Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10116
DC FieldValueLanguage
dc.contributor吳昌謀zh_TW
dc.contributor廖明淵zh_TW
dc.contributor.advisor吳宗明zh_TW
dc.contributor.authorYeh, Yen-Tsenen_US
dc.contributor.author葉晏岑zh_TW
dc.contributor.other中興大學zh_TW
dc.date2013zh_TW
dc.date.accessioned2014-06-06T06:44:12Z-
dc.date.available2014-06-06T06:44:12Z-
dc.identifierU0005-0802201216411900zh_TW
dc.identifier.citation1.日本生物可分解塑膠研究會,圖解生物可分解塑膠 2.財團法人塑膠工業技術發展中心,塑膠e學苑 3.LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Applied Clay Science, 1999, 15, 11 4.Marco, Z.; Sergei, L.; Giovanni, C. Macromolecular Materials and Engineering, 2000, 279, 1 5.Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Polym. Sci. Part A: Polym. Chem, 1993, 1755, 31 6.Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fujushima, A.; Kurauchi, T.; Kamigaito, O. J. Materils Res, 1993, 1179, 8 7.Usuki, A.; Koiwai, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Applied Polym science,1995, 55, 119 8.Usuki, A.; Koiwai, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. Polym. Prepr. Japan, 1993, 14, 1361 9.Usuki, A.;Kojima, Y.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O.; Polym. Prepar, 1993, 31, 651 10.Naka, K.; Itoh, H.; Chujo, Y. Nanoletters, 2002, 2, 1183 11.工業材料, 1999, 9, 153 12.Willian, F. S. Composite material, Materials science and engineering, 2nd ed, 1994, 593 13.Roy, R. Ceramica by the Solution-Sol-Gel Route, Science, 1997, 238, 664 14.Tu, J. L. Preparation and property studies of polyurethane∕carbon nanotubes nanocomposites, National Kaohsiung University of Applied Sciences in Partial Fulfillment of the Requirements, 1994 15.Holten, C.H.; Müller, A.; Rehbinder, D. Lactic acid: properties and chemistry of lactic acid derivatives. Weinheim: Verlag Chemie, 1971 16.Ray, S. S.; Maiti, P.; Okamoto, M.; Yamada, K.; Ueda, K. Macromolecules, 2002, 35, 3104 17.Kale, G.; Auras, R.; Singh, S. P.; Narayan, R. Polym. Test, 2007, 26, 1049 18.Lunt, J. Polymer Degradation and Stability, 1998, 59, 145 19.Vink, E. T. H.; Ra’bago, K. R.; Glassner, D. A.; Gruber, P. R. Polymer Degradation and Stability, 2003, 80, 403 20.陳紀淵, 以混煉法製備聚丙烯/改質奈米雲母複合材料之研究, 文化大學材料科學與奈米科技研究所碩士論文, 2009 21.陳怡錦, 含銀之導電絹雲母之製備與性質研究, 中原大學化學研究所碩士論文, 2007 22.單層雲母科技有限公司, http://www.nanomica.com.tw/ 23.Mir, S.; Yasin, T.; Halley, P. J.; Siddiqi, H. M.; Nicholson, T. Carbohydrate Polymers, 2011, 87, 414 24.Hull, D.; Clyene, T. W. An Introduction to Composite Materials, 2nd Edition, Cambridge, 1996, 1 25.Gunaratne, L. M. W. K.; Shanks R. A. J. Polym Sci Part B: Polym Phys, 2006, 44, 70 26.Nakamuna, K.; Katayama, K.; Amano, T. J. Appl. Polym. Sci., 1973, 17, 1031 27.Nakamuna, K.; Watanaba, T.; Katayama, K.; Amano, T. J. Appl. Polym. Sci., 1972, 16, 1077 28.Cebe, P.; Hong, S. D. Polymer, 1986, 27, 1183 29.Liu, T.; Mo, Z.; Wang, S.; Zhang, H. Polym. Eng. Sci., 1997, 37, 568 30.Hu, X.; Lesser A. J. Macromol Chem Phys, 2004, 205, 574 31.Cebe, P.; Hong, S. D. Polym Comp, 1988, 9, 271 32.Jeziorny, A. Polymer, 1978, 19, 1142 33.Kissinger, H. E. J Res Natl Bur Stand, 1956, 57, 217 34.Kissinger, H. E. Anal Chem, 1957, 11, 1702 35.Ke, T.; Sun, X. Journal of Applied Polymer Science, 2003, 89, 1203 36.Masirek, R.; Piorkowska, E.; Galeski, A.; Mucha, M. Journal of Applied Polymer Science, 2007, 105, 282 37.