Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10093
標題: Preparation of Porous Gibbsite Materials by Pickering Emulsion
以Pickering Emulsion 方法製備三水鋁石多孔材料
作者: Wu, Pei-Shan
吳佩珊
關鍵字: Gibbsite gas in water foam;水包氣泡沫;sodium dodecyl sulfate;contact angle;corn starch;porous material;十二烷基硫酸鈉;接觸角試驗;玉米粉;多孔材料
出版社: 材料科學與工程學系所
引用: 1. W. Ramsden, “Separation of Solids in the Surface-Layers of Solutions and Suspension,” Proceedings of the Royal Society of London, 72, 156-164, 1903. 2. S. U. Pickering, “Emulsions,” Journal of the Chemical Society, 91, 2001-2021, 1904. 3. B. P. Binks, “Macroporous Silica From Solid-Stabilized Emulsion Templates,” Advanced Materials, 14[24], 1824-1827, 2002. 4. K. Zhang, W. Wu, H. Meng, K. Guo, and J. F. Chen, “Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure,” Powder Technology, 190[3], 393-400, 2009. 5. F. Tiarks, K. Landfester, and M. Antonietti, “Silica Nanoparticles as Surfactants and Fillers for Latexes Made by Miniemulsion Polymerization,” Langmuir, 17[19], 5775-5780, 2001. 6. H. Duan, D. Wang, N. S. Sobal, M. Giersig, D. G. Kurth, and H. Möhwald, “Magnetic Colloidosomes Derived from Nanoparticle Interfacial Self-Assembly,” Nano Letters, 5[5], 949-952, 2005. 7. S. Melle, M. Lask, and G. G. Fuller, “Pickering Emulsions with Controllable Stability,” Langmuir, 21[6], 2158-2162, 2005. 8. 趙振國,"應用膠體與界面化學." 化學工業出版社:北京, (2008). 9. Duncan J Shaw, 張有義,郭蘭生編譯, "膠體及界面化學入門." 高立圖書有限公司:台灣, (1997). 10. A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, “Processing Routes to Macroporous Ceramics: A Review,” Journal of the American Ceramic Society, 89[6], 1771-1789, 2006. 11. S. I. Kam, and W. R. Rossen, “Anomalous Capillary Pressure, Stress, and Stability of Solids-Coated Bubbles,” Journal of Colloid and Interface Science, 213, 329-339, 1999. 12. P. C. Hiemenz, and R. Rayagopalan, “Principles of Colloid and Surface Chemistry,” pp. 650 3rd ed. Marcel Dekker Inc: New York, (1997). 13. U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, “Ultrastable Particle-Stabilized Foams,” Angewandte Chemie International Edition, 45[21], 3526-3530, 2006. 14. Z. Du, M. P. Bilbao-Montoya, B. P. Binks, E. Dickinson, R. Ettelaie, and B. S. Murray, “Outstanding Stability of Particle-Stabilized Bubbles,” Langmuir, 19[8], 3106-3108, 2003. 15. E. Dickinson, R. Ettelaie, T. Kostakis, and B. S. Murray, “Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles,” Langmuir, 20[20], 8517-8525, 2004. 16. B. P. Binks, and T. S. Horozov, “Aqueous Foams Stabilized Solely by Silica Nanoparticles,” Angewandte Chemie, 117[24], 3788-3791, 2005. 17. R. Aveyard, B. P. Binks, and J. H. Clint, “Emulsions Stabilised Solely by Colloidal Particles,” Advances in Colloid and Interface Science, 100-102, 503-546, 2003. 18. J. Luyten, S. Mullens, J. Cooymans, A. Dewilde, I. Thijs, and R. Kemps, “Different Methods to Synthesize Ceramic Foams,” Journal of the European Ceramic Society, 29[5], 829-832, 2009. 19. R. Faure, F. Rossignol, T. Chartier, C. Bonhomme, A. Maître, G. Etchegoyen, P. Del Gallo, and D. Gary, “Alumina Foam Catalyst Supports for Industrial Steam Reforming Processes,” Journal of the European Ceramic Society, 31[3], 303-312, 2011. 