Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10096
標題: Fabrication and Characteristics of n type Carbon Thin Films Using Thermal Chemical Vapor Deposition and Their Feasibilities of Applications for Solar Cells
以熱化學氣相沉積法進行n型碳薄膜之製備和特性分析及其應用在太陽能電池之可行性
作者: 林嘉雅
Lin, Chia-Ya
關鍵字: thermal chemical vapor deposition;熱化學氣相沉積法;n type carbon;carbon thin films;solar cells;n型碳;碳薄膜;太陽能電池
出版社: 材料科學與工程學系所
引用: [1] S. Miyake and M. Wang, Jpn. J. Appl. Phys. 43 (2004) 3566. [2] T. Stapinski and B. Swatowska, J. Non-Cryst. Solids 352 (2006) 1406. [3] W.S. Choi, K. Kim, J. Yi and B. Hong, Mater. Lett. 62 (2008) 577. [4] A.C. Dillon, Chem. Rev. 110 (2010) 6856. [5] D.A. Stewart, and F. Lonard, Nano Lett. 5 (2005) 219. [6] S.M. Sze, Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley & Sons, Inc., U.S.A., 2001. [7] Max-Born-Institute, http://www.mbi-berlin.de/images/science/ Graphite_jpg. [8] Wikipedia, http://en.wikipedia.org/wiki/File:C60a.png. [9] K. Satohs official website, http://www.org-chem.org/yuuki/nanotube /nanotube_en.html. [10] Wikipedia, http://en.wikipedia.org/wiki/File:Amorphous_Carbon. png. [11] H. Zhu, J. Wei, K. Wang, and D. Wu, Sol. Energy Mater. Sol. Cells 93 (2009) 1461. [12] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl and R.E. Smalley, Nature 318 (1985) 162. [13] R.H. Baughman, A.A. Zakhidov, and W.A. deHeer, Science 297 (2002) 787. [14] J. Robertson, Mater. Sci. Eng. R 37 (2002) 129. [15] Y. Kimura, T. Sato, and C. Kaito, Carbon 42 (2004) 33 [16] J.P. Tu, L.P. Zhu, K. Hou, and S.Y. Guo, Carbon 41 (2003) 1257. [17] K. M. Krishna, T. Soga, K. Mukhopadhyay, M. Sharon, and M. Umeno, Sol. Energy Mater. Sol. Cells 48 (1997) 25. [18] Y.S. Han, and J.Y. Lee, Electrochim. Acta. 48 (2003) 1073. [19] C.A. Taylor, and W.K.S. Chiu, Surf. Coat. Technol. 168 (2003) 1. [20] W.N. Li, Y.S. Ding, S.L. Suib, J.F. DiCarlo, and F.S. Galasso, Surf. Coat. Technol. 190 (2005) 366. [21] Y.S. Ding, W.N. Li, S. Iaconetti, X.F. Shen, J. DiCarlo, F.S. Galasso and S.L. Suib, Surf. Coat. Technol. 200 (2006) 3041. [22] S.S. Chen, S.T. Shiue, Y.H. Wu, and K.J. Cheng, Surf. Coat. Technol. 202 (2007) 798. [23] P.Y. Chen, S.T. Shiue, and H.Y. Lin, Thin Solid Films 518 (2010) 2883. [24] S.T. Shiue, P.Y. Chen, R.H. Lee, T.S. Chen, and H.Y. Lin, Surf. Coat. Technol. 205 (2010) 780. [25] R. Kleber, M. Weiler, A. Kruger, S. Sattel, G. Kunz, K. Jung, and H. Ehrhardt, Diam. Relat. Mater. 2 (1993) 246. [26] N.M.J. Conway, A.C. Ferrari, A.J. Flewitt, J. Robertson, W.I. Milne, A. Tagliaferro, and W. Beyer, Diam. Relat. Mater. 