Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorChien, Chen-Mien_US
dc.identifier.citation[1] M. W. Barsoum, Fundamental of Ceramics, The McGraw-Hill Companies, Inc., New York , 526, 1997. [2] 王郁權,噴霧乾燥對固態反應合成鈦酸鋇之影響研究,國立成功大學材料系碩士論文,(2005)。 [3] T. Pencheva and M. Nenkov, “The Preperties of Barium Titanate RF Sputtered in Argon,” Vacuum, 48 (1997) 43. [4] T.Chiba, K. -I. Itoh and O. Mastumoto, “Deposition of BaTiO3 Thin Films by Plasma MOCVD,” Thin Soild Films, 300 (1997) 6. [5] Y. Yano, K. Iijima,Y. Daitoh, T. Terashima,Y. Bando,Y. Watanabe, H. Kasatani, and H. Terauchi, “Epitaxial Growth and Dielectric Properties of BaTiO3 Film on Pt Electrodes by Reactive Evaporation,” J. Appl. Phys., 62 (1994) 7833. [6] M.-B. Lee, M. Kawasaki, M. Yoshimoto, and H. Koinuma, “Heteroepitaxial Growth of BaTiO3 Films on Si by Pulsed Laser Deposition,” Appl. Phys., 66 (1995) 1331. [7] H. B. Sharma and H. N. K. Sarma, “Electrical Properties of Sol-Gel Processed Barium Titanate Films,” Thin Soild Films, 330 (1998) 178. [8] M. E. Pilleux, and V. M. Fuenzalida, “Hydrothemal BaTiO3 Films on Silicon: MorpholoGical and Chemical Characterization,” J. Appl. Phys., 74 (1993) 4664. [9] P. Bendale, S. Venigalla, J. R. Ambrose, E. D. Verink, Jr. J. H. Adair, “Preparation of Barium Titanate Films at 55℃ by an Electrochemical Method,” J. Am. Ceram. Soc., 76 (1993) 2619. [10] M. Yoshimura, S.-E. Yoo, M. Hayashi, “Preparation of BaTiO3 Thin Film by Hydrothermal Electrochemical Method,” Jpn. J. Appl. Phys., 28 (1989) . [11] 汪建民,陶瓷技術手冊(下),中華民國粉末冶金協會,第二十三章:氮化物(黃肇瑞),第777~804頁,民國八十三年。 [12] N. W. Cheun, H. V. Seefeld, M. A. Nicolet, F. Ho, P. Lles, “Thermal Stability of Titanium Nitride for Shallow Junction Solar Cell Contacts,” J. Appl.Phys.,52 (1981), 4297. [13] M. Yoshimua, K. Byrappa, “Hydothemal Processing of Materials: Pastpresent and future,” J. Mater. Sci., 43 (2008), 2085. [14] R. R. Bacsa, J. P. Dougherty, and L. J. Pilione, “Low-Temperture Synthesis of BaTiO3 Thin Films on Silicon Substrates by Hydrothemal Reaction,” Appl. Phys., 63 (1993) 1053. [15] M. Yoshimura, K. Byrappa Journal“Hydrothermal Processing of Materials:Past, Present and Future,” J. Mater. Sci.(2008)43:2085–2103. [16] Y.-C. Chieh, C.-C. Yu, and F-H Lu, “Epitaxial Growth of BaTiO3 Films on TiN/Si Substrates by a Hydrothermal-Galvanic Couple Method,” Appl. Phys., 90 (2007), 032904. [17] H.-P. Teng, Y.-C. Chieh, and F.-H. Lu, “Preparation of BaZrO3 Films by Physical Vapor Deposition and a Novel Hydrothermal Duplex Technique,” Thin Solid Films, 516 (2007), 364. [18] 林佳君,以水熱化學電池法於不同表面形貌及電阻率之TiN/Si上製備 SrTiO3,國立中興大學材料科學與工程學系碩士論文,(2011) 。 [19] K. Pahlavan and P. Krishnamurthy, Principles of Wireless Networks a Unified Approach, Prentice-Hall, USA, pp. 11, (2002). [20] 翁敏航,射頻被動元件設計,東華書局,第二章:傳輸線路理論,第47~51頁(2006) 。 [21] D. R. Askeland, “The Science and Enginnering of Materials”, Cengage Learning Inc., USA, 719, (2006). [22] B. Jaffe,W. R. Cook and H. Jaffe, Piezoelectric Ceramics, William R. CooK , Jr. and Hans Jaffe Gould Inc. , Cleveland,(1971). [23] 呂福興、余錦智、揭由志、詹佩諠、伍組聰,製備BaTiO3的方法,2006,中華民國發明專利,證書證號I261633。 [24] 呂福興、余錦智、揭由志,鋯酸鋇膜之製造方法,2010,中華民國發明專利,證書證號I321168。 [25] 余錦智,以低溫水熱法及化學電池作用於氮化鈦膜上製備BaTiO3薄膜之研究,國立中興大學材料科學與工程學系碩士論文,(2005)。 [26] P.-H. Chan, F.-H. Lu, “Preparation of BaTiO3 Film on Ti/Si and Bulk-Ti by a Novel Low-Temperature Hydrothermalgalvanic Couple Method,”J. Chin. Corr. Eng. 21 (2007) 291. [27] 趙玲夙,以低溫水熱-化學電池法於鍍鈦膜矽基材上製備具有生物活性之奈米NaHTi3O7薄膜研究,國立中興大學材料科學與工程學系碩士論文,(2009)。 [28] P.-H. Chan, F.-H. Lu, “Low-temperature Hydrothermal-Galvanic Couple Synthesis of BaTiO3 Thin Films on Ti-coated Silicon Substrate,” Thin Solid Films, 517 (2009), 4782. [29] 蔡迪佑,以水熱化學電池法於氮化鈦膜上製備鈦酸鋇膜及其成長動力分析”,國立中興大學材料科學與工程學系碩士論文,(2010)。 [30] 田福助,電化學-基本原理與應用,五洲出版社,第三章:可逆性電極之電位,第53~55頁,民國八十三年。 [31] 胡啟章,電化學原理與方法,五南圖書,第一章,化學反應系統簡介 ,第17頁,(2011)。 [32] D.-M. Pozar, Microwave Engineering, 3rd ed., John Wiley & Sons, Inc., Canada, 67, 1998. [33] S. Ramo, J. R. Whinnery, and T. Van Duzer, Field and Wave in Communiction Electrics, 3rd ed., John Wiley & Sons, Inc., USA, (1994). [34] C.Yang, H. Zhou, M. Liu, H. Wu, H. Zhu, W. Jiang “BSTO/MgO Ferroelectric Material for Phase Shift Doped With Rare Earth Oxides,”Electronic Components & Materials , (2004)-09. [35] M. Sedlar,M. Sayer,V. Chivukula,“Characterization of Doped BST Thin Films Prepared by a Modified Sol Gel Method,” Integrated Ferroelectrics, 1995, 10 (1-4): 113-21. [36] H. Zhang, H. Liang, T. Xu, “Dielectric Properties at High Frequency of BSTO Sstem Doped Dy2O3,” Journal of Rare Earths, (2003), 21(SUPPL): 146-9. [37] C.-C. Hwang, C.-C. Jaing, M. J. Lai, J. S. Chen, S. Huang, M. H. Juang, and H. C. Cheng, “Effect of rapid thermal annealed TiN barrier layer on BST capacitors prepared by RF magnetron cosputter system at low substrate temperatures,” Electrochemical and Solid-State, vol. 3, pp.563-565, (2000). [38] Y.-H. Xie, Y.-Y. Lin and T.-A. Tang, “Characteristics of BST Thin Film Prepared by Novel Chemical Solution Deposition Method for High-Density DRAM Application,” Integrated Ferroelectrics,(2002),47:113-24. [39] X. Li, L. Yang, S.-X. Gong, Y.-J. Yang and J.-F. Liu, “A Compact Folded Printed Dipole Antenna for UHF RFID Reader,” Progress In Electromagnetics Research, Vol. 6, 47–54, (2009). [40] 葛水兵,多晶鈦酸鍶鋇鐵電多層膜的結構與介電增強效應,中國蘇州大學博士學位論文,(2004)。 [41] H. Xu., L. Gao, “Hydrothermal Synthesis of High-Purity BaTiO3 Powders Control of Powder Phase and Size, Sintering Density, and Dielectric Properties,” Materials Letters, 58,1582– 1586. (2004). [42] M. Dong, H.-Y. Miao, Y.-P. Pu, G.-Q. Tan, “Research on Hydrothermal Synthesis of Mg-Doped Barium Titanate Powder and Electric Properties,”Vol.24 No.12, (2005). [43] H.-P. Jeon, S.-K. Lee, S.-W. Kim, D-K. Choi, “Effects of BaO–B2O3–SiO2 Glass Additive on DensificAtion and Dielectric Properties of BaTiO3 Ceramics,” Mater. Chem. Phys., 94, 185–189 (2005). [44] W. C. Liu, A. D. Li , J. Tan,C. L. Mak, K. H. Wong ,“Optical Properties of Ferroelectric Nanocrystal-Containing Polymer BaTiO3 /Polycarbonate Films,” J. Appl. Phys., 98, 024112, (2005). [45] J. Xu, J. Zhai, X. Yao, “Structure and Dielectric Nonlinear Characteristics of BaTiO3 Thin Films Prepared by Low Temperature Process,” Journal of Alloys and Compounds 467 567–571 (2009). [46] Z. Wei, M. Noda and M. Okuyama ,“A Very Low- Temperature Growth of BaTiO3 Thin Film by Hydrothermal Treatment Following Sol-Gel Coating at 200 Degree Celsius,” Integrated Ferroelectrics, 52: 111–118, (2003). [47] 黃建豪,高介電陶瓷複合材料在內埋式電容之應用,國立中央大學化學工程與材料工程學研究所碩士論文,(2004)。 [48] D. D. Grieg and H. F. Englemann, “Microstrip-A New Transmission Technique Forthe Kilomegacycle Range,” Proc. IRE, Vol. 40, pp. 1644-1650, Dec. (1952). [49] T. Ji, H. Yoon, K. Jose and K. Vijay, “IEEE Ku-Band Antenna Array Feed Distribution Network With Ferroelectric Phase Shifters on Silicon,” IEEE Trasaction on Microwave Theory and Techniques, Vol. 54, No.3, (2006). [50] S.-J. Lee, S.-E. Moon, M.-H. Kwak, H.-C. Ryu, Y.-T. Kim and K.-Y. Kang, “Enhanced Dielectric Properties of (B, Sr) TiO3 Thin Films for High - Performance Microwave Phase Shifters,” Integratse Ferroelectric, 72: 39–46, (2006). [51] 謝昌益,氧化鋁基製作寬頻寬天線與雙天線,南台技大學電子工程學系碩士論文(2007)。 [52] Y. Guo, X. Liuvn, Z. Zhu, “Study of MEMS-based High-resistance Silicon K-band Planar Array Microstrip Antenna,” Microelectronics and Electronics, 368-371, (2010). [53] 林建銘 ,環氧樹脂/陶瓷複材在晶片天線封裝之應用,國立臺北科技大學化學工程所碩士論文,(2005)。 [54] A. F. L. Almeida, P. B. A. Fechine, L. C. Kretly and A. S. B. Sombra, “ BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) Substrates for Microwave Devices and Antennas,” J Mater Sci (2006) 41:4623–4631. [55] 郭怡江,天線封裝環氧樹脂複合材料之特性研究,國立臺北科技大學化學工程所碩士論文,(2006)。 [56] M. F. Ain, S. I. S. Hassan, J. S. Mandeep, M. A. Othman and B. M. Nawang﹐“2.5 GHz BaTiO3 Dielectric Resonator Antenna,”Progress In Electromagnetics Research, PIER 76,201–210, (2007). [57]岳月華,高介電常數材料縮小GPS和WIFI組合天線體積,信息系统工程期刊2011.10.20,(2011)。 [58]陳耀明,TiN鍍膜微結構與性質之研究,國立清華大學工程科學與系統學系碩士論文,(2002)。 [59]楊浚揮,以物理氣相沈積法通入空氣/氬氣製備TiN薄膜,國立中興大學材料系碩士論文,(2006)。 [60]余正光、黃國軒,基本電學(下) ,全友圖書,第二十二章:濾波器,第562頁,民國七十七年。zh_TW