20. X. Zhu, D. Jiang, and S. Tan, “Reaction bonding of open cell SiC-Al2O3 composites,” Materials Research Bulletin, 36[11], 2003-2015, 2001. 21. U. F. Vogt, M. Gorbar, P. Dimopoulos-Eggenschwiler, A. Broenstrup, G. Wagner, and P. Colombo, “Improving the properties of ceramic foams by a vacuum infiltration process,” Journal of the European Ceramic Society, 30[15], 3005-3011, 2010. 22. D. M. Roy, and S. K. Linnehan, “Hydroxyapatite Formed from Coral Skeletal Carbonate by Hydrothermal Exchange,” Nature, 247[5438], 220-222, 1974. 23. J. Hu, J. J. Russell, B. Ben-Nissan, and R. Vago, “Production and Analysis of Hydroxyapatite from Australian Corals Via Hydrothermal Process,” J. Mater. Sci. Lett., 20[1], 85-87, 2001. 24. B. Ben-Nissan, “Natural Bioceramics: From Coral to Bone and Beyond,” Curr. Opinion Solid State Mater. Sci., 7[4-5], 283-288, 2003. 25. C. R. Rambo, and H. Sieber, “Novel Synthetic Route to Biomorphic Al2O3 Ceramics,” Advanced Materials, 17[8], 1088-1091, 2005. 26. A. Dong, Y. Wang, Y. Tang, N. Ren, Y. Zhang, Y. Yue, and Z. Gao, “Zeolitic Tissue Through Wood Cell Templating,” Advanced Materials, 14[12], 926-929, 2002. 27. C. Li, and J. He, “Easy Replication of Pueraria Lobata toward Hierarchically Ordered Porous γ-Al2O3,” Langmuir, 22[6], 2827-2831, 2006. 28. J. Cao, “Processing of Porous TiO2 Ceramics from Biological Preforms,” Ceramics International, 30[7], 1971-1974, 2004. 29. J. Cao, “Manufacturing of Microcellular, Biomorphous Oxide Ceramics from Native Pine Wood,” Ceramics International, 30[7], 1967-1970, 2004. 30. P. Jana, and V. Ganesan, “Processing of Low-Density Alumina Foam,” Journal of the European Ceramic Society, 31[1-2], 75-78, 2011. 31. E. Gregorová, W. Pabst, Z. Živcová, I. Sedlářová, and S. Holíková, “Porous Alumina Ceramics Prepared with Wheat Flour,” Journal of the European Ceramic Society, 30[14], 2871-2880, 2010. 32. I. Akartuna, A. R. Studart, E. Tervoort, and L. J. Gauckler, “Macroporous Ceramics from Particle-stabilized Emulsions,” Advanced Materials, 20[24], 4714-4718, 2008. 33. A. Fadli, and I. Sopyan, “Porous Ceramics with Controllable Properties Prepared by Protein Foaming-Consolidation Method,” Journal of Porous Materials, 18[2], 195-203, 2010. 34. U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, “Macroporous Ceramics from Particle-Stabilized Wet Foams,” Journal of the American Ceramic Society, 90[1], 16-22, 2007. 35. Q. Liu, L. Luan, D. Sun, and J. Xu, “Aqueous Foam Ftabilized by Plate-Like Particles in the Presence of Sodium Butyrate,” Journal of Colloid and Interface Science, 343[1], 87-93, 2010. 36. J. C. H. Wong, E. Tervoort, S. Busato, L. J. Gauckler, and P. Ermanni, “Controlling Phase Distributions in Macroporous Composite Materials through Particle-Stabilized Foams,” Langmuir, 27[7], 3254-3260, 2011. 37. F. Krauss Juillerat, U. T. Gonzenbach, A. R. Studart, and L. J. Gauckler, “Self-Setting Particle-Stabilized Foams with Hierarchical Pore Structures,” Materials Letters, 64[13], 1468-1470, 2010. 38. H. J. Yoon, U. C. Kim, J. H. Kim, Y. H. Koh, W. Y. Choi, and H. E. Kim, “Macroporous Alumina Ceramics with Aligned Microporous Walls by Unidirectionally Freezing Foamed Aqueous Ceramic Suspensions,” Journal of the American Ceramic Society, 93[6], 1580-1582, 2010. 