9 (2000) 765. [27] M. Szwarc, J. Chem. Phys. 17 (1949) 505. [28] E.J. Cukauskas, W.L. Carter, and S.B. Qadri, J. Appl. Phys. 57 (1985) 2538. [29] T. Otani, and M. Hirata, Thin Solid Films 442 (2003) 44. [30] R.P. Parikh and R.A. Adomaitis, J. Cryst. Growth 286 (2006) 259. [31] V. Woods and N. Dietz, Mater. Sci. Eng. B 127 (2006) 239. [32] M. Jurzecka, S. Kluska, S. Jonas, H. Czternastek, and K. Zakrzewska, Vacuum 82 (2008) 1128. [33] M.H. Kang, D.S. Kim, A. Ebong, B. Rounsaville, A. Rohatgi, G. Okoniewska, and J. Hong, J. Electrochem. Soc. 156 (2009) H495. [34] R. Haubner, S. Bohr, and B. Lux, Diam. Relat. Mater. 8 (1999) 171. [35] S.T. Kshirsagar, R.B. Kshirsagar, P.S. Patil, A.V. Kulkarni, A.B. Mandale, A.B. Gaikwad, and S.P. Gokhale, Diam. Relat. Mater. 14 (2005) 232. [36] Q. Liang, S.A. Catledge, and Y.K. Vohra, Appl. Phys. Lett. 83 (2003) 5047. [37] J.J. Cuomo, J.P. Doyle, J. Bruley, and J.C. Liu, Appl. Phys. Lett. 58 (1991) 466. [38] J. Schwan, S. Ulrich, H. Roth, H. Ehrhardt, S.R.P. Silva, J. Robertson, R. Samlenski, and R. Brenn, J. Appl. Phys. 79 (1996) 1416. [39] B. Druz, S. DiStefano, A. Hayes, E. Ostan, K. Williams, and L. Wang, Surf. Coat. Technol, 86-87 (1996) 708. [40] Y. Hayashi, K. Hagimoto, H. Ebisu, M.K. Kalaga, T. Soga, M. Umeno, and T. Jimbo, Jpn. J. Appl. Phys. 39 (2000) 4088. [41] R. Gago, O. Sánchez, A. Climent, J.M. Albella, E. Román, J. Raisanen, J. Rauühala, Thin Solid Films 338 (1999) 88. [42] H.C. Lin, S.T Shiue, Y.M. Chou, H.Y. Lin, and T.C. Wu, Thin Solid Films 516 (2007) 114. [43] S.S. Chen, S.T. Shiue, K.J. Cheng, P.Y. Chen, and H.Y. Lin, Optical Eng., 47 (2008) 045005. [44] W. Jacob and W. Möller, Appl. Phys. Lett. 63 (1993) 1771. [45] D.R. McKenzie, Rep. Prog. Phys. 59 (1996) 1611. [46] C.W. Chen, and J. Robertson, J. Non-Cryst. Solids 227&230 (1998) 602. [47] J. Robertson, Philos. Mag. B 76 (1997) 335. [48] J. Robertson, and E.P. O'Reilly, Phys. Rev. B 35 (1987) 2946. [49] J. Robertson, Diam. Relat. Mater. 4 (1995) 297. [50] Rusli, J. Robertson, and G.A.J. Amaratunga, J. Appl. Phys. 80 (1996) 2998. [51] J.C. Angus and C.C. Hayman, Science. 241 (1988) 913. [52] Wikipedia, http://en.wikipedia.org/wiki/Chemical_vapor_deposition. [53] D.M. Dobkin, and M.K. Zuraw, Principles of Chemical Vapor Deposition, Kluwer Academic Publishers, Netherlands, 2003. [54] M. Ohring, Materials science of thin films deposition and structure, Academic Press, New Jersey, 2002. [55] C. Ronning, U. Griesmeier, M. Gross, H.C. Hofsäss, R.G. Downing, and G.P. Lamaze, Diam. Relat. Mater. 4 (1995) 666. [56] B. Kleinsorge, A. Ilie, M. Chnowalla, W. Fukarek, W.I. Miline, and J. Robertson, Diam. Relat. Mater. 7 (1998) 472. [57] J.C. Han, M.L. Tan, J.Q. Zhu, S.H. Meng, B.S. Wang, S.J. Mu, and D.W. Cao, Appl. Phys. Lett. 90 (2007) 083508. [58] K. Kádas, G.G. Ferenczy, and S. Kugler, J. Non-Cryst. Solids 227&230 (1998) 367. [59] S.R.P. Silva, and G.A.J. Amaratunga, Thin Solid Films. 