Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10104
標題: GPS接收儀硬體延遲偏差與低緯地區電離層模型研究
A Study of GPS Receiver Differential Code Biases and Low Latitude Area Ionosphere Model
作者: 涂裕民
Tu, Yuh-Min
關鍵字: 全電子含量;Total Electron Content(TEC);硬體延遲偏差;GPS電離層.;Differential Code Biases(DCB);GPS Ionpsphere.
出版社: 土木工程學系所
引用: Appleton, E. V., (1946), Two anomalies in the ionosphere, Nature, 157, 691,. Alizadeh, M.M. Schuh, H., Todorrva, S., Schmidt, M. (2011), Global Ionosphere Maps of VTEC from GNSS, satellite altimetry, and formosat-3/COSMIC data. Journal of Geodesy, 85: 975-987 Angling, M.J., Cannon, P.S. (2004), Assimilation of radio occultation measurements into background ionospheric models. Radio Science, 39, doi:10.1029/2002RS002819, Azpilicueta, F., Brunini, C. (2006), Global ionospheric maps from GPS observations using modip latitude. Advances in Space Research, 2006(38): 2324-2331 Bassiri, S. , Hajj, G.A. (1993), Higher Order Ionosphere effects on the Global Positioning system Observable and means of modelling them, Manuscripta Geodaetica 18(6):280-289. Basu, S., Groves, K.M., Quinn, J.M., Doherty, P. (1999) , A comparison of TEC fluctuations and scintillation at Ascension Island. J. of Atmospheric and Solar-Terrestrial Phssics. 61:1219-1226 Beutler, G., Moore, A.W., Moore, I.I., (2009), The international global navigation satellite system service (IGS): development and achievements. J. of Geodesy, 83:297-307. Bilitza, D. (2001), International Reference Ionosphere 2000, Radio Science, 36,261-275. Bolaji, O.S. Adeniyi, J.O., Radicella, S.M., Doherty, P.H. (2012), Variability of total electron content over an equatorial West African station during low solar activity. Radio Science, 47, RS1001, doi:10.1029/2011RS004812 Brunner, F.K., Gu, M. (1991), An improved model for the dual frequency ionospheric correction of GPS observation , Manuscripta Geodaetica 16(3):205-214. Bruno, Z., Anna, B., Ioanna, T. and Ljiljana R. (2004), Real-time updating of the Simplified Ionospheric Regional Model for operational applications, Radio Science, Vol. 39. Brunini, C. Meza, A. Gende, MAzpilicueta, F.,(2008), South American regional ionospheric maps computed by GESA: A pilot service in the framework of SIRGAS. Advances in Space Research 42 737-744. Brunini, C. and Azpilicueta, F.,(2009), Accuracy assessment of the GPS-based slant total electron content. J. of Geodesy, 83(8):773-785. Brunini, C. and Azpilicueta, F., (2010), GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J. of Geodesy, 84:293-304. Burrell, A.G., Bonito, N.A., Carrano, C.S. (2009), Total electron content processing from GPS observations to facilitate ionosphere odeling . GPS Solution 13:83-95 Chen, W., Gao, S., Hu, C., Chen,Y. and Ding, X., (2008), Effects of ionospheric disturbances on GPS Observation in low latitude area. GPS Solution, 12:33-41. Chiu, Y. T. (1975), An Improved Phenomenological Model of Ionospheric Density, J. Atmospheric and Solar-Terrestrial Phssics. 37, 1563. Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A. and Radicella, S.M., (2007), Calibraion errors on experimental slant total electron content (TEC) determined with GPS. J. of Geodesy, 81:111-120. Clynch, J.R., Coco D. , Renfro, B.A. (1983), Differential Doppler measurements of the ionosphere during a solar eclipse, JATP, Vol.45, No.7, pp.527-535. Coco, D.S., Dahlke, S.R. and Cyynch, J.R. (1991), Variablility of GPS satellite Differential group delay biases, IEEE trans. On Aerospace and Electronics Systems, 27(6): 931-938. Coster, A., and Komjathy, A. (2008), Space Weather and the Global Positioning System, SPACE WEATHER, VOL. 6, S06D04,doi:10.1029/2008SW000400. Dach, R., Hugentobler, U., Fridez, P., Meindl, M. (eds.) (2007), Bernese GPS Software Version 5.0. Astronomical Institute University of Bern, Bern Davies, K., (1969), Ionospheric Radio Waves, Blaisdell Publishing Company, Waltham