39. X. W. Zhu, D. L. Jiang, S. H. Tan, and Z. Q. Zhang, “Improvement in the Strut Thickness of Reticulated Porous Ceramics,” J. Am. Ceram. Soc., 84[7], 1654-1656, 2001. 40. L. Montanaro, Y. Jorand, G. Fantozzi, and A. Negro, “Ceramic Foams by Powder Processing,” J. Eur. Ceram. Soc., 18[9], 1339-1350, 1998. 41. J. M. Tulliani, L. Montanaro, T. J. Bell, and M. V. Swain, “Semiclosed-Cell Mullite Foams: Preparation and Macro- and Micromechanical Characterization,” J. Am. Ceram. Soc., 82[4], 961-968, 1999. 42. B. P. Kumar, H. H. Kumar, and D. K. Kharat, “Study on Pore-Forming Agents in Processing of Porous Piezoceramics,” J. Mater. Sci.—Mater. Electronics, 16[10], 681-686, 2005. 43. J. Luyten, S. Mullens, J. Cooymans, A. M. D. Wilde, and I. Thijs, “New Processing Techniques of Ceramic Foams,” Adv. Eng. Mater., 5[10], 715-718, 2003. 44. D. Koch, L. Andresen, T. Schmedders, and G. Grathwohl, “Evolution of Porosity by Freeze Casting and Sintering of Sol–Gel Derived Ceramics,” J. Sol–Gel Sci. Technol., 26[1-3], 149-152, 2003. 45. Y. Beppu, M. Ando, and T. Ohji, “Control of Porosity and Pore Size for Porous Alumina Prepared from Alpha-Alumina, BaSO4 and/or SrSO4,” Int. J. Mater. Product Technol., 209-214, 2001. 46. M. Rajamathi, S. Thimmaiah, P. E. D. Morgan, and R. Seshadri, “Macroporous materials from crystalline single-source precursors through decomposition followed by selective leaching,” Journal of Materials Chemistry, 11[10], 2489-2492, 2001. 47. H. Wang, I. Sung, X. Li, and D. Kim, “Fabrication of Porous SiC Ceramics with Special Morphologies by Sacrificing Template Method,” Journal of Porous Materials, 11[4], 265-271, 2004. 48. H. Kim, C. da Rosa, M. Boaro, J. M. Vohs, and R. J. Gorte, “Fabrication of Highly Porous Yttria-Stabilized Zirconia by Acid Leaching Nickel from a Nickel-Yttria-Stabilized Zirconia Cermet,” Journal of the American Ceramic Society, 85[6], 1473-1476, 2002. 49. F. Krauss Juillerat, U. T. Gonzenbach, P. Elser, A. R. Studart, and L. J. Gauckler, “Microstructural Control of Self-Setting Particle-Stabilized Ceramic Foams,” Journal of the American Ceramic Society, 94[1], 77-83, 2011. 50. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” Journal of Colloid and Interface Science, 26[1], 62-69, 1968. 51. X. Yang, Z. Sun, D. Wang, and W. Forsling, “Surface acid-base properties and hydration/dehydration mechanisms of aluminum (hydr)oxides,” Journal of Colloid and Interface Science, 308[2], 395-404, 2007. 52. J. K. Angarska, K. D. Tachev, and N. D. Denkov, “Composition of mixed adsorption layers and micelles in solutions of sodium dodecyl sulfate and dodecyl acid diethanol amide,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 233[1-3], 193-201, 2004. 53. D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydrate Polymers, 32[3-4], 177-191. 54. Y. J. Wanga, V. D. Truongb, and L. Wanga, “Structures and rheological properties of corn starch as affected by acid hydrolysis,” Carbohydrate Polymers, 52, 327-333, 2003. 55. B. P. Binks, and T. S. Horozof, “Colloid Particles at Liquid Interfaces.” Cambridge UniversityPress: Cambridge, (2006).