270 (1995) 194. [60] Z.B. Zhou, R.Q. Cui, Q.J. Pang, G.M. Hadi, Z.M. Ding, and W.Y. Li, Sol. Energy Mater. Sol. Cells 70 (2002) 487. [61] K.M. Krishna, T. Soga, T. Jimbo, and M. Umeno, Carbon 37 (1999) 531. [62] K.M. Krishna, M. Umeno, Y. Nukaya, T. Soga, and T. Jimbo, Appl. Phys. Lett. 77 (2000) 1472. [63] K.M. Krishna, Y. Nukaya, T. Soga, T. Jimbo and M. Umeno, Sol. Energy Mater. Sol. Cells 65 (2001) 163. [64] K.L. Narayanan, O. Goetzgberger, A. Khan, N. Kojima, and M. Yamaguchi, Sol. Energy Mater. Sol. Cells 65 (2001) 29. [65] N. Konofaos, E. Evangelou, and C.B. Thomas, J. Appl. Phys. 84 (1998) 4634. [66] N.A. Hastas, C.A. Dimitriadis, D.H. Tassis, and S. Logothetidis, Appl. Phys. Lett. 79 (2001) 638. [67] L.Z. Hao, Q.Z. Xue, X.L. Gao, Q. Li, Q.B. Zheng, and K.Y. Yan, J. Appl. Phys. 101 (2007) 053718. [68] M. Ma, Q.Z. Xue, H.J. Chen, X.Y. Zhou, D. Xia, C. Lv, and J. Xie, Appl. Phys. Lett. 97 (2010) 061902. [69] X.M. Tian, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells 77 (2003) 105. [70] X.M. Tian, T. Soga, T. Jimbo, and M. Umeno, J. Non-Cryst. Solids 336 (2004) 32. [71] M. Rusop, S.M. Mominuzzaman, T. Soga, T. Jimbo, and M. Umeno, J. Phys.: Condens. Matter 17 (2005) 1929. [72] M. Rusop, S.M. Mominuzzaman, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells 90 (2006) 3205. [73] G.A.J. Amaratunga, D.E. Segal, and D.R. McKenzie, Appl. Phys. Lett. 59 (1991) 69. [74] L.K. Cheah, X. Shi, E. Liu, and J.R. Shi, Appl. Phys. Lett. 73 (1998) 2473. [75] H.A. Yu, Y. Kaneko, S. Yoshimura, and S. Otani, Appl. Phys. Lett. 68 (1996) 547. [76] H.A. Yu, T. Kaneko, S. Yoshimura, Y. Suhng, S. Otani, and Y. Sasaki, Appl. Phys. Lett. 69 (1996) 4078. [77] C.H. Lee, and K.S. Lim, Appl. Phys. Lett. 72 (1998) 106. [78] H.A. Yu, Y. Kaneko, S. Otani, Y. Sasaki, and S. Yoshimura, Carbon 36 (1998) 137. [79] Z.Q. Ma, and B.X. Liu, Sol. Energy Mater. Sol. Cells 69 (2001) 339. [80] A.M.M. Omer, M. Rusop, S. Adhikari, S. Adhikary, H. Uchida, and M. Umeno, Diam. Relat. Mater. 14 (2005) 1084. [81] S. Adhikari, H.R. Aryal, D.C. Ghimire, A.M.M. Omer, S. Adhikary, H. Uchida, and M. Umeno, Diam. Relat. Mater. 15 (2006) 1894. [82] Y. Hayashi, S. Ishikawa, T. Soga, M. Umeno, and T. Jimbo, Diam. Relat. Mater. 12 (2003) 687. [83] A.E. Becquerel, Compt. Rendus de L' Academic des Sciences 9 (1839) 561. [84] D.M. Chapin, C.S. Fuller, and G.L. Pearson, J. Appl. Phys. 25 (1954) 676. [85] D.M. Bagnall, and M. Boreland, Energy Policy. 36 (2008) 4390. [86] A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Robertson, and W.I. Milne, J. Appl. Phys. 87 (2000) 789. [87] V.S. Veerasamy, G.A.J. Amaratunga, C.A. Davis, A.E. Timbs, W.I. Milne, and D.R. Mackenzie, J. Phys.: Condens. Matter 5 (1993) L169. [88] W.S. Choi, K. Kim, J. Yi, and B. Hong, Mater. Lett. 62 (2008) 577. [89] S.R. Wenham, M.A. Green, M.E. Watt, and R. Corkish, Applied Photovoltaics, 2nd edition, Earthscan, London, 2007. [90] B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd edition, Prentice Hall, New Jersey, 2001. [91] C. Thomsen, and S. Reich, Phys. Rev. Lett. 85 (2000) 