Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10115
DC FieldValueLanguage
dc.contributor林宜清zh_TW
dc.contributor.author汪信宏zh_TW
dc.contributor.authorWang, Hsin-Hungen_US
dc.contributor.other土木工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T06:44:11Z-
dc.date.available2014-06-06T06:44:11Z-
dc.identifierU0005-0708201213315400en_US
dc.identifier.citation[1] ASTM C 597, "Standard Test Method for Pulse Velocity Through Concrete," Annual Book of ASTM Standards, Vol. 04.02. [2] ASTM C 1383 (1998). "Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Inpact-Echo Method" Annual Book of ASTM Standards, Vol. 04.02.,1998. [3] 賴朝鵬,” 混凝土材料組成對其流動性質與波傳行為之影響”,中興大 學,1999. [4] 郭世芳,”探討超音波速度與混凝土抗壓強度之關係與其應用”, 國立中興大學土木工程學系博士論文,2006 年7月。 [5] 詹智捷,”混凝土含水狀態之量測與超音波波速關係之建立” ,中興大學,2010. [6] ACI Committee 228 Report (1996). In-Place Methods to Estimate Concrete Strength, ACI Standard ACI 228.1R-95, 1996 [7] Pessiki Stephen and Johnson, Matthew R. (1996).“Nondestructive Evaluation of Early-age Concrete Strength In Plate Structures by the Impact-Echo Method,” ACI Materials Journal, Vol. 93, No.3, 1996, pp.260-271. [8] Anderson David, A. and Seals Roger, K. (1981).“Pulse Velocity as a Predictor of 28- and 90-Day Strength”, ACI Materials Journal, Vol.78, No.2,March-April 1981, pp.116-122. [9] Kaplan, M.F. (1958).“Compressive Strength and Ultrasonic Pulse Velocity Relationships for Concrete in Columns”, Journal of ACI, Vol.54, No.8,February 1958, pp. 675-688. [10] Sturrup, V.R., Vecchio, F.J., and Caratin, H. (1984).“Pulse Velocity as a Measure of Concrete Compressive Strength”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 201-227 [11] Kaplan, M.F. (1952).“Effects of Incomplete Consolidation on Compressive and Flexural Strength, Ultrasonic Pulse Velocity, and Dynamic Modulus of Elasticity of Concrete”, Journal of ACI, Vol.56, No.9, March, 1952, pp.853-867. [12] Popovics, S. (1987).“A Hypothesis Concrete the Effects of Macro-Porosity on Mechanical Properties of Concrete”, Fracture of Concrete and Rock,SEM-RILEM International Conference, June 1987,Houston Texas,pp.170-174. [13] Lin, Y., Kuo, S.F., Hsiao, C., and Lai, C.P., “Investigation of Pulse Velocity-Strength Relationship of Hardened Concrete,” ACI Materials Journal, Vol. 104, No. 4, 2007, pp. 344-350. [14] Naik, T.R., and Malhotra, V.M. (1991).