Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorYu, Tzu-Yunen_US
dc.identifier.citation[1] “LED原理與應用”,郭浩中、賴芳儀、郭守義著,五南圖書出版股份有限公司,2009年6月。 [2] H. J. Round, “A note on carborundum,” Electrical world, Vol. 49, no.6, p. 309, (1907). [3] Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities”, Appl. Phys. Lett., Vol. 94, p. 111109, (2009). [4] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale”, J. Appl. Phys., Vol. 103, p. 014314, (2008). [5] J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li and C. C. Kao, “Enhanced Output Power of GaN-Based LEDs With Nano-Patterned Sapphire Substrates”, IEEE Photonics Technol. Lett., Vol. 20, no. 13, (2008). [6] J. B. Kim, S. M. Kim, Y. W. Kim, S. K. Kang, S. R. Jeon, N. Hwang, Y. J. Choi and C. S. Chung, “Light Extraction Enhancement of GaN-Based Light-Emitting Diodes Using Volcano-Shaped Patterned Sapphire Substrates”, Jpn. J. Appl. Phys., Vol. 49, p. 042102, (2010). [7] H. W. Huang, C. H. Lin, J. K. Huang, K. Y. Lee, C. F. Lin, C. C. Yu, J. Y. Tsai, R. Hsueh, H. C. Kuo and S. C. Wang, “Investigation of GaN-based light emitting diodes with nano-hole patterned sapphire substrate (NHPSS) by nano-imprint lithography”, Materials Science and Engineering B, Vol. 164, p. 76, (2009). [8] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, J. Appl. Phys., Vol. 84, p. 855 (2004). [9] T. Fujii, A. David, Y. Gao, M. Iza, S. P. DenBaars, E. L. Hu, C. Weisbuch and S. Nakamura, “Cone-shaped surface GaN-based light-emitting diodes”, Phys. Stat. Sol., (c) 2, no. 7,p. 2836, (2005). [10] W. C. Peng and Y. C. Sermon Wu, “Improved luminance intensity of InGaN-GaN light-emitting diode by roughening both the p-GaN surface and the undoped-GaN surface”, Appl. Phys. Lett., Vol. 89, p. 041116, (2006). [11] H. W. Jang, S. W. Ryu, H. K. Yu, S. Lee and J. L. Lee, “The role of reflective p-contacts in the enhancement of light extraction in nanotextured vertical InGaN light-emitting diodes”, Nanotechnology, Vol. 21, p. 025203, (2010). [12] S. Chhajed, W. Lee, J. Cho, E. F. Schubert and J. K. Kim, “Strong light extraction enhancement in GaInN light-emitting diodes by using self-organized nanoscale patterning of p-type GaN”, Appl. Phys. Lett., Vol. 98, p. 071102, (2011). [13] Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu and J. J. Huang, “Optical Properties of the Partially Strain Relaxed InGaN/GaN Light-Emitting Diodes Induced by p-Type GaN Surface Texturing”, IEEE Electron Devices Letters, Vol. 32, p. 182, (2011). [14] T. S. Kim, S. M. Kim, Y. H. Jang and G. Y. Jung, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography”, Appl. Phys. Lett., Vol. 91, p. 171114, (2007). [15] Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency”, Appl. Phys. Lett., Vol. 97, p. 093110, (2010). [16] K. Y. Yang, S. C. Oh, J. Y. Cho, K. J. Byeon and H. Lee, “Direct Indium Tin Oxide Nanoparticle Printing Technique for Improvement of Light Extraction Efficiency of GaN-Based LEDs”, Journal of The Electrochemical Society, Vol. 157, p. H1067, (2010). [17] T. V. Cuong, H. S. Cheong, H. G. Kim, H. Y. Kim, C.