5214. [92] M.A. Tamor, and W.C. Vassell, J. Appl. Phys. 76 (1994) 3823. [93] E. Desimoni, G.I Casella, and A.M. Salvi, Carbon 30 (1992) 521. [94] J. Zemek, J. Zalman, and A. Luches, Appl. Surf. Sci. 133 (1998) 27. [95] G.G. Stoney, Proc. R. Soc. London Ser. A 82 (1909) 172. [96] Instruction manual of the Four-Point Probe (Model SR-4). [97] X. Bourrat, J. Lavenac, F. Langlais, and R. Naslain, Carbon 39 (2001) 2376. [98] A. Becher and K. J. Huttinger, Carbon 36 (1998) 225. [99] L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, N.L. Speziali, A. Jorio, and M.A. Pimenta, Carbon 46 (2008) 272. [100] A.C. Ferrari, and J. Robertson, Phys. Rev. B, 61 (2000) 14095. [101] M. Lejeune, O.D. Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, and M. Benlahsen, Thin Solid Films 389 (2001) 233. [102] L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, and M.A. Pimenta, Appl. Phys. Lett. 88 (2006) 163106. [103] G.L. Dû, N. Celini, F. Bergaya, and F. Poncin-Epaillard, Surf. Coat. Technol. 201 (2007) 5815. [104] P. Mérel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Surf. Coat. Technol. 136 (1998) 105. [105] H.S. Zhang and K. Komvopoulos, J. Appl. Phys. 106 (2009) 093504. [106] W. Benzinger, A. Becker, and K.J. Hüttinger, Carbon 34 (1996) 957. [107] S. Hofmann, B. Kleinsorge, C. Ducati, A.C. Ferrari, and J. Robertson, Diam. Relat. Mater. 13 (2004) 1171. [108] V.I. Merkulov, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, and E. Voelkl, Appl. Phys. Lett. 79 (2001) 1178. [109] T.J. Hirt and H.B. Palmer, Carbon 1 (1963) 65. [110] J. Sobol-Antosiak and W.S. Ptak, Matter Lett. 56 (2002) 842. [111] A. Becker, and K.J. Hüttinger, Carbon 36 (1998) 213. [112] W.J. Hsieh, S.H. Lai, L.H. Chan, K.L. Chang, and H.C. Shih, Carbon 43 (2005) 820. [113] M. Rusop, A.M.M. Omer, S. Adhikari, S. Adhikary, H. Uchida, T. Soga, T. Jimbo, and M. Umeno, J. Mater. Sci. 41 (2006) 537. [114] F. Tuinstra, and J.L. Koenig, J. Chem. Phys. 53 (1970) 1126. [115] T.H. Fang, and W.J. Chang, Appl. Surf. Sci. 220 (2003) 175. [116] W. Xu, L. Wang, and I. Kojima, J. Appl. Phys. 94 (1994) 7345. [117] S.M. Mominuzzaman, K.M. Krishna, T. Soga, T. Jimbo, and M. Umeno, Carbon 38 (2000) 127. [118] R.O. Dillon, J.A. Woollam, and V. Katkanant, Phys. Rev. B, 29 (1984) 3482. [119] X.W. Liu, J.H. Lin, C.H. Tseng, and H.C. Shih, Mater. Chem. Phys. 72 (2001) 258. [120] A. Grill, and V. Patel, Diam. Relat. Mater. 2 (1993) 1519. [121] N.K. Cuong, M. Tahara, N. Yamauchi, and T. Sone, Surf. Coat. Technol. 193 (2005) 283. [122] J.K. Shin, C.S. Lee, K.R. Lee, and K.Y. Eun, Appl. Phys. Lett. 78 (2001) 631. [123] M. Iwaki, Y. Suzuki, A. Nakao, and H. Watanabe, Nucl. Istrum. Methods Phys. Res. B 127/128 (1997) 208. [124] M.A. Green, Solar cells: Operating principles, technology, and system applications, Prentice Hall Inc., Englewood Cliffs, New Jersey, 1982.