Davies, K., Ionospheric Radio, (1990) Short Run Press Ltd., Exeter, England. Dyrud, L., Jovancevic, A., Brown, A., Wilson, D.and Ganguly, S., ( 2008). Ionospheric measurement with GPS: Receiver techniques and methods. Radio science, 43:RS6002, doi:10.1029/2007RS003770. Feltens, J., Schaer, S. (1999), A combined IGS Ionospheric Product, IGS 1998 Annual Report, JPL Publication 400-839. Fu, L.L., Cazenave, A. (2001), Satellite altimetry and earth sciences. A handbook of techniques and application . San Diego Academic Press ,463 Gao S., (2007). Monitoring and Modelling Hong Kong Ionosphere Using Regional GPS Networks. PhD Thesis of The Hong Kong Polytechnic University. Gao, Y and Liu, Z (2002), Precise Ionosphere Modeling Using Regional GPS Network Data, Journal of Global Positioning Systems, Vol. 1, No. 1: 18-24 Garner, T. W. Gaussiran II, T.L. Tolman, B.W. Harris, R.B. Calfas, R.S. Gallagher, H., (2008), Total electron content measurements in ionospheric physics Advances in Space Research 51 1701-1708 Georgiadiou, Y (1994), Modeling the ionosphere for an active control network of GPS station. LGR-Series, 1994, 4 (7): 36-49 Hajj, G.A., Romans, L.J. (1998), Ionospheric electron density profiles obtainedwith the Global Positi oning System: Results from the GPS/MET experiment. Radio Science 33, 175–190, Hatch, R. R. (1982), The synergism of GPS code and carrier measurements Journal of Geodesy, 57(1-4),207-208 Hernandez-Pajares, M. (2004), IGS Ionosphere WGstatus report: performance of IGS Ionosphere TEC Maps -Position Paper-, presented at IGS Technical Meeting, Bern, Switzerland Hernandez-Pajares, M., Juan, J. M., Sanz, J. Orus, R. (2007), Second-order ionospheric implementation and impact on geodetic estimates, J. of Geophy. Research Vol. 112, B08417, doi:10.1029/2006JB004707. Hernandez-Pajares, M., Juan J, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer S and Krankowski, A. (2009), The IGS VTEC maps: a reliable source of ionospheric information since 1998. Journal of Geodesy, 83: 263-275 Hernandez-Pajares, M., Juan, J. M., Sanz, J., Aragon-Angel, A., Garcia-Rigo, A., Escudero M., (2011), The Ionosphere: effect, GPS Modeling and the benefits for space geodetic techniques. J. of Geodesy, 83:263-275. Ho, C. M., Wilson, B. D., Mannucci, A. J., Lindqwister, U. J., and Yuan, D. N. (1997), A comparative study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOPEX radar, and the Bent model, Radio Sci., 32, 1499–1521, Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J. (2003), Global Positioning System, Theory and Practice, Springer-Verlag, New York, New York Hoque, M.M, Jakowski, N. (2007), Higher-order ionospheric effects in precise GNSS positioning Journal of Geodesy, 81: 259-268 Kao, S. P., Tu, Y. M., Chen, W., Weng,. D. J. Ji, S. Y. (2013a), Factors affecting the estimation of GPS receiver instrumental biases Survey Review Vol 45 No238 pp Kao, S.P., Tu,Y.M., Ji S, Chen,W., Wang,Z., Weng, D.,Ding, D., Hu, T. (2013b), A 2-d ionospheric model for low latitude area – Hong Kong. Advances in Space Research 51 :1701-1708 Kedar S., G.A. Hajj, B.D. Wilson, Heflin, M.B. (2003), The effect of the second order ionospheric correction on receiver positions, Geophysical Research Letters,Vol. 30, No. 16, 1892, doi: 10.1029/2003GL017936. Klobuchar J (1987), Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users, Aerospace and Electronic Systems, IEEE Transactions on 1987, Volume AES-23, Issue 3: 325 – 331 Komjathy, A. (1997), Global Ionospheric Total Electron Content MappingUsing the Global Positioning System., PhD Thesis of The University of New Brunswick. Le, A.Q., (2006), Impact of Galileo on Global Ionosphere Map Estimation The Journal of Navigation, 59, 281-292 Liu, Z, Gao, Y., Skone, S. (2005), A study of smoothed TEC precision inferred from GPS measurements. Earth Planets Space, 57 999-1007. Llewellyn S. K. and R. B. Bent.