-H. Hong, E. K. Suh, H. K. Cho and B. H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning”, Appl. Phys. Lett., Vol. 90, p. 131107, (2007). [18] C. Y. Huang, H. M. Ku, C. Z. Liao and S. Chao, “MQWs InGaN/GaN LED with embedded micro-mirror array in the epitaxial-lateral-overgrowth gallium nitride for light extraction enhancement”, Optics Express, Vol. 18, no. 10, p. 10674, (2010). [19] C. C. Chen, M. H. Shih, Y. C. Yang and H. C. Kuo, “Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector”, Appl. Phys. Lett., Vol. 96, p. 151115, (2010). [20] W. Y. Lin, D. S. Wuu, S. C. Huang, R. H. Horng, “Enhanced Output Power of Near-Ultraviolet InGaN/AlGaN LEDs With Patterned Distributed Bragg Reflectors”, IEEE Transactions On Electron Devices, Vol. 58, no. 1, p. 173, (2011). [21] B. S. Cheng, C. H. Chiu, M. H. Lo, Y. L. Wu, H. C. Kuo, T. C. Lu, Y. J. Cheng, S. C. Wang and K. J. Huang, “Light Output Enhancement of UV Light-Emitting Diodes With Embedded Distributed Bragg Reflector”, IEEE Photonics Technol. Lett., Vol. 23, no. 10, p. 642, (2011). [22] C. C. Kao, H. C. Kuo, Y. L. Hsieh, C. Y. Luo and S. C. Wang, “Light-Output Enhancement in a Nitride-Based Light-Emitting Diode With 22° Undercut Sidewalls”, IEEE Photonics Technol. Lett., Vol. 17, no. 1, (2005). [23] D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon and S. C. Hung, “Nitirde-Based LEDs With Phosphoric Acid Etched Undercut Sidewalls”, IEEE Photonics Technol. Lett., Vol. 21, no. 8, p. 510, (2009). [24] C. F. Lin, Z. J. Yang, B. H. Chin, J. H. Zheng, J. J. Dai, B. C. Shieh and C. C. Chang, “Enhanced Light Output Power in InGaN Light-Emitting Diodes by Fabricating Inclined Undercut Structure”, Journal of The Electrochemical Society, Vol. 153, p. G1020, (2006). [25] C. C. Yang, C. F. Lin, J. H. Chiang, H. C. Liu, C. M. Lin, F. H. Fan and C. Y. Chang, “Fabrication of Mesa Shaped InGaN-Based Light-Emitting Diodes Through a Photoelectrochemical Process”, J. Electron. Mater., Vol. 38, no. 1, p. 145, (2009). [26] J. Y. Kim, M. K. Kwon, J. P. Kim and S. J. Park, “Enhanced Light Extraction From Triangular GaN-Based Light-Emitting Diodes”, IEEE Photonics Technol. Lett., Vol. 19, no. 23, p. 1865, (2007). [27] D. B. Thompson, A. Murai, M. Iza, S. Brinkley, S. P. Denbaars, U. K. Mishira and S. Nakamura, “Hexagonal Truncated Pyramidal Light Emitting Diodes through Wafer Bonding of ZnO to GaN, Laser Lift-off, and Photo Chemical Etching”, Jpn. J. Appl. Phys., Vol. 47, p. 3447, (2008). [28] J. Shakya, K. H. Kim, J. Y. Lin and H. X. Jiang, “Enhanced light extraction in Ⅲ–nitride ultraviolet photonic crystal light-emitting diodes”, Appl. Phys. Lett., Vol. 85, p. 142, (2004). [29] C. Y. Cho, S. E. Kang, K. S. Kim, S. J. Lee, Y. S. Choi, S. H. Han, G. Y. Jung and S. J. Park, “Enhanced light extraction in light-emitting diodes with photonic crystal structure selectively grown on p-GaN”, Appl. Phys. Lett., Vol. 96, p. 181110, (2010). [30] Y. W. Cheng, S. C. Wang, Y. F. Yin, L. Y. Su and J. J. Huang, “GaN-based LEDs surrounded with a two-dimensional nanohole photonic crystal structure for effective laterally guided mode coupling”, Optics Letters, Vol. 36, no. 9, (2011). [31] Y. Ohki, Y. Toyoda, H. Kobayasi, and I. Akasaki, International Symposium an GaAs and Related Compounds, edited by T. Sugano (IOP, Bristol, 1982). [32] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y. –C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett., Vol. 78, p. 3379, (2001). [33] S. J. Chang, C. S. chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei and H. M. Lo, “Nitride-Based Flip-Chip ITO LEDs”, IEEE Transactions on Advanced Packaging, Vol. 