摘要: 
本研究利用Pickering Emulsion 的原理製備三水鋁石(Gibbsite)材質的多孔材料,實驗以三水鋁石為主成分,添加十二烷基硫酸鈉(Sodium Dodecyl Sulfate, SDS)作為起泡劑和表面活性劑,並添加相同碳鏈的正十二醇(Dodecanol)作為穩定劑來緩衝SDS 表面活性劑的電荷作用。
首先,改變SDS 活性劑濃度於三水鋁石漿料中,以Zeta 電位分析儀進行表面電位分析,結果顯示隨SDS 濃度增加,表面電位會逐漸下降;並且,由於正十二醇的添加,使得電位在SDS 之理論臨界膠束濃度值(CMC)8mM 前的濃度值就達最大吸附,即SDS 濃度為6mM 時,獲得最低表面電位25mV。藉由穿透式電子顯微鏡(TEM)觀察三水鋁石添加SDS 於球磨後,由凝聚狀的三水鋁石變成片狀分散。最後藉由光學觀察法,觀察氣泡粒徑隨時間的變化趨勢,得知SDS濃度於6mM 以上時三水鋁石氣泡達到穩定。
第二部分研究中,吾人分別藉由玉米粉、瓊脂、二氧化矽等添加於三水鋁石漿料中作為黏結劑,改變黏結劑的添加濃度製備三水鋁石多孔材料。藉由接觸角試驗得知,玉米粉添加量須大於13vol%才能形成黏結劑穩定三水鋁石泡沫存在,穩定氣泡時之接觸角為60-67o;二氧化矽添加氣泡穩定時接觸角為50-60o;而瓊脂添加則會破壞氣泡穩定度接觸角由58o 下降至50o。前數天加場合所獲得之氣泡皆為水包氣方式存在。利用水銀測孔儀(Mercury Intrusion Porosimetry)、場發射掃描式電子顯微鏡(FESEM)等來觀察孔洞分布、孔隙率及形貌,獲得孔隙率介於75-90%的多孔材料。最後藉由三點彎曲試驗三水鋁石多孔材料的機械性質,彎曲強度介於80-300kPa 之間,並可知彎曲強度和孔徑尺寸相關並和孔隙率以及孔徑呈反向關係。

This study prepares porous gibbsite foams by Pickering Emulsion. We use gibbsite as the main component, sodium dodecyl sulfate as forming agent and surfactant, carbon chain alcohol, dodecanol, i.e., as the stabilizer to buffer the electric charge of SDS surfactant.
First, by changing the SDS concentration into gibbsite slurry, the surface potential is measured by Zeta Potential Analyzer. Results reveal that surface potential is decreased when SDS concentration is increased. And, because of dodecanol, the experimentally determined CMC is lower than theoretical CMC value. When the concentration of SDS is 6mM, we obtain the lowest surface potential at 25mV, and the slurry is stable when SDS concentration is above 8mM. From TEM analysis, a well dispersed gibbsite morphology is observed with SDS comparing to the agglomerated gibbsite before ball-milling. From optical method, bubble size is observed with time, the bubble is stable when SDS concentration is greater than 6mM.
In the second part, corn starch, agar solution and SiO2 are added into gibbsite slurry respectively as binder. From contact angle analysis, corn starch can become a binder to stabilize gibbsite foam when the corn starch content is greater than 13vol%, and the contact angle for stabilized bubble is 60-67o;the contact angle for SiO2 addition is 50-60o and for agar solution is 50o. These all reveal that, gas is formed in water foam. Pore distribution, porosity and morphology are characterized by mercury intrusion porosimetry and FESEM, The porosity is 75-90%. Finally, three point bending test reveals the bending strength in range of 80-300kPa and indicates the bending strength is decreased with increasing of porosity and median pore diameter
URI: http://hdl.handle.net/11455/10093
其他識別: U0005-0308201114244600
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.