Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10120
標題: 不同時間空間尺度之山崩潛勢分析-以高屏溪為例
Temporal and Spatial Landslide Susceptibility Analysis of the Kao-Ping Watershed
作者: 吳忠澤
Wu, Chung-Tse
關鍵字: 氣候變遷;Climate Change;山崩潛感圖;羅吉斯回歸;Landslide Susceptibility;Logistic
出版社: 土木工程學系所
引用: 1.Varnes, D.J., 1978, “Slope Movements and Type and Process in Landslides : Analysis and Control”, Transportation Res. Board Nat. Ac. Sci., Washington Spec., Rep.176, pp.11-33. 2.Fookes, P.G., Sweeney, M., Manby, C.N.D, and Martin, R.P., 1985, “Geological and Geotechnical Engineering Aspects of Low-cost Roads in Mountainous Terrain”, Engineering Geology, Vol.21, pp.1-152. 3.張石角,1975,「台灣崩塌地與地質特性」,崩塌地調查與處理 技術之訓練及研究,pp.16-17。 4.鄭嘉盈,1999,「遙測在坡地災害評估之應用研究」,碩士論文, 國立成功大學土木工程研究所。 5.廖軒吾,2000,「集集地震誘發之山崩」,碩士論文,國立中央 大學應用地質研究所。 6.黃筱梅,2001,「SPOT 衛星影像於裸露地變遷之偵測研究-以和社地區為例」,碩士論文,國立台灣大學森林學研究所。 7.曾聖權,2005,「SPOT衛星影像應用於陳有蘭溪流域崩塌調查之研究」,碩士論文,朝陽科技大學營建工程系。 8.Wang, C., Esaki, T., Xie, M., Qiu, C., 2006, “Landslide and Debris-flow Hazard Analysis and Prediction Using GIS in Minamata–Hougawachi Area, Japan”, Environmental Geology, Vol.51, pp.91-102. 9.許惠瑛,2007,「台灣中部地區降雨誘發崩塌之影響因子研究」,碩士論文,國立中興大學土木工程學系。 10.黃聖慈,2008,「以GIS探討台灣濁水溪與烏溪上游崩塌地之影響因子」,碩士論文,國立中興大學土木工程學系。 11.Wan, S., Lei, T.C., Chou, T.Y., 2009, “A Novel Data Mining Technique of Analysis and Classification for Landslide Problems”, Natural Hazards, Vol.52, pp.211-230. 12.Mondini, A.C., 2011, “Semi-Automatic Recognition and Mapping of Rainfall Induced Shallow Landslides Using Optical Satellite Images”, Remote Sensing of Environment, Vol.115, pp.1743-1757. 13.Tung, S.H., 2013, “Identification of the Landslide Using the Satellite Images and the Digital Image Correlation Method”, Disaster Advanced, Vol.6, Issue 4, pp.4-9. 14.Burrough, P.A., 1986, “ Principles of Geographic Information Systems for Land Resources Assessment”, Oxford:Clarendon Press. 15.Bates, R.L. and Jackson, J.A., 1980, Glossary of Geology, Falls Church, VA., American Geological Institute, pp.751. 16.Krumbein, W.C., 1956, “ Regional and Local Components in Facies Maps”, Bull. of AAPG., Vol.40, pp.2164-2194. 17.Read, W.A. and Merriam, D.F., 1966, “Trend Surface Analysis of Stratigraphic Thickness Data from Some Namrain Rocks East of Stirling,Scotland”, Scott J. of Geology, Vol.2, pp.96-100. 18.David, L.A., 1992, “Using Areal Criteria to Perform Trend Analysis”, Geobyte, Vol.8, pp.54-57. 19.張原賓,1999,「以趨勢面分析技術輔助大區域之順向坡測繪」,碩士論文,國立中央大學應用地質研究所。 20.Wentworth, C. M., Ellen, S. D. and Mark, R. K.1987, “Improved Analysis of Regional Engineering Geology using Geograpic Information System (GIS)”, GIS''87, Vol.2, pp.636-649. 21.游中榮,1996,「應用地理資訊系統於北橫地區山崩潛感之研究」,碩士論文,國立中央大學應用地質研究所。 22.打荻珠男,1971,「ひと雨による山腹崩壞について」,新砂防, 第79期,第21-34頁。 23.謝玉興,2004,,「南橫公路邊坡崩壞與降雨關係研究」,臺灣公路工程 第三十卷第十一期。 24.Guzzettia, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani,C., Galli, M. and Salvati, P., 2004, “Landslides Triggered by the 23 November 2000 Rainfall Event in the Imperia Province, Western Liguria, Italy”, Engineering Geology, Vol.73, pp.229-804. 25.蘇苗彬、簡李濱,1992,「應用地理資訊系統建立坡地安定評估之計量方法」,碩士論文,中興大學土木工程研究所。 26.吳柏毅,2006,「臺灣中部地區崩塌地影響因子之分析研究」, 碩士論文,國立中興大學土木工程學系。 27.洪嘉妤,2010,「台灣中部地區山崩影響因子之時間序列分析」,碩士論文,國立中興大學土木工程學系。 28.Atkinson, P. M. and Massari, R., 1998, “ Generalized linear modelling of susceptibility to landsliding in the central Apennines”, Italy”, Computers & Geosciences, Vol.24, pp.373-385. 29.Ayalew, L. and Yamagishi, H., 2005, “The application of GIS-based Logistic Regression for Landslide Susceptibility Mapping in the Kakuda-Yahiko Mountains, Central Japan”, Geomorphology, Vol.65, pp.15-31. 30.李錫堤、費立沅、陳勉銘、李彥良、林銘郎、董家鈞、張瓊文,2011,「蘭陽溪流域之山崩土石流災害潛勢分析」,易淹水地區上游集水區地質調查與資料庫建置。 31.Devkota, K.C., 2013, “Landslide Susceptibility Mapping Using Certainty Factor, Index of Entropy and Logistic Regression Models in GIS and Their Comparison at Mugling-Narayanghat Road Section in Nepal Himalaya”, Natural Hazards, Vol.65, No.2, pp.135. 