dc.description.abstract本研究是利用水熱-化學電池法在TiN/Si上製備BaTiO3薄膜。再將BaTiO3製備成薄膜天線與電容,並研究其特性並探討應用。基材則利用物理氣相沉積法 (PVD) 以空氣為反應性氣體所製備的氮化鈦 (TiN) 薄膜並分析研究其材料特性。此方法乃本研究室專利以水熱-化學電池法,在溫度80℃以0.5M醋酸鋇 [Ba(CH3COO3)2] 及氫氧化鈉 (NaOH) 為反應溶液,於氮化鈦 (TiN) 薄膜之矽基材上製備BaTiO3氧化膜,並探究水熱-化學電池法製備功能性氧化膜之應用性。BaTiO3薄膜厚約83~150 nm。以水熱-化學電池法在TiN/Si上製備BaTiO3薄膜,經X光繞射分析顯示,皆有鈦酸鋇之訊號峰,在TiN/Si上成長出立方相BaTiO3薄膜。尚未有文獻探討以水熱-化學電池法製備BaTiO3薄膜應用於IEEE 802.11 b/g 之平面天線與MLCC電容之應用,本研究首創結合BaTiO3薄膜的材料將其實際應用於薄膜天線,可有效減少基板製程溫度及時間,且經本實驗之製備小尺寸天線可測得符合IEEE 802.11標準的無線區域網路b/g之平面天線。 將所製成的BaTiO3薄膜製作成偶極天線基材,發現可大幅縮減天線體積;而將其製作成小型薄膜電容量測其電性,電容會隨量測頻率頻段改變找到電容應用區段,進行電性分析結果顯示以水熱-化學電池法製備BaTiO3薄膜可應用在小型電容器。本研究成功設計小型偶極天線,可應用在射頻被動元件。測量其電壓駐波比、返回損失與輻射場形,頻寬1 GHz在1.9~2.9 GHz測出電壓駐波比小於2以下,利用HFSS模擬軟體模擬出可以使用之結構尺寸,找出不同材料介質Air、PCB (FR4) 、Si、TiN及BaTiO3的尺寸後進行實驗,而BaTiO3 介質 (30×17×0.5 mm3 )上的金屬輻射面積可縮到 (30×5 mm2),與空氣介質比輻射面積可縮小45%,與 PCB比較尺寸可縮小31%,並且討論此天線所量測之電壓駐波比、增益、返回損失等結果與特性。可適用IEEE 802.11 b/g之通訊規格。藉由本研究的結果証實,可對此新穎材料製程於元件應用上有更大的幫助。zh_TW
dc.description.abstractThis research is to synthesize epitaxial-like BaTiO3 films on TiN/Si substrate by the hydrothermal-galvanic technique. Using the BaTiO3 film to make the thin-film antenna and capacitor, and to study their characteristics and to explore applications. We grow the (TiN) film and use the air as the reaction gas on the substrate by the physical vapor deposition (PVD) method, and to analyze the material properties after the process.''Barium titanate films by a hydrothermal-galvanic technique on TiN-coated substrates at low temperatures 80℃”. The patent of the method belongs to our laboratory.A mixing solution of 0.5 M barium acetate (Ba(CH3COO)2) and 2 M sodium hydroxide (NaOH) as the electrolyte, to grow the BaTiO3 oxide film on the titanium nitride (TiN) film based silicon substrate, and to study characteristics of the oxide film and to discuss their applications. The BaTiO3 film thickness is about 83 to 150 nm. By the XRD results, it is successful to grow the cubic BaTiO3 films by the hydrothermal and hydrothermal-galvanic coupling techniques. There is no any application of the BaTiO3 film in IEEE 802.11 b/g planar antenna and MLCC capacitors which is produced by hydrothermal-galvanic coupling techniques. BaTiO3 film is used as the dipole antenna substrates of the microwave devices in this research. It is the first time to apply the BaTiO3 film material to the film antenna. It is effective to reduce the substrate processing temperature and the growing time. By this research, the small dimension antenna is successfully applied to IEEE 802.11 b/g standard wireless LAN plane antenna. Using the BaTiO3 films as the dipole antenna substrate, it is effective to reduce the antenna dimension. Using the BaTiO3 films to