28, p. 273, (2005). [34] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride”, Appl. Phys. Lett., Vol. 76, p. 511, (2000). [35] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V. Schwegler, C. Kirchner, M. Kamp, and M. Heuken, “Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions”, Appl. Phys. Lett., Vol. 76, p. 3923 (2000). [36] J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C. J. Yoon, and H. J. Lee, “Bias-assisted photoelectrochemical oxidation of n-GaN in H2O”, Appl. Phys. Lett., Vol. 81, p. 1029, (2002). [37] M. Ferhat, and F. Bechstedt, “First-principles calculations of gap bowing in InxGa1-xN and InxAl1-xN alloys: Relation to structural and thermodynamic properties”, Phys. Rev. B, Vol. 65, p. 075213, (2002). [38] Kittel, Introduction to Solid State Physical. [39] L. Macht, P. R. Hagenan, S. Haffouz, and P. K. Larsen, “Microphotoluminescence mapping of laterally overgrown GaN layers on patterned Si (111) substrates”, Appl. Phys. Lett., Vol. 87, p. 131904, (2005). [40] Su-Huai Wei, NCPV and Dolar Program Review Meeting, p. 713 (2003). [41] T. Takeuchi, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber, and J. Yang, “Near-field scanning optical microscopy studies of V-grooved quantum wire lasers”, Appl. Phys. Lett., Vol. 73, p. 1691, (1998) [42] P. Perlin, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber, and J. Yang, “InGaN/GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy”, Appl. Phys. Lett., Vol. 73, p. 2778, (1998). [43] H. Gotoh, T. Tawara, Y. Kobayashi, N. Kobayashi, and T. Saitoh, “InGaN/GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy”, Appl. Phys. Lett., Vol. 83, p. 4791, (2003). [44] L. Daia, and B. Zhang, “Comparison of optical transitions in InGaN quantum well structures and microdisks”, J. Appl. Phys., Vol. 89, p. 4951, (2001). [45] F. Bernardini, and V. Fiorentini, “Macroscopic polarization and band offsets at nitride heterojunctions”, Phys. Rev. B, Vol. 57, p. R9427, (1998). [46] Hadis Morkoc, Nitride Semiconductors and Devices. [47] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells”, Jpn. J. Appl. Phys.,Vol. 36, p. L382, (1997). [48] Y. H. Kwon, G. H. Gainer, S. Bidnyk, Y. H. Cho, J. J. Song, M. Hansen, and S. P. DenBaars, MRS Internet Journal Nitride Semiconductor Research, Vol. 5S1, p. W12.7, (2000). [49] T. Takeuchi, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber and J. Yang, “Near-field scanning optical microscopy studies of V-grooved quantum wire lasers”, Appl. Phys. Lett., Vol. 73, p. 1691, (1998). [50] T. M. Hsu, C. Y. Lai, W. H. Chang, C. C. Pan, C. C. Chuo and J. I. Chyi, “Electroreflectance study on the polarization field in InGaN/AlInGaN multiple quantum wells”, Appl. Phys. Lett., Vol. 84, p. 1114, (2003). [51] M. Feneberg, F. Lipski, R. Sauer, K. Thonke, T. Wunderer, B. Neubert, P. Bruckner and F. Scholz, “Piezoelectric fields in GaInN/GaN quantum wells on different crystal facets”, Appl. Phys. Lett., Vol. 89, p. 242112, (2006). [52] T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu and S. F. Chichibu, “Quantum-confined Stark effects in the m-plane In0.15Ga0.85N/GaN multiple quantum well blue light-emitting diode fabricated on low defect density freestanding GaN substrate”, Appl. Phys. Lett., Vol. 91, p. 181903, (2007). [53] L. Beji, B. Ismail, L. Sfaxi, F. Hassen, H. Maaref, H. Ben