“The Ultrasonic Pulse Velocity Method”, Chapter 7 in CRC Handbook on Nondestructive Testing of Concrete, V.M. Malhotra and N.J. carino, Eds., CRC Press, Boca raton, FL,1991, pp.169-188. [15] Sandor Popovics, L. Joseph Rose, and John S. Popovics, “The Behavior of Ultrasonic Pulses in Concrete,” Cement and Concrete Research, Vol. 20, No.2, 1990, pp.259-270. [16] Bungey, J.H. (1982). "Testing of Concrete in Structures," Surrey University Press, Glasgow, 1982, pp. 207. 26. Popovics, S. (1987).“A Hypothesis Concrete the Effects of Macro-Porosity on Mechanical Properties of Concrete”, Fracture of Concrete and Rock. [17] Malhotra, V.M. (1976).“Testing Hardened Concrete : Nondestructive Methods,” ACI Monograph, No. 9, American Concrete Institute/Iowa State University Press, Detroit, 1976, pp. 204. [18] ASTM C 805, "Standard Test Method for Rebound Number of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02.en_US
dc.identifier.urihttp://hdl.handle.net/11455/10115-
dc.description.abstract本論文主要目的是探討不同含水狀態對混凝土表面及內部波速之關係,針對普通混凝土28天齡期後進行含水量及波速關係之建立,期能由其建立之關係探討表面及內部波速之關係。本研究採用混凝土配比為水泥糊佔體積42%、粗粒料含量為823 kg/m3的0.3、0.5、0.7三種水膠比之混凝土,並加入水膠比0.5之水泥砂漿試體,以得知粗粒料對波速量測之可能影響,試體為36*10*10cm之長方柱試體16顆,於澆置後放入養護池。並於28天後之預定齡期,對試體進行室內自然風乾之含水量與波速變化測定,波速量測採用方法有超音波(UPV)、敲擊回音對接波速量測(IE-V)、敲擊回音表面波速量測(IE-PV)與雙接收器表面波速量測(IE-PVD),並於室內自然風乾34天後,依1、6、12、24、48、72小時以烘箱對其進行烘乾進行含水量與波速變化測定,烘箱溫度保持於105±5°C,總歷時為72小時。 研究結果,顯示在不同配比之混凝土試體烘乾過程中表面及內部波速兩者間關係越趨定值,無論是氣乾或是在烘乾狀態下,內部或外部波速的折減狀況都與量測方式無關,當飽和度降至60%前,其波速折減幅度最大;另可發現無論是對接量測的IE-V波速或表面IE-PV與IE-PVD波速都與UPV波速存在一定之轉換關係,該轉換關係可作為日後現地表面波速量測推求內部UPV波速之用。zh_TW
dc.description.abstractThe main purpose of this thesis is to explore the effect of different moisture content on the concrete surface and internal stress wave velocity. The experimental specimens used in the study were made of ordinary concrete with three water-cement ratios of 0.3, 0.5, and 0.7 and a constant cement paste volume fraction of 42%. For comparison, mortar specimens with a cement-water ratio of 0.5 were also made. All the specimens were square bars with dimensions of 36 * 10 * 10 cm. After construction, the specimens were cured in water at 23�C. At an age of 28 days, the specimens were placed in indoor environment and the wave velocity measurements were carried out by UPV, IE-V, IE-PV, and IE-PVD methods till the indoor natural dry condition of the specimens reached 34 days. Then, the