(1973), Documentation and Description of the Bent Ionospheric Model, Air Force Geophysics Laboratory, Report AFCRL-TR-73-0657, Hanscom AFB, Massachusetts. Lunt, N., Kersley, L., Bishop, G.J., Mazzella, A.J.and Bailey, G., (1999), The effect of protonosphere on the estimation of GPS total electron content: validation using model simulation. Radio Science, 34(5):1261-1271 Ma, G. and Maruyama, T. (2003) , Derivation of TEC and estimation of instrumental biases from GEONET in Japan, Ann. Geophys., 21, 2083–2093, Mannucci, A.J., Wilson, B.D., Yuan, D.N., HO, C.H., and Lindqwister, U.J., (1998), A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio science, 33:565-582. McNamara, L. F. and Wilkinson, P. J.(1983), Prediction of the total electron content using the International Reference Ionosphere, J. Atmos. Terres. Phys, Vol 45, No2/3, pp 169-174. McNamara, L. F. (1991), The Ionosphere: Communications, Surveillance and Direction Finding, Krieger Publishing Company, Florida Munekane H.(2005), A Semi-analytical estimation of the effects of second order ionospheric correction on the GPS positioning, Geophys. J. Int.,(2005), 163, 10-17, doi: 10.111/j.1365-246X.2005.02723.x. Otsuka, Y. , Ogawa, T ,Saito, A .,Tsugawa ,T., Fukao ,S., Miyazaki, S. (2002), A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space, 54: 63–70 Paulo D and Joao F (2000), Application of ionospheric corrections in the equatorial region for L1 GPS users. Earth Planets space, 52(5):1083-1089 Ping, J., Kono, Y., Matsumoto, K., Otsuka, Y., Sauto, A., Shum, C., Heki, K. and Kawano, N., (2002), Regional, Ionosphere Map over Japanese Islands. Earth Planets Space, 54:e12-e16 Sardon, E. and Zarraoa, N., (1997), Estimation of total electron-content using GPS data: how stable are the differential satellite and receiver instrumental biases. Radio Science, 32:1899-1910. Sardon, E., Rius, A., Zarraoa, N., (1994), Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Raido Science, 29:577-586. Schaer, S., Beutler, G., Mervart, L., Rothacher, M. and Wild, U., (1995), Global and Regional Ionosphere Models Using the GPS Double Difference Phase Observable. Proc. of the IGS Workshop on Special Topics and New Directions, Potsdam, Germany, May 15–17, 1995, pp. 77–92. Schaer, S., (1998), CODE’s Global Ionospere Maps (GIMSs), http://www.aiub.unibe.ch/ionosphere/ Schaer, S., (1999), Mapping and predicting the Earth’s ionosphere using the Global Positioning System. PhD Thesis of Bern University. Sekido, M., Kondo, T., Kawai, E., (2003), Evaluation of GPS-based ionospheric TEC map by comparing with VLBI data. Raido Science, 38(4),1069, doi:10.1029/2000RS002620. Sekido, M. Kondo, T.Kawai, E. Imae, M, (2004), Evaluation of Global Ionosphere TEC by Comparison with VLBI Data . International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. Ottawa, Canada, February 9-11, 2004. Edited by Nancy R. Vandenberg and Karen D. Baver, NASA/CP-2004-212255, 2004. Published online at http://ivscc.gsfc.nasa.gov, p. 427 Seeber, G. (2003), Satellite Geodesy: Foundation, Methods, and Applications. Walter de Gruyter Berlin NewYork Tascione, T.F., (1988), Introduction to Space Environment, Florida, Orbit Book Company. Teunissen, P., Kleusberg, A. (1998), GPS for Geodesy 2nd Edition. Springer Wang Y. J. (1997), Monitoring Ionospheric TEC Using GPS, IPS Radio and Space Services Technical Reprot, 25 Nov., IPS TR-97-01. Wang Z., Wu,Y., Zhang, K. , Meng, Y. (2005), Triple Frequency Method for high order ionospheric refractive error modelling in GPS modernization, J. of Global Positioning Systems, Vol 4, No1-2, pp291-295. Xu, G. C. (2003), GPS Theory, Algorithms and Applications. Spring-Verlag Berdelberg New York. Yeh, K.C. , Liu, C.H. (1972), Theory of Ionospheric Waves, Academic Press, New York. Yuan, Y. and Ou, J . (2004), A generalized trigonometric series function model for determining ionospheric delay. Progress in Natural Science Vol. 14, Issue 11: 1010-1014 Zhang, H., Ping, J. Zhu, W. (2006), Brief review of the ionospheric delay models of ionosphere delay correction model, Progress in astronomy, Vol. 24, No. 1: 16-26 Zhang, D.H., Zhang, W., Li, Q., Shi, L.Q. and Xiao, Z., (2010), Accuracy analysis of the GPS intrumental bias estimated from observations in middle and low latitudes. Ann. Geophys., 28:1571-1580. Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, MM, WebbFH (1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017 Zhao, B., Wan,W., Liu, L., Ren, Z. (2009), Characterisics of the ionospheric total electron content of the equatorial ionization anomaly in the Asia-Australian region during 1996-2004. Ann. Geophys., 27: 3861-3837. 林老生、Chris Rizons (1999), 利用GPS觀測量構建即時的區域電離層模型之研究,「測量工程」第四十一卷第一期 耿長江 (2011), 利用地基GNSS數據實時監測電離層延遲理論與方法研究 武漢大學 博士論文 彭德熙 (2008), 台灣區域性電離層模型之估計:應用於單頻精密單點定位 成功大學碩士論文 褚芳達 (2007), 低緯度電離層不規則體之GPS 相位擾亂期觀測.中央大學太空科學研究所. 博士論文 黃清勇 (2006), 福爾摩沙衛星三號氣象科學研究簡介. 物理雙月刊,28,910-923 焦維新 (2002), 空間天氣學. 氣象出版社 劉長建 (2011), GNSS電離層建模方法與質量控制研究 解放軍訊息工程大學 博士論文
摘要: 
隨著全球衛星導航系統(GNSS)發展,特別是GPS地面觀測站的普及,GPS觀測量成為研究全球或區域電離層擾動的一項重工具。藉由GPS觀測量估算太空中全部電子含量及其變化可以推估電離層之動態。衛星及接收儀硬體延遲偏差(DCBs)為電離層TEC估值中最主要誤差來源之一,尤其是接收儀DCB值變化相較於衛星DCB值更不穩定。本研究透過一連串的實驗設計,探討接收儀DCB 估值的精度及影響接收儀DCB偏差的因素。接收儀DCB 估值的變化會因不同的電離層模型及觀測網型的大小有所不同,例如採用全球模式或單站模式,因測站所在位置不同差異值從 -2.5~ 14.3 TECU 不等。不同求解模式求得之接收儀DCB 估值也不同,採用平滑化與非平滑化數學模式,求得各測站之平均差異值最大差值可達6.8 TECU。
由於GPS觀測量估算電離層TEC技術的不斷演進,模型雖然日益成熟,但大部份的研究皆屬於全球模式。例如IGS提供了全球電離層圖資,而IGS採用的測站以中緯度地居多。近來更多的電離層研究將注意力放在不同緯度,例如低緯度地區。本研究第二部份,選擇幾個簡單的數學函數模式,然後以低緯度地區測站為實驗區,觀察它們電離層變化VTEC值變化及擬合情形,經比較後選擇了拋物線函數模型,並將此一模型與Klobuchar 模型比較。高精度的GPS定位,尤其在低緯地區,需慎選電離層VTEC模型,才能符合需求精度,這樣的方法可以提供作為改善區域電離層改正之參考。

The development of the Global Navigation Satellite Systems (GNSS), especially the widely established GPS ground stations, GPS has been widely used to investigate the ionosphere through the estimation of the Total Electron Content (TEC) and its distributions in space. One of the important factors affecting the ionosphere TEC estimation accuracy is the hardware differential code biases (DCB) inherited in both GPS satellites and receivers. This research investigates various factors affecting GPS receiver instrumental biases estimation accuracy. Through a number of designed tests, we concluded that the most important factor is the ionosphere model accuracy. Some of large daily bias variations of receiver DCB detected by other studies, such as receivers in low latitude regions, are not due to the DCB changes, but the estimation errors. The DCB estimation values can vary significantly for different ionospheric models and different size of networks. For example, the receiver DCB values obtained from the global and the station- specific models exhibit difference from -2.5 to 14.3 TECU for different stations. Different data processing methods also contribute DCB estimation errors. The results from smoothing and non-smoothing GPS observation show that the difference of DCB reaches up to 6.8 TECU for some stations.
Though some ionosphere models have been established in the past research, they are most global models. For example, the global ionosphere maps are provided by IGS. But most of the IGS GPS ground network stations situated in the mid-latitude area. In the second part of this research, by selecting a proper mathematical function for the 2-D ionosphere model, we are trying to establish a 2-dimensional model fit for the some low latitude area and the model should be able to be used to predict VTEC for GPS navigation. Establishing a precise ionosphere model is one of the critical steps for satellite navigation and also for ionospheric research. This method could be provided as an exaample to improve local ionospheric delay.
URI: http://hdl.handle.net/11455/10104
其他識別: U0005-1908201311205200
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.