manufacture the small film capacitance and to measure its electrical properties, the variation of capacitance depends on the frequency. We can find the capacitor applications frequency. According to the electrical analysis of BaTiO3 films, the hydrothermal-galvanic technique method can be applied in a small capacitor. The BaTiO3 film is successfully applied to a small dimension dipole antenna by using hydrothermal-galvanic coupling techniques in this research. We measure the antenna parameters, such as VSWR, return loss and gain. The antenna bandwidth is 1 GHz (from 1.9 to 2.9 GHz). The VSWR is less than 2. We use the HFSS to simulate the structure dimension and to identify different materials applications, such as dielectric Air, PCB (FR4), Si, TiN and BaTiO3 and to do the experiment according to the simulation. Using the BaTiO3 as the dielectric, the dielectric dimension is 30 × 17 × 0.5 mm3. It is effective to reduce 30 × 5 mm3 , which compare to air as the dielectric. The dimension is reduced about 45%, and the PCB dimension is reduced by 31%. From the antenna parameters measurement, we can use this antenna to WLAN application.The research reveal the great potential of utilizing the new approach to synthesize epitaxial-like BaTiO3 films on TiN/Si substrate by the hydrothermal-galvanic technique, and using the BaTiO3 film to make the thin-film antenna or capacitor for other applications.en_US
dc.description.tableofcontents誌謝 I 摘要 II Abstract III 目次 V 表目次 VIII 圖目次 IVIII 第一章 緒論 1 1.1. 前言 1 1.2. 研究動機 3 1.3. 研究目的 5 第二章 理論背景與文獻回顧 6 2.1. 水熱-化學電池法作用原理 7 2.2. 水熱-化學電池法製備氧化膜文獻回顧 9 2.3. BATIO3介電分析理論背景與文獻回顧 17 2.3.1. 電容與介電原理 17 2.3.2. 水熱法製備BaTiO3薄膜介電分析文獻回顧 19 2.4. 天線高介電值理論背景與文獻回顧 20 2.4.1. 天線工作原理 20 2.4.2. 陶瓷薄膜天線文獻回顧 22 第三章 研究方法 24 3.1. TIN/SI基材準備 25 3.2. 水熱-化學電池法製備BATIO3薄膜之方法 26 3.3. 分析儀器 28 3.3.1. X光繞射儀 28 3.3.2. 場發射式掃描式電子顯微鏡 28 3.3.3. 電氣量測設備 28 3.4. 元件製作 31 3.4.1. BaTiO3薄膜電容 31 3.4.2. 偶極天線設計與模擬製作 32 第四章 結果 37 4.1. 原始TIN/SI基材之結晶相與微結構分析 37 4.2. 水熱-化學電池法製備BATIO3薄膜 39 4.2.1. 反應過程監控電流與電壓變化分析 39 4.2.2. 晶體結構分析 41 4.2.3. 微結構與膜厚分析 44 4.2.4. 電容電性量測與分析 46 4.3 . 偶極天線量測 54 4.3.1. 其他介質:空氣、PCB (FR4) 、Si與TiN 54 4.3.2. BaTiO3薄膜介質 62 第五章 討論 74 5.1. BATIO3 薄膜應用於電容之評估 74 5.1.1. BaTiO3/TiN/Si與Si基材電容量測結果 76 5.1.2. BaTiO3薄膜應用於MLCC電容之評估 76 5.2. BATIO3 薄膜應用於天線之評估 79 5.2.1 BaTiO3 薄膜偶極天線返回損失與反射係數 79 5.3.2. BaTiO3 薄膜天線與市面上規格比較 83 第六章 結論 85 參考文獻 86zh_TW
dc.subjectbarium titanateen_US
dc.subjecthydrothermal-galvanic techniqueen_US
dc.titleDeposition and antenna application studies of barium titanate films by a hydrothermal-galvanic technique on TiN-coated substratesen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:材料科學與工程學系
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.