Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10088
標題: 雙離子束濺鍍系統及後退火處理製備鐵鉑/氧化錳雙層膜之微結構與磁性質研究
The microstructure and magnetism of FePt/Mn-Oxide thin films by ion-beam bombardment and annealing
作者: Wu, Hung-Jen
吳弘仁
關鍵字: FePt;鐵鉑;magnetism;ion-beam bombardment;磁性質;雙離子束
出版社: 材料科學與工程學系所
引用: [1] E. H. Abarra, A. Ionmata, H. Sato, I. Okamoto, and Y. Mizoshita, Appl. Phys. Lett. 77, 2581 (2000) [2] E. E. Fullerton, D. T. Margulies, M. E. Schabes, M. Carey, A. Moser, M. Best, G. Zetzer, K. Rubin, H. Roaen, and M. Doerner, Appl. Phys. Lett. 77, 3806 (2000) [3] 楊志信,台灣資訊儲存技術協會會刊,940403,1 (2005) [4] S. Iwasaki and Y. Nakamura, IEEE Trans. Magn. 13, 1271 (1977) [5] R. Sbiaa and S. N. Piramanayagam, Recent Patents on Nanotechnology , 1, 29(2007) [6] Richard New, “ The Future of Magnetic Recording Technology”, Hitachi Global Storage Technologies (2008) [7] D. Weller, A. Moser, L. Folks, Margaret. E. Best, W. Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele, and Mary F. Docerner, 36, 10 (2000) [8] C. H. Lai, C. H. Yang, and C. C. Chiang, Appl. Phys. Lett. 83, 22 (2003). [9] S. R. Lee, S. Yang, Y. K. Kim, and J. G. Na, Appl. Phys. Lett. 78, 4001 (2001) [10] Y. Endo, N. Kikuchi, O. Kitakami, and Y, Shimada, J. Appl. Phys. 89, 7065 (2001). [11] K. Kang, Z. G. Zhang, C. Papusoi, and T. Suzuki, Appl. Phys. Lett. 84, 404 (2004). [12] C. H. Lai, Y. C. Wu, and C. C. Chiang, J. Appl. Phys. 97, 10H305 (2005). [13] B. D. Cullity, “INTRODUCTION TO MAGNETIC MATERIALS”, Massachusettes: Addison- Wesley, 1972 [14] H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans, Magn. 34,1845 (1998) [15] S. H. Charap, P.-L. Lu, and Y. He, IEEE Trans. Magn. 33, 978 (1997) [16] D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423(1999) [17] 國立台灣大學材料學與工程所碩士論文,CoPt 單層CoPt/Ag 雙層薄膜的磁性 質與微結構的研究,黎穎姍,民國98 年 [18] M. S. Patwari, and R. H. Vistoria, IEEE. Magn. 33, 978(2004) [19] 張慶瑞,物理會刊,十一卷. 三期,268 (1989) [20] P. Weiss, J. Phys. 6, 661 (1907). P. Weiss, J. Phys. 6, 661 (1907). [21] W. L. Bragg and E. J. Williams, Proc. R. Soc. Lond. A 145, 699 (1934) [22] Hari Singh Nalwa, “Magnetic Nanostructures”(2009) [23] Y. Ogata, Y. Imai and S. Nakagawa, J. Appl. Phys. 107, 09A715 (2010) [24] C.L Platt, K.W. Wierman, J.K. Howard, A. G. Roy, D. E. Laughin, J. Magn. Magn.Mater. 260, 487 (2003) [25] K.H Na, J. G. Na, H. J. Kim, P.W. Jang, J. R. Kim, and S. R. Lee, IEEE Trans.Magn. 37, 1312 (2001) [26] S.C Chen, P. C. Kuo, G. P. Lin, K. T. Hung, S. L. Ou, W. H. Hong, Materials and Design, 31, 1742 (2010) [27] Y.K. Takahashi, M.Ohnuma, and K. Hona, J. Appl. Phys. 93, 7580 (2003) [28] E. Yang, David E. Laughin, and J. G. Zhu, IEEE Trans. Magn. 46, 2446 (2010) [29] Y.H. Fang, P.C. Kuo, A.C. Sun, S.L. Hsu, S.C. Chen, 517, 5181 (2009) [30] C. J. Jiang and J. S. Chen, G. P. Ju, and G. M. Chow, IEEE Trans._Magn. 46, 1914 (2010) [31] 國立台灣大學材料學與工程所博士論文,低序化溫度 L10 FePt 合金薄膜的製 備及其應用於垂直磁記錄媒體之研究,孫安正,民國94 年 [32] 雙離子束濺鍍操作手冊,中興大學,林克偉實驗室編著。 [33] J. J. Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology : principles, deposition, film modification, and synthesis”, Noves Publication, 1989. [34] 國立中興大學材料科學與工程所碩士論文,鐵鉑/氧化矽薄膜之微結構及磁性 質研究,邱宜倫,民國98 年 [35] 汪建民主編,”材料分析”,中國材料科學學會,1998 [36] Y. .K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, and K. Hono, J. Appl. Phys. 95,5 (2004) [37] B. D. Cullity and S. R. Stock, “X-rar Diffraction”, 2001 [38] David B. Williams and C. Barry Carter, “Transmission Electron Microscopy”, Plenum Press, 1996 [39] David Jiles, “Magnetism and Magnetic Materials”, Chapman & Hall, 1991 [40] 金重勳主編,“磁性技術手冊”,中華民國磁性技術協會,民國91 年 [41] K. H. J. Buschow, “Concise Encyclopedia of magnetic and Superconduction materials.” [42] Robert C. O’Handley, “Modern Magnetic Materials Principles and Applications”, 2000 [43] 汪島軍、馬仁宏、陳亙佑、蔡斯凱、林建智編著,原子力顯微鏡專利地圖 [44] K. W. Lin, Y. L. Chiu, A. C. Sun, J. H. Hsu, J. van Lierop, and T. Suzuki, Jpn. J. Appl. Phy. 48, 073002-1 (2009) [45] Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, and K. Hono, J. Magn. Magn. Mater. 260, 487 (2003) [46] J. Y. Guo, C. Y. Liu, H. Ouyang, K. W. Lin, C. J. Tsai, J. van Lierop, N. N. Phuoc, and T. Suzuki, Phys. Stat. Sol. (c) 4, 4512 ( 2007) [47] Y. C. Wu, L. W. Wang, and C. H. Lai, Appl. Phys. Lett. 91, 072502 (2007) [48] B. Yao and K. R. Coffey, J. Appl. Phys, 103, 07E107-1-3 (2008). [49] A. C. Sun, Jen-Hwa Hsu, P. C. Kuo, and H.L Huang, J. Magn. Mater. 320, 3071 (2008) [50] T. Katayama, T. Sugimoto, Y. Suuki, M. Hashimaoyo, P, de Haan, and J. C. Lodder, J. Magn. Mater. 104, 1002 (1992) [51] 國立中興大學材料科學與工程所碩士論文,氧含量對鈷鉑及鐵鉑薄膜之影響, 吳宜靜,民國99 年 [52] H. Zeng, S. Sun, T. S. Vedantam, J. P. Liu, Z-R. Dai and Z.-L. Wang, Appl. Phys. Lett. 80, 2583 (2002) [53] John F. Moudler, Willian F. Stickle, Peter E. Sobol, Kenneth D. Bomben, “Hand book of X-ray Photoelectron Spectroscopy, ” 1992 [54] C. M. Kuo, P. C. Kuo, H. C. Wu, Y. D. Yao, C. H. Lin, J. Appl. Phys. 85, 4886 (1999) [55] S.-U. Jang, J.-H. Kim, Sangho Jin, Seungmin Hyun, H.-J. Lee, H.-S. Lee, S.-J. Kwon, Microelectronic Eng. 88, 589 (2011)
摘要: 
本實驗在超高真空下以磁控濺鍍的方式製備 10 nm 之磁性FePt 薄膜於熱氧化
的Si 基板上,爾後以雙離子束濺鍍系統(Dual Ion Beam Assisted Deposition)於其薄
膜表面上鍍置不同氧含量(8~41%O2/Ar)的氧化錳(MnOx 10nm),並將試片在超高真
空磁控濺鍍之腔體經過退火處理。
此研究主要第一部分在探討在離子濺鍍系統中改變氧含量時,氧化錳(MnOx)
薄膜對鐵鉑(FePt)磁性層微結構與磁性質方面的影響。根據X 光繞射的分析結果顯
示,其結構在經過550oC 退火之後,皆由非序化的面心立方(fcc 相)轉變為序化的
面心正方(fct 相)(a~3.80 Å , c~3.67 Å ),在序化度方面當氧含量為8%O2/Ar 有最大值
(S~0.85)。電子顯微鏡之明視野圖形與繞射圖形結果顯示在10 分鐘退火後,氧化
錳(MnOx)可能形成晶界(grain boundary)將鐵鉑(FePt)有效的分散。從磁性質分析顯
示,當氧含量為8%O2/Ar,具有最大矯頑磁力,其垂直膜面的矯頑磁力分別為7.8
kOe。而隨著氧含量的變化,晶格常數並無太大的變化。從研究結果發現,當氧含
量為較低時,其鐵鉑(FePt)晶格中的間隙位置可能會因為退火後被氧原子所占據,
因此內部的應力會使得序化度的提高,但是由電子顯微鏡圖及MFM 圖指出分散的
鐵鉑(FePt)顆粒由於在磁化過程中受到的阻礙有限,因此矯頑磁力有明顯的下降,
然而當氧含量過高時,會使得氧原子成為擴散阻礙,而限制鐵鉑晶粒的成長,而
當氧含量高於21%O2/Ar 時,過多的氧原子可視為一缺陷,而此缺陷的存在會造成
矯頑磁力些許的上升。
第二部分則主要在探討在超高真空磁控之腔體,當氧含量固定8%O2/Ar,經
過不同退火溫度變化時,氧化錳(MnOx)薄膜對FePt 磁性層微結構與磁性質方面的
影響。依據X 光繞射的分析結果顯示,其鐵鉑/氧化錳(FePt-MnOx 8%O2/Ar)結構於
350℃及400℃仍為非序化之面心立方(fcc 相),當退火溫度達550℃以上時,其結
構由非序化的fcc 相轉變為序化的面心正方(L10 FePt)相,在序化度方面當溫度為