32.Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F., 1989, “Weight-of-evidence Modeling: A New Approach to Mapping Mineral Potential”, In Statistical Applications in the Earth Sciences, edited by F.P. Agterberg and G.F. Bonham-Carter, Paper 89-9, pp.267-329. 33.Kayastha, P., 2012, “Landslide Susceptibility Mapping Using the Weight of Evidence Method in the Tinau Watershed, Nepal”, Natural Hazards, Vol.63, Issue 2, pp. 479-498. 34.Armaş, I., “Weights of Evidence Method for Landslide Susceptibility Mapping Prahova Subcarpathians, Romania”, Natural Hazards, Vol. 60, Issue 3, pp.937-950. 35.經濟部中央地質調查所,2009,「高屏溪流域之山崩土石流災害潛勢分析」,易淹水地區上游集水區地質調查與資料庫建置。 36.Lee, s., Choi, J., 2004, “Landslide Susceptibility Mapping Using GIS and the Weight-of-Evidence Model”, International Journal of Geographical Information Science, Vol.18, Issue 8, pp.789-814. 37.洪嘉妤,2011,「考慮時間空間尺度之坡地災害及受災潛勢研究」,國家災害防救科技中心,第6頁。 38.Hazen, A., 1914, “Discussion on Flood Flows’ by W.E. Fuller”, Society of Civil Engineers, Vol.77, pp.526-632. 39.楊志銘,2012,「氣候變遷條件下不同時間空間尺度之山崩潛勢分析-以清水溪為例」,碩士論文,國立中興大學土木工程學系。 40.謝文棟,2012,「證據權重法與模糊邏輯在山崩潛感分析之研究與比較:以荖濃溪為例」,碩士論文,國立成功大學地球科學系。
摘要: 
莫拉克颱風造成高屏溪流域之邊坡發生大範圍的山崩土石流,除造成嚴重之災害,也導致地形地貌產生重大改變。本研究利用近年來造成高屏溪流域發生重大災害之颱風事件(2007科羅莎颱風、2009莫拉克颱風、2010凡那比颱風),以其前後時期之衛星影像搭配DEM,來建立崩塌因子圖層,以分析探討該流域多時序列下,颱風對地形地貌之改變與崩塌地新增之情形。
本研究參考前人研究,選定地形因子(坡度、坡向、坡高、坡型)、區位因子(距道路距離、距水系距離)、地質因子(距斷層距離)、植生指標(NDVI)與雨量因子(崩塌降雨指標)等九個因子作為山崩潛勢分析之影響因子,並以不安定指數法、羅吉斯回歸、證據權重法進行分析,進而產製高屏溪流域之山崩潛感圖。並討論於不同空間尺度下,其山崩潛感圖判釋山崩之能力及差異。最後,將各方法分析出的潛感模型以ROC曲線及成功率曲線進行驗證,以了解各山崩潛感模型解釋山崩之能力。其驗證結果羅吉斯回歸潛感模型準確度最高,不安定指數法與證據權重法準確度差不多。因此,此三種潛感分析模型皆可用來解釋崩塌分布之情形。
另外,本研究蒐集過去15年雨量站資料,進行降雨頻率分析;並以國內大氣環流模式動力降尺度進一步推估氣候變遷影響下之雨量,使了解高屏溪流域在氣候變遷條件下,過去與未來之降雨趨勢推估。本研究並以推估之雨量資料帶入潛感模型內,利用三種分析方法預測未來10年、20年、100年之山崩潛感圖;此結果可做為未來設計、減災及防災之重要參考依據。

The 2009 Typhoon Morakot induced serious landslides in the Kao-Ping watershed; beside the geohazards, it also significantly change the topography and the morphology. In this study, the SPOT satellite images, before and after typhoons KROSA(2007), MORAKOT(2009), and FANAPI(2010), were collected to obtain the NDVI. Then NDVI and slope angle from DEM were used to automatically interpret the landslides, such so that we can investigate the control factors for the changes in topography and landslide initiation.
According to previous studies, nine landslide susceptibility factors, including slope, aspect, elevation, NDVI, Id, Ids, distance to road, distance to river, and distance to fault, were utilized to produce the instability index model, the logistic regression model and the weights of evidence model. Moreover, we discussed the ability and difference of the landslide susceptibility maps in different spatial scales. The landslide susceptibility model applies the ROC curve and success rate curve for the validation. The result show that the logistic regression model has the highest accuracy among the three methods, and the accuracy of instability index model and weights of evidence model are similar.
In addition, the rainfall data over past 15 years from rainfall stations was analyzed for the rainfall frequency. Then, this study applied the data from rainfall frequency analysis and from the downscaling General circulation model(GCMS) of TCCIP to perform rainfall time series analyses. Furthermore, this study applies the data of rainfall time series analysis to calculate and obtain the susceptibility zoning maps in different rainfall scenarios. The results can be used for the mitigation, and prevention of landslide hazards in the Kao-Ping watershed in the future.
URI: http://hdl.handle.net/11455/10120
其他識別: U0005-2607201311250100
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.