Ouada, “Critical layer thickness enhancement of InAs overgrowth on porous GaAs”, Journal of Crystal Growth, Vol. 258, p. 84, (2003). [54] R. S. Qhalid Fareed, V. Adivarahan, C. Q. Chen, S. Rai, E. Kuokstis, J. W. Yang, M. A. Khan, J. Caissie, R. J. Molnar, “Air-bridged lateral growth of crack-free Al0.24Ga0.76N on highly relaxed porous GaN”, Appl. Phys. Lett., Vol. 696, p. 84, (2004). [55] M. Mynbaeva, A. Titkov, A. Kryganovskii, V. Ranikov, K. Mynbaev, H. Huhtinen, R. Laiho, V. Dmitriev, “Structural characterization and strain relaxation in porous GaN layers”, Appl. Phys. Lett., Vol. 1113, p. 76, (2000). [56] C. F. Lin, C. C. Yang, C. M. Lin, K. T. Chen, C. W. Hu and J. D. Tsay, “InGaN-Based Light-Emitting Diodes with a Multiple-Air-Gap Layer”, Electrochemical and Solid-State Lett., Vol. 12, p. H365, (2009). [57] A. P. Vajpeyi, S. J. Chua, S. Tripathy and E. A. Fitzgerald, “Effect of carrier density on the surface morphology and optical properties of nanoporous GaN prepared by UV assisted electrochemical etching”, Appl. Phys. Lett., Vol. 91, p. 083110, (2007). [58] H. Hartono, C. B. Soh, S. J. Chua and E. A. Fitzgerald, “High Quality GaN Grown from a Nanoporous GaN Template”, Journal of The Electrochemical Society, Vol. 154, p. H1004, (2007). [59] K. Al-heuseen, M. R. Hashim, N. K. Ali, “Enhanced optical properties of porous GaN by using UV-assisted electrochemical etching”, Physica B, Vol. 405, p. 3176, (2010). [60] K. Y. Yang, S. C. Oh, J. Y. Cho, K. J. Byeon, and H. Lee, “Direct Indium Tin Oxide Nanoparticle Printing Technique for Improvement of Light Extraction Efficiency of GaN-Based LEDs”, Journal of The Electrochemical Society, Vol. 157, p. H1067, (2010). [61] C. C. Yang, C. F. Lin, C. M. Lin, C. C. Chang, K. T. Chen, J. F. Chien and C. Y. Chang, “Improving light output power of InGaN-based light emitting diodes with pattern-nanoporous p-type GaN:Mg surfaces”, Appl. Phys. Lett., Vol. 93, p. 203103, (2008). [62] M. Y. Hsieh, C. Y. Wang, L. Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yu, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J. Huang, “Improvement of External Extraction Efficiency in GaN-Based LEDs by SiO2 Nanosphere Lithography”, IEEE Electron Device Letters, Vol. 29, no. 7, p. 658, (2008). [63] C. C. Yang, C. F. Lin, R. H. Jiang, H. C. Liu, C. M. Lin, C. Y. Chang, D. S. Wuu, H. C. Kuo, and S. C. Wang, “Wet Mesa Etching Process in InGaN-based Light Emitting Diodes”, Electrochemical and Solid-State Letters, Vol. 11, no. 7, p. H169, (2008). [64] C. F. Lin, K. T. Chen and K. P. Huang, “Blue Light-Emitting Diodes With an Embedded Native Gallium Oxide Pattern Structure”, IEEE electron device Lett., Vol. 31, no. 12, p. 1431, (2010).zh_TW
dc.description.abstract本論文採用光輔助電化學氧化製程,在圖案化氮化鎵模板製作多孔隙氮化鎵與氧化結構,利用再磊晶成長氮化銦鎵發光元件結構,探討埋入結構對發光元件特性影響,論文將分成兩部分元件結構進行探討: 在第一部分實驗中,在具氧化孔洞埋入結構之發光二極體結構中,在20 mA操作電流下,Holes-Oxide LED電激發光波長較標準Holes-ST LED藍移2.86 nm,且亮度提升70%。Holes-ST LED及Holes-Oxide LED的發光效率衰退(Efficiency Droop)分別為51 %及19 %。 在第二部分實驗中,在具氧化奈米柱埋入結構之發光二極體結構中,Rods-Oxide LED在20毫安培驅動下,發光亮度較標準Rods-ST LED增加3.2倍。當改變反向偏壓從0 V至-8 V時,所量測之偏壓光激螢光波長藍移量分別為3.08 nm(Rods-ST LED)及2.53 nm(Rods-Oxide LED),Rods-Oxide LED波長藍移量較少,表示在量子井之壓電場較小所致。且Rods-ST LED及Rods-Oxide LED的內部量子效率分別為55 %及85 %。可觀察到Rods-Oxide LED具有較低之壓電場效應與較高之內部量子效率。 在氮化銦鎵/氮化鎵多重量子井發光二極體中加入一層經光輔助電化學(PEC)氧化所產生的奈米孔洞結構(Holes-Oxide LED及Rods-Oxide LED)有助於光取出效率提升、改善發光效率衰退(Droop)與降低量子井之壓電場大小,有助於提升氮化銦鎵之外部量子效率。zh_TW