徐崧富, 聚羥基丁酸酯/層狀雙氫氧化合物奈米複合材料之結晶行為與熱裂解特性, 中興大學材料科學與工程學研究所博士論文, 2007 38.Zhou, Z. H.; Ruan, J. M.; Zhou, Z. C.; Zou, J. P. Polymer-Plastics Technology and Engineering, 2007, 46, 863 39.Uno, H.; Tamura, K.; Yamada, H.; Umeyama, K.; Hatta, T.; Moriyoshi, Y. Applied Clay Science, 2009, 46, 81 40.Wen, X.; Lin, Y.; Han, C.; Zhang, K.; Ran, X.; Li, Y.; Dong, L. Journal of Applied Polymer Science, 2009, 114, 3379 41.Kim, M. W.; Song, Y. S.; Youn, J. R. Composites: Part A, 2010, 41, 1817 42.Gan, D.; Cao, W.; Song, C.; Wang, Z. Materials Letters, 2001, 51, 120 43.Ray, S. S.; Yamada, K.; Okamoto, M.; Ueda, K. Polymer, 2003, 44, 857 44.Lee, J. H.; Park, T. G.; Park, H. S.; Lee, D. S.; Lee, Y. K.; Yoon, S. C.; Nam, J. D. Biomaterial, 2003, 24, 2773 45.Krikorian, V.; Pochan, D. J. Chem. Mater., 2003, 15, 4317 46.江明峰, 聚乳酸/蒙脫土奈米複合材料之製備與物性研究, 中興大學材料科學與工程學系研究所碩士論文, 2004 47.吳政陽, 聚乳酸/蒙脫土奈米複合材料支架製備與物性及生物反應性研究, 中興大學材料科學與工程學系研究所碩士論文, 2005 48.Kale G.;Auras, R.; Singh, S. P.; Narayan, R. Polymer Testing, 2007, 26, 1049 49.Kim, H. S.; Park, B. H.; Choi, J. H.; Yoon, J. S. Journal of Applied Polymer Science, 2008, 109, 3087 50.江明峰, 聚乳酸/層狀雙氫氧化合物奈米複合材料之製備與熱裂解行為研究, 中興大學材料科學與工程學系研究所博士論文, 2011 51.Milicevic, D.; Trifunovic, S.; Galovic S.; Suljovrujic, E. Radiation Physics and Chemistry, 2007, 76, 1376 52.Miyata, T.; Masuko, T. Polymer, 1998, 39, 5515 53.林詩雅, 聚醯胺66/奈米碳管複合材料之結晶行為與性質研究, 中興大學材料科學與工程學系研究所碩士論文, 2008 54.葉瑞銘, 翁暢健, 中原大學化學系暨奈米科技中心, 2004, 62, 4, 473 55.陳育民, 雲母黏土有機改質與聚醚胺的插層反應, 中興大學化學工程研究所碩士論文, 2004 56.賴炎暉, 以表面改質之二氧化矽奈米粉體強化聚二醚酮基材, 中山大學材料科學研究所, 2006 57.Yang, H. S.; Yoon, J. S.; Kim, M. N. Polymer Degradation and Stability, 2005, 87, 131zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10116-
dc.description.abstract本研究利用熔融混煉法來製備聚乳酸(Poly(lactic acid),PLA)/乙烯基改質雲母(Vinyl Modified Mica)奈米複合材料。研究中也藉由添加過氧化二異丙苯(Dicumyl peroxide,DCP)於PLA/Vinyl Modified Mica奈米複合材料中,來探討奈米複合材料之結晶行為、物性研究與生物崩解度試驗。 經由傅立葉轉換紅外線光譜儀(FT-IR)與熱重分析儀(TGA)進行分析,證實Nano Mica已成功被改質為Vinyl Modified Nano Mica。有機改質劑Vinyl佔整個Vinyl Modified Nano Mica中重量百分比約9.7wt %。由穿透式電子顯微鏡(TEM)所得結果顯示,添加DCP於奈米複合材料中,可使Vinyl Modified Nano Mica於PLA基材中有良好的分散性。 在PLA高分子結晶行為與動力學探討方面,以示差掃描式熱分析儀(DSC)進行分析。在非等溫熔融結晶結果方面,添加3wt% Vinyl Modified Nano Mica與3wt% Vinyl Modified Nano Mica+0.03 wt% DCP於PLA基材中可增加異質成核進而促進結晶成長,使材料的結晶速率增加,結晶活化能下降。而在添加更高含量的Vinyl Modified Nano Mica與Vinyl Modified Nano Mica+DCP時,雖然可增加高分子異質成核的產生,但較多的Vinyl Modified Nano Mica與Vinyl Modified Nano Mica+DCP存在可能使得高分子鏈的擴散上造成較多的空間限制,造成PLA高分子的分子鏈傳輸能力下降,而使結晶成長速率降低,結晶活化能增加。 機械性質方面,結果顯示奈米複合材料的抗彎模數、儲存模數與硬度皆會隨Vinyl Modified Nano Mica的添加變硬而上升,且添加DCP於奈米複合材料中的機械性質優於未添加DCP於奈米複合材料中。熱性質方面,得知隨著Vinyl Modified Nano Mica添加量增加,耐熱性提升,且添加DCP於奈米複合材料中,耐熱性提升效果更顯著。崩解度方面,添加DCP與未添加DCP於奈米複合材料中,崩解度皆有明顯的變化,表示當添加DCP於奈米複合材料中,PLA高分子本身並無產生交聯反應。zh_TW
