Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/10123
標題: | 探討銦含量對氮化銦鎵光伏元件影響 Characterization of InGaN-based photovoltaic by devices varying the Indium contents |
作者: | 謝文揚 Hsieh, Wen-Yang |
關鍵字: | InGaN;氮化銦鎵;Light-Emitting;Solar cell;Band Filling;Flat Band;發光二極體;太陽能電池;能帶充填效應;能帶平坦 | 出版社: | 材料科學與工程學系所 | 引用: | [1] Chia-Feng Lin,z Jing-Jie Dai, Zhong-Jie Yang,Jing-Hui Zheng, and Shou-Yi Chang” Self-Assembled GaN:Mg Inverted Hexagonal Pyramids FormedThrough a Photoelectrochemical Wet-Etching Process” Electrochem. Solid-State Lett., vol. 8, no. 12,pp. C185 (2005). [2] Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum” Appl. Phys. Let.,vol. 79, no. 8,pp.1130 (2001). [3] T. Koyama, T. Onuma, H. Masui, A. Chakraborty, B. A. Haskell, S. Keller, U. K. Mishra, J. S. Speck, S. Nakamura, S. P. DenBaars, T. Sota, S. F. Chichibu, “ Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1−xN/GaN blue light emitting diodes fabricated on freestanding GaN substrates”, Appl. Phys. Lett. , vol. 89,no. 9, pp.1906 (2006). [4] I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells”, Appl. Phys. Lett.,vol. 86,no. 13,pp. 1108 (2005). [5] D. Neamen, “An introduction to semiconductor devices”, The McGraw-Hill companies, Ch5. p178 (2006). [6] Yu-Hsuan Sun, Yun-Wei Cheng, Szu-Chieh Wang, Ying-Yuan Huang, Chun-Hsiang Chang, Sheng-Chieh Yang, Liang-Yi Chen, Min-Yung Ke, Chi-Kang Li, Yuh-Renn Wu and JianJang Huang, “Optical Properties of the Partially Strain Relaxed InGaN/GaN Light-Emitting Diodes Induced by p-Type GaN Surface Texturing”, IEEE Electron Devices Letters, vol. 32, no. 2, (2011). [7] I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells”, Appl. Phys. Lett., Vol. 86,no. 13,pp. 1108 (2005). [8] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect”, Appl. Phys. Lett.,vol. 73,no.12, pp. 1691 (1998). [9] C. Y. Lai, T. M. Hsu, W. H. C hang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy”, Jour.of Appl. Phys., vol.91,no. 1,pp. 531 (2002). [10] Jae-Ho Song, Ho-Jong Kim, Byung-Jun Ahn,Yanqun Dong, Sayong Hong, Jung-Hoon Song, Youngboo Moon, Hwan-Kuk Yuh, Sung-Chul Choi, and Sangkee Shee 「Role of photovoltaic effects on characterizing emission propertiesof InGaN/GaN light emitting diodes」APPLIED PHYSICS LETTERS ,vol. 95,no. 26,pp. 3503 (2009). [11] Martin F. Schubert, Qi Dai, Jiuru Xu, Jong Kyu Kim, and E. Fred Schubert,“Electroluminescence induced by photoluminescence excitation in GaInN/GaN light-emitting diodes”, Appl. Phys. Lett., vol. 95,no.19, pp. 1105, (2007). [12] J.Wu,W.Walukiewicz,k.m.Yu,J.W.Ager,E.E.Haller,H.Lu.W.J.Schaff,Y.Saito,and Y.Nanishi, “Unusual properties of the fundamental band gap of InN”Appl.Phys Lett.,vol. 80,no. 21,pp.3967 (2002). [13] Omkar jani, Christiana Honsberg,Yong Huang, June-O Song, Lan Ferguson, Gon Namkoong, Elaissa Trybus, Alan Doolittle, Sarah Kurtz “Design, Growth,Fabrication and Characterization of High-Band Gap InGaN/GaN Solar Cells” Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on,vol. 01,pp20.(2006). [14] R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang,“InGaN/GaN multiple quantum well solar cells with long operating wavelengths” Appl. Phys. Lett. Vol.94,no. 6, pp.063505(2009) [15] Misra , C. Boney , N. Medelci , D. Starikov , A. Freundlich , and A. Bensaoula “Fabrication and characterization of 2.3eV InGaN photovoltaic devices” Photovoltaic Specialists Conference, 2008. PVSC ''08. 33rd IEEE,no. 11,pp. 1(2009) [16] Sheng-wei Zeng, Xiao-mei Cai, and Bao-ping Zhang” Demonstration and Study of Photovoltaic Performances of InGaN p-i-n Homojunction Solar Cells” IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 46, no. 5,pp.783 (2010) [17] Han Cheng Lee, Yan Kuin Su, Wen How Lan, Jia Ching Lin, Kuo Chin