dc.description.abstractIn this thesis, the patterned oxidized GaN templates were fabricated through the photoelectrochemical (PEC) wet oxidation processes for the following epitaxial regrowth process. The optical properties of the InGaN light-emitting diode (LED) with the embedded GaOx structures were analyzed in detail into two parts. In the first part, the InGaN LED structure was re-grown on the PEC oxidized patterned-holes structure. In the Holes-Oxide LED, the peak wavelength of electroluminescence (EL) spectra had a 2.86 nm blueshift phenomenon and the light output power had a 70 % enhancement compared to a standard LED structure at 20 mA operating current. The wavelength blueshift of the EL spectra, with an increasing injection current, in the Holes-oxide LED (21.1nm) was smaller than that in the ST-LED (25.0nm). The lower piezoelectric field in an InGaN active layer and high light extraction efficiency are obtained in the LED structure embedded with a nanoporous structure. In the second part, the InGaN LED structure was re-grown on the PEC oxidized patterned-rods structure. In the Rods-Oxide LED structure, the light output power had an approximate 3.2 times enhancement when compared to a conventional LED at 20 mA. The wavelength blueshift of the photoluminescence spectra, when varying the reverse-bias voltage from 0 to -8 V, was measured as 3.08 nm and 2.53 nm for the Rods-ST LED and the Rods-Oxide LED, respectively. In the Rods-oxide LED structure, the lower piezoelectric field and the slightly higher internal quantum efficiency in the InGaN active layers were both measured through a bias-dependent and temperature-dependent photoluminescence measurement. Higher light extraction efficiency and small efficiency droop and lower piezoelectric field in the InGaN wells were observed in the Holes-oxide LED and Rods-oxide LED by inserting the PEC-treated nanoporous structure.en_US
dc.description.tableofcontents中文摘要 i Abstract ii 1-1 照明技術的發展 1 1-2 LED之應用 2 1-3 半導體之發光二極體 3 1-4 Ⅲ-Ⅴ族半導體 3 1-5 研究動機 4 第二章 原理與文獻回顧 5 2-1 半導體之發光原理 5 2-2 發光二極體之結構及其工作原理 6 2-3 發光二極體之光取出效率 7 2-3-1 內部量子效率 8 2-3-2 外部量子效率 8 2-4 光輔助電化學(Photoelectrochemical, PEC)技術 18 2-4-1 光激發電子及電洞 18 2-4-2 光輔助電化學氧化與蝕刻方法 18 2-5 壓電場(Piezoelectric Field) 21 2-5-1 應變(Strain)的產生 21 2-5-2 壓電效應(Piezoelectric Effect) 24 2-5-3 史托克位移(Stokes Shift) 27 2-5-4 外加偏壓對量子侷限史達克效應(QCSE)影響 30 第三章 實驗步驟與方法 32 3-1 試片製備流程 32 3-2 實驗流程 38 3-2-1 實驗(一)流程示意圖 38 3-2-2 實驗(二)流程示意圖 39 3-3 光輔助電化學氧化裝置(Photoelectrochemical, PEC) 40 3-4 分析儀器 41 3-4-1 光學顯微鏡(Optical Microscope, OM) 41 3-4-2 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 41 3-4-3 電激螢光光譜(Electroluminescence, EL) 42 3-4-4 光激螢光光譜(Photoluminescence, PL) 42 3-4-5 發散角量測(Radiation Pattern Measurement) 44 第四章 實驗結果與討論 45 4-1 含三個孔洞圖案之多孔隙(Multi-Air Gap)氧化層的發光二極體 50 4-1-1 試片表面形貌分析 50 4-1-2 電激發螢光光譜(EL)及元件電性之量測 54 4-1-3 改變雷射功率之光激發螢光光譜 58 4-1-4 遠場光輻射圖形分析 60 4-2 含氧化鎵柱狀陣列的發光二極體 62 4-2-1 試片表面形貌分析 62 4-2-2 電激發螢光光譜(EL)及元件電性之量測 64 4-2-3 發光二極體之發光影像(Beam Profile) 68 4-2-4 改變雷射功率之變溫光激發螢光光譜 69 4-2-5 改變外加反向偏壓探討壓電場對能帶之影響 73 4-2-6 遠場光輻射圖形分析 74 第五章 結論與未來展望 77 5-1 結論 77 5-2 未來展望 77 參考文獻 78zh_TW
dc.titlePhotoelectrochemical Process Induced the Nanoporous GaN Epitaxial Growthen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:材料科學與工程學系
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.