摘要: 
熱化學氣相沉積技術已廣泛應用於碳薄膜沉積。以熱化學氣相沉積碳薄膜相較於電漿輔助化學氣相沉積主要優點為:(1)無電漿轟擊,(2)較低設備成本以及(3)較高的氣體使用率。本論文採用氨氣加入甲烷與氮氣加入乙炔中製備n型碳薄膜。再者,將n型碳薄膜沉積於p型矽基板以製備光電元件並探討其應用於太陽電池之可行性。
當氨氣添加於甲烷中,實驗結果顯示隨著氨氣/甲烷比增加,碳薄膜之沉積速率下降、結構有序程度、平均微晶大小及sp2鍵結碳增加。不過,當沉積溫度、工作壓力和停留時間增加,則碳薄膜沉積速率增加。沉積速率與沉積程序參數間關係可以公式表示之。另外,一個單氮原子會抑制三個單碳原子於碳薄膜中之成形,造成僅有少量的氮與氫原子摻雜於碳薄膜中。沉積碳薄膜的活化能為507 kJ/mole,它包括了反應期間甲烷和氨氣裂解能量。當工作壓力小於起始工作壓力(=30 kPa)或停留時間比起始停留時間(=1.5 s)短,則沒有碳薄膜形成。
當氮氣添加於乙炔中,實驗結果顯示隨著沉積溫度增加,碳薄膜中之氮含量、sp2鍵結碳和拉曼峰位置先增加後下降,而楊氏模數與硬度則呈相反趨勢。另外,隨沉積溫度增加,碳薄膜結構趨向石墨化但結構較無序;較高氮含量與sp2鍵結碳會有較低電阻率。當氮氣流量增加,碳薄膜結構有序程度增加並趨向石墨化。在氮流量為12 sccm時,有最低電阻率、殘留應力與較高氮摻雜量。
本研究中,得到最佳C:N/p-Si太陽電池元件結果如下:短路電流為6.98 mA/cm2、開路電壓為0.2 V、填充因子為31.4 %及效率為0.44 %。雖然這個太陽電池的光電能源轉換效率仍然很低,但可藉此做為改進太陽電池之參考。C:N/p-Si太陽電池可藉由減少缺陷、增加摻雜量、消除元件的串聯電阻及採用雙或多重光學能隙值多界面結構來增進其品質。

Thermal chemical vapor deposition (thermal CVD) technique has been widely used in the deposition of carbon thin films. The main advantages of thermal CVD over plasma enhanced chemical vapor deposition are: (1) absence of ion bombardment, (2) low equipment cost, and (3) high gas utilization. This thesis adopts ammonia in methane and nitrogen in acetylene to deposit n type carbon thin films. Moreover, the n type carbon films are deposited on p type silicon substrate to fabricate photovoltaic devices, and their feasibility of applications for solar cells is discussed.
When ammonia is added in methane, experimental results indicate that as the ammonia/methane rate increases, the deposition rate of carbon films decreases, and also, the ordered degree, nano-crystallite size, and sp2 carbon atoms of carbon films increase. Nevertheless, if the deposition temperature, working pressure, and residence time increase, the deposition rate of carbon films increases. The relationship between the deposition rate and deposition process parameters formulated. Moreover, one mono-nitrogen will suppress about three mono-carbons to form carbon films. Few nitrogen and hydrogen atoms are incorporated into carbon films. The activation energy (= 507 kJ/mole) of carbon deposition is related to the activation energies of methane and ammonia dissociation. If the working pressure is smaller than a threshold value (= 30 kPa) or the residence time is shorter than a threshold value (=1.5 s), no films is formed.
When nitrogen is added in acetylene, experimental results indicate that as the deposition temperature increases, the N doping content, sp2 carbon atoms, and Raman peak position of carbon films increase and then decrease. The Young's modulus and hardness of carbon films have the opposite trend. Alternatively, the structural shift to graphite-like but disorder of carbon films. The carbon films containing high content of N doping and sp2 carbon atoms would possess a low resistivity. As the nitrogen flow rate increases, the carbon films become ordering and shift to graphite-like. Moreover, when the nitrogen flow rate is 12 sccm, the carbon films have the lowest resistivity, lower residual stresses, and high N doping content.
In this study, the best result of C:N/p-Si solar cells is as follows. The short circuit current is 6.98 mA/cm2; the open circuit voltage is 0.2 V; the fill factor is 31.4 %, and conversion efficiency is 0.44 %. Although, the conversion efficiency of this solar cell is still low, it can be referred to improve the solar cell. The performance of C:N/p-Si solar cells can be further improved by reducing the defects, increasing the doping content, eliminating the device electrical resistance, and adopting the tandem structure with two or more optical band gaps of carbon films in photovoltaic solar cells.
URI: http://hdl.handle.net/11455/10096
其他識別: U0005-0308201119022100
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.