specimens were placed in an oven with a temperature of 105 � 5 �C to dry the free water in concrete and the velocity measurements were performed at 1, 6, 12, 24, 48, and 72 hours after the oven dry started. The experimental results show that the relationship between the concrete surface and internal velocity tends to be steady in the drying process of different proportions of the concrete specimens, whether it is air-dried or oven-dried state, the reduction in the surface or internal velocity has nothing to do with the measurement methods. It is also shown that the wave velocity reduction is sharp before the saturation of the specimen dropped to 60%. In addition, there is a certain conversion relationship among the UPV, IE-PV, and IE-PVD. The conversion relationship can be adopted to obtain the internal UPV of concrete if the surface wave velocity is measured practically.en_US
dc.description.tableofcontents總目次 中文摘要 i Abstract ii 目次 iii 表目次 v 圖目次 vi 目次 第一章 緒論 1 1-1研究背景 1 1-2研究目的與方法背景 2 第二章 文獻回顧 3 2-1超音波法及敲擊回音法 3 2-2波速於混凝土非破壞檢測上的應用 7 2-3混凝土之波傳行為特性 8 2-3-1混凝土之材料組成與波傳特性 8 2-3-2孔隙含量 8 2-3-3混凝土之養護溫度、含水狀況與材齡 9 2-4混凝土含水狀態之量測與波速之關係 9 第三章 研究規劃 11 3-1試體規劃與製作 11 3-2試驗流程與方法 11 3-2-1波源產生方式之影響 11 3-2-2表面P波量測方式的差異 11 3-2-3表面P波波速與內部波速 12 3-2-4不同量測方法之波速與UPV波速的關係 12 3-2-5飽和度對波速折減關係 12 3-3分析原理與方法 12 第四章 試驗儀器、原理及方法 14 4-1超音波法 14 4-1-1試驗儀器 14 4-1-2試驗步驟 15 4-2敲擊回音法 15 4-2-1試驗儀器 16 4-2-2試驗步驟 17 4-3含水量測定 17 4-3-1試驗步驟 17 第五章 試驗結果分析與討論 18 5-1自然風乾下飽和度對波速的影響 18 5-1-1水膠比0.3混凝土於自然風乾狀態下之波速與飽和度關係 18 5-1-2水膠比0.5混凝土於自然風乾狀態下之波速與飽和度關係 18 5-1-3水膠比0.7混凝土於自然風乾狀態下之波速與飽和度關係 19 5-1-4水膠比0.5水泥砂漿於自然風乾狀態下之波速與飽和度關係 19 5-2烘乾狀態下飽和度對波速的影響 20 5-2-1水膠比0.3混凝土於烘箱乾燥狀態下之波速與飽和度關係 20 5-2-2水膠比0.5混凝土於烘箱乾燥狀態下之波速與飽和度關係 20 5-2-3水膠比0.7混凝土於烘箱乾燥狀態下之波速與飽和度關係 21 5-2-4水膠比0.5水泥砂漿於烘箱乾燥狀態下之波速與飽和度關係 21 5-3不同量測法與UPV關係 22 5-3-1以6~72小時量測結果進行分析 22 5-3-2以48與72小時結果進行分析 22 第六章 結論與建議 24 6-1結論 24 6-1-1混凝土含水狀態改變對波速的影響 24 6-1-2不同波速量測方法相互關係 24 6-2建議 25 參考文獻(REFERENCES) 26 表目次 表2-1量測混凝土超音波波速之相關規範[18] 29 表3-1 混凝土試驗配比 30 表3-2 試體製作種類與數量 30 表3-3 試體編號方式 30 表5-1水膠比0.3混凝土於自然風乾狀態下之不同波源之波速 31 表5-2水膠比0.5混凝土於自然風乾狀態下之不同波源之波速 31 表5-3水膠比0.7混凝土於自然風乾狀態下之不同波源之波速 32 表5-4水膠比0.5水泥砂漿於自然風乾狀態下之不同波源之波速 32 表5-5水膠比0.3混凝土於烘箱乾燥狀態下之不同波源之波速 32 表5-6水膠比0.5混凝土於烘箱乾燥狀態下之不同波源之波速 33 表5-7水膠比0.7混凝土於烘箱乾燥狀態下之不同波源之波速 33 表5-8水膠比0.5水泥砂漿於烘箱乾燥狀態下之不同波源之波速 33 圖目次 圖2-1 超音波法操作原理示意圖 34 圖2-2 敲擊回音法於混凝土板試驗示意圖 34 圖2-3 應力波動行為示意圖 34 圖2-4 Snell’s Law 示意圖 35 