550℃時有最大值(S~ 0.85),然而隨著退火溫度上升,序化度亦隨之下降。電子顯
微鏡明視野圖形結果顯示鐵鉑/氧化錳(FePt-MnOx)顯示在經過550oC、10 分鐘退火
後,其頂層MnOx 可能形成晶界(grain boundary)將FePt 有效的分散。在磁性質分
析顯示,具有最大矯頑磁力,其垂直膜面的矯頑磁力為6.9 kOe。從電子顯微鏡圖
形證實隨著退火溫度升高而鐵鉑(FePt)晶粒的成長(15~25nm),造成反向磁區
(reversed domain)聚集,而磁區結合(domain mucleation process)造成磁翻轉機制改變
(magnetization maechanism),因此才會造成隨著退火溫度的上升,其矯頑磁力亦隨
之下降。

In our research, the magnetic properties and structure of Fe-Pt thin on SiO2
substrate film are strongly affected by capped different layers prepared ion-beam
bombardment and post-annealing. In this study, the co-sputtered FePt films (10 nm) on
thermal oxide SiO2 substrates were prepared by a UHV magnetron sputtering System at
first. The capping Mn-oxide layers (10 nm) were deposited on top of FePt film by using
the dual ion-beam deposition technique in the mixture of O2/Ar gas varied from 8% to
41%O2/Ar. All samples were post annealed at 550oC for 10 mins in UHV chamber.
Then, the highest ordering parameter of samples is 8%O2/Ar FePt/MnOx bilayers, so
other samples prepared by IBAD with 8%O2/Ar were annealed in UHV chamber with
different heat treatment condition. The Effect of top oxide capped layer and annealing
temperature on microstructure and magnetism in FePt thin film was analyzed and
discussed.
As-deposited FePt/MnOx bilayer exhibited a magnetically soft fcc phase, and it
turned to an ordered fct FePt phase with large coercivity (~8 kOe) after annealing at 550
oC. Increasing the %O2/Ar in capped MnOx layer during deposition resulted in smaller
ordered FePt grains separated by grain boundaries of MnOx. We found that the
superlattice (001) peak was broadened considerably with larger amount of MnOx
incorporated into FePt, likely due to the hindered formation of hard phase.Our results
indicate that for FePt/MnOx films deposited with lower %O2/Ar, the oxygen atoms may
occupy the interstitial positions in the FePt lattice to induce a local strain thus enhancing
the FePt ordering. Further increase in %O2/Ar in capped MnOx layer will result in the
excess oxygen atoms acting as a diffusion barrier which effectively inhibits the FePt
grain growth and ordering.
In the part of different anneal temperature, the FePt-MnOx (8% O2/Ar) annealed at
300°C and 400oC show similar structure as as-deposited. Further increasing the
annealing temperatures from 400 to 550 oC resulted in structural phase transformation
from fcc FePt to fct FePt (a~3.80 Å ,c~3.69 Å ), indicating the onset of structural phase
transformation occurred at a temperature higher than 400 oC. In this study, the higher
annaealing temperature resulted that magnetization reversal mechanism is controlled by
domain nucleation process and leads to the formation of polycrystalline films, which
give more chances to nucleation of reversed domains. The decrease of Hc at Ta above
550oC may partly be attributed to change in reversal mechanisms.
URI: http://hdl.handle.net/11455/10088
其他識別: U0005-0305201113213400
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.