dc.description.abstractPoly(lactic acid)(PLA)/vinyl modified mica nanocomposites with dicumyl peroxide(DCP)have been prepared using melting compounding process. The crystallization behaviors, physical properties and disintegration test of nanocomposites will be discussed. From FT-IR and TGA data, it was suggested that the mica has been successfully modified using organic vinyl group. The TEM images of nanocomposites indicate that the vinyl modified mica was well dispersed into PLA matrix with the addition od DCP. The nonisothermal crystallization behavior of PLA/vinyl modified mica nanocomposites showed that the addition of 3wt% vinyl modified mica into PLA matrix could induce more heterogeneous nucleation to speed up the crystallization rate and to reduce their activation energy. By adding more mica into PLA probably caused more steric hindrance to reduce the transportation ability of polymer chains during crystallization, thus reduce the crystallization rate and increase the activation energy. The mechanical and thermal properties of nanocomposites with DCP revealed significant enhancement as compared to the nanocomposites without DCP. The disintegration test of nanocomposites showed remarkable weight loss of nanocomposites with DCP, suggesting the addition of DCP did not destroy the degradation behavior of PLA/vinyl modified mica nanocomposites.en_US
dc.description.tableofcontents中文摘要 i Abstract ii 總目次 iii 圖目次 v 表目次 vii 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 7 1-3 研究方向 8 第二章 文獻回顧 9 2-1 聚乳酸 9 2-2 聚乳酸的製備 11 2-3 奈米雲母 12 2-4 過氧化二異丙苯 15 2-5 奈米複合材料 16 2-6 高分子非等溫熔融結晶行為與動力學 17 2-7 高分子/無機物奈米複合材料之結晶行為 19 2-8 高分子/無機物奈米複合材料之物性研究 21 第三章 實驗方法 24 3-1 實驗材料 24 3-2 實驗儀器 25 3-3 實驗步驟 27 3-3-1 PLA/Vinyl Modified Mica奈米複合材料之製備 27 3-3-2 PLA/Vinyl Modified Mica+DCP奈米複合材料之製備 28 3-3-3 測試方法 29 3-4 實驗流程 34 3-4-1 PLA/Vinyl Modified Mica奈米複合材料 34 3-4-2 PLA/Vinyl Modified Mica+DCP奈米複合材料 35 3-5 化學反應示意圖 36 第四章 結果與討論 37 4-1 PLA高分子、PLA/Vinyl Modified Mica與PLA/Vinyl Modified Mica+DCP奈米複合材料之特性分析 37 4-1-1 傅立葉轉換紅外線光譜儀分析 37 4-1-2 熱重分析儀分析 41 4-1-3 Vinyl Modified Nano Mica於PLA基材中之分散情形 46 4-2 PLA高分子、PLA/Vinyl Modified Mica與PLA/Vinyl Modified Mica+DCP奈米複合材料之非等溫熔融結晶行為與動力學研究 48 4-2-1 非等溫熔融結晶行為分析 48 4-2-2 非等溫熔融結晶動力學行為分析 51 4-2-3 非等溫熔融結晶之熔融行為 53 4-2-4 非等溫熔融結晶活化能計算 73 4-3 PLA高分子、PLA/Vinyl Modified Mica與PLA/Vinyl Modified Mica+DCP奈米複合材料之耐熱性質分析 77 4-3-1 維氏軟化溫度測試 77 4-4 PLA高分子、PLA/Vinyl Modified Mica與PLA/Vinyl Modified Mica+DCP奈米複合材料之機械性質分析 79 4-4-1 彎曲試驗 79 4-4-2 動態機械分析 81 4-4-3 硬度試驗 84 4-5 PLA高分子、PLA/Vinyl Modified Mica與PLA/Vinyl Modified Mica+DCP奈米複合材料之生物崩解度試驗 86 4-5-1 生物崩解度試驗 86 第五章 結論 90 參考文獻 91zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0802201216411900en_US
dc.subjectPolylactic aciden_US
dc.subject聚乳酸zh_TW
dc.subjectNano micaen_US
dc.subjectbiodegradabilityen_US
dc.subject奈米雲母zh_TW
dc.subject生物可分解材料zh_TW
dc.titleCrystallization Behavior and Physical Properties of Poly(lactic acid)/Modified Mica Nanocompositesen_US
dc.title聚乳酸/改質雲母奈米複合材料之結晶行為與物性研究zh_TW
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.