圖2-5 混凝土板試體應力波路徑示意圖 35 圖2-6 混凝土波速與強度之關係曲線(a)圓柱試體之波速與強度;(b)鑽心試體強度與版之波速;(c)鑽心試體之波速與強度(Pessiki,1996)[7] 36 圖2-7 粒料種類對混凝土波速與強度關係之影響(Sturrup,1984) [10] 36 圖2-8 粒料量對混凝土波速與強度關係之影響(Sturrup,1984) [10] 37 圖2-9 水泥糊體、水泥砂漿及混凝土之波速與強度關係之影響(Sturrup,1984) [10] 37 圖2-10 孔隙含量對混凝土抗壓強度、撓曲強度、波速及動彈性模數之影響(Kaplan,1952) [11] 38 圖2-11 含水條件對混凝土抗壓強度與波速關係之影響(Sturrup,1984)[10] 38 圖2-12 齡期7~28天(W/C=0.4~0.7)之飽和度率定曲線[5] 39 圖2-13 波速比與飽和度關係曲線[5] 39 圖3-1 UPV與IE-V量測配置 40 圖3-2 IE-PV與IE-PVD量測配置 40 圖4-1 PUNDIT超音波試驗儀器及率定棒 41 圖4-2 敲擊回音法檢測 41 圖5-1水膠比0.3混凝土於自然風乾狀態下之波速與飽和度折減關係圖 42 圖5-2水膠比0.3混凝土於自然風乾狀態下內部波速折減關係圖 42 圖5-3水膠比0.3混凝土於自然風乾狀態下外部波速折減關係圖 42 圖5-4水膠比0.5混凝土於自然風乾狀態下之波速與飽和度折減關係圖 43 圖5-5水膠比0.5混凝土於自然風乾狀態下內部波速折減關係圖 43 圖5-6水膠比0.5混凝土於自然風乾狀態下外部波速折減關係圖 43 圖5-7水膠比0.7混凝土於自然風乾狀態下之波速與飽和度折減關係圖 44 圖5-8水膠比0.7混凝土於自然風乾狀態下內部波速折減關係圖 44 圖5-9水膠比0.7混凝土於自然風乾狀態下外部波速折減關係圖 44 圖5-10水膠比0.5水泥砂漿於自然風乾狀態下之波速與飽和度折減關係圖 45 圖5-11水膠比0.5水泥砂漿於自然風乾狀態下內部波速折減關係圖 45 圖5-12水膠比0.5水泥砂漿於自然風乾狀態下外部波速折減關係圖 45 圖5-13水膠比0.3混凝土於烘箱乾燥狀態下之波速與飽和度折減關係圖 46 圖5-14水膠比0.3混凝土於烘箱乾燥狀態下內部波速折減關係圖 46 圖5-15水膠比0.3混凝土於烘箱乾燥狀態下外部波速折減關係圖 46 圖5-16水膠比0.5混凝土於烘箱乾燥狀態下之波速與飽和度折減關係圖 47 圖5-17水膠比0.5混凝土於烘箱乾燥狀態下內部波速折減關係圖 47 圖5-18水膠比0.5混凝土於烘箱乾燥狀態下外部波速折減關係圖 47 圖5-19水膠比0.7混凝土於烘箱乾燥狀態下之波速與飽和度折減關係圖 48 圖5-20水膠比0.7混凝土於烘箱乾燥狀態下內部波速折減關係圖 48 圖5-21水膠比0.7混凝土於烘箱乾燥狀態下外部波速折減關係圖 48 圖5-22水膠比0.5水泥砂漿於烘箱乾燥狀態下之波速與飽和度折減關係圖 49 圖5-23水膠比0.5水泥砂漿於烘箱乾燥狀態下內部波速折減關係圖 49 圖5-24水膠比0.5水泥砂漿於烘箱乾燥狀態下外部波速折減關係圖 49 圖5-25不同水膠比烘乾6~72小時IE-V與UPV之比值關係圖 50 圖5-26不同水膠比烘乾6~72小時IE-PVD與UPV之比值關係圖 50 圖5-27不同水膠比烘乾6~72小時IE-PV與UPV之比值關係圖 50 圖5-28不同水膠比烘乾48與72小時IE-V與UPV之比值關係圖 51 圖5-29不同水膠比烘乾48與72小時IE-PVD與UPV之比值關係圖 51 圖5-30不同水膠比烘乾48與72小時IE-PV與UPV之比值關係圖 51zh_TW
dc.language.isozh_TWen_US
dc.publisher土木工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0708201213315400en_US
dc.subject超音波法zh_TW
dc.subjectultrasonic pulse velocityen_US
dc.subject敲擊回音法zh_TW
dc.subjectImpact-Echo methoden_US
dc.title不同含水狀態對混凝土表面及內部波速量測之影響zh_TW
dc.titleThe influence of the moisture content on the velocity measurement of stress waves propagating in the interior and along the surface of concreteen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1zh_TW-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.fulltextwith fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:土木工程學系所
Files in This Item:
File SizeFormat Existing users please Login
nchu-101-5099062003-1.pdf3.27 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.