Y. C. Sermon u, “Improved luminance intensity of InGaN-GaN light-emitting diode by roughening both the p-GaN surface and the undoped-GaN surface”, Appl. Phys. Lett.,Vol.89, pp.041116 (2006). [13] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface”, J. Appl. Phys., Vol.93, No.11 (2003) [14] W. C. Peng and Y. C. Sermon Wu, “Enhanced Light Output in double Roughened GaN Light-Emitting Diodes via Various Texturing Treatments of Undoped-GaN Layer ”, J.J. Appl. Phys.,Vol.43, No.10A, pp.7709-7712 (2006) [15] T. Fujii, Y. Gao, R Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficienc of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., Vol.84, pp.855 (2004) [16] T. Fujii, A. David, Y.Gao, M. Iza, S. P. Denbaars, E. L. Hu, C. Weisbuch and S. Nakamura, “Cone-shaped surface GaN-based light-emitting diodes”, Phys. Stat. Sol. (c) 2, No.7, pp.2836-2840 (2005) [17] Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. Denbaars, S. Nakamura and E. L. Hu, “Roughening Hexagonal Surface Morphology on Laser Lift-Off (LLO) N-Face GaN with Simple Photo-Enhanced Chemical Wet Etching”, Jpn. J. Appl. Phys.,Vol.43, No.5A , pp637 (2004) [18] C. F. Lin, Z. J. Yang, J. H. Zheng, and J.J. Dai, “Enhanced Light Output in Nitride-Based Light-Emitting Diodes by Roughening the Mesa Sidewall”, IEEE Photonics Technol. Lett., Vol.17, No.10 (2005) [19] D. B. Thompson, A. Murai, M. Iza, S. Brinkley, S. P. Denbaars, U. K. Mishira, and S. Nakamura, Jpn. J. Appl. Phys., Vol.47, No.5 (2008) [20] J. Y. Kim, M. K. Kwon, J. P. Kim, and S. J. Park, IEEE Photonic Technol. Lett. Vol.19, No.23 (2007) [21] W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, Nanotechnology 19, 255302 (2008) [22] W. Schockley, “Electrons and Holes in Semiconductors”, Van Nostrand, Princeton, NJ (1950) [23] S.M. Sze, “Semiconductor Devices, Physics and Technology 2nd edition”, John Wiely & Sons (2002)
摘要: 
In this thesis, we prepared the two different samples, one was series-connection LED (SC-LED) structure and another one was standard LED (ST-LED) structure. The SC-LED structure consisted of the 11 small mesa regions through the series connection process. The wavelength blueshift phenomenon of the electrolumescence (EL) spectra in SC-LED was larger than ST-LED that could be caused by the band-filling effect obviously in the SC-LED. The wavelength redshift phenomenon of the electrolumescence (EL) spectra in ST-LED was larger than SC-LED due to the thermal joule heat at high injection power.
Under the same operation power, the driving current in the SC-LED was small than the ST-LED that the current density of the SC-LED was slightly higher than the ST-LED. At 1 watt operation power, the light output power of the SC-LED had a 13.5% enhancement compared with the ST-LED.
In the solar measurement, the open-circuit voltage and the short-circuit current were measured at 21.72V/1.14×10-7A and 2.25V/1.81×10-6A for the SC-LED and ST-LED, respectively. The short-circuit current of the ST-LED had a 15.8 times enhancement compared with the SC-LED under the full-band light illumination. The current match property induced the lower solar efficiency was observed in the SC-LED structure compared with the ST-LED structure. The high Voc property of the SC-LED had the potential application for the concentrated photovoltaic device in the near UV region.

本論文中,我們製備了兩種試片,一個為串極發光二極體(Series-connection LED ; SC-LED)是將11個小發光二極體平台串接在一起;另一個則為標準發光二極體(ST-LED)。量測元件電激發螢光光譜及電性特性中,在小電流驅動下,我們可以發現SC-LED的波長藍移量大於ST-LED,可能是SC-LED的能帶填充效應較ST-LED來的大;而在大電流驅動下ST-LED的波長紅移量大於SC-LED,可能是因為當元件操作在高注入電流密度時,會產生焦耳熱效應導致波長紅移效應。
在相同的操作功率之下,SC-LED的驅動電流遠小於ST-LED的驅動電流,故在相同的操作功率下,SC-LED可以減少熱效應對試片產生的影響。在1瓦特(W)的操作功率下SC-LED的強度比ST-LED增加了13.5%,效率也提升了15%;SC-LED的峰值效率比ST-LED提升了19.6%。
在太陽能特性量測中,在照射全波段光源觀察到SC-LED的開路電壓(Voc)大於ST-LED;但在短路電流ST-LED卻比SC-LED增加了15.8倍。因為SC-LED具有電流不匹配的問題,所以致使ST-LED的短路電流遠大於SC-LED,但SC-LED具有高開路電壓特性,兩者之填充效應數值SC-LED為71%而ST-LED為63.5%左右,相較之下ST-LED的效率略優於SC-LED。
URI: http://hdl.handle.net/11455/10068
其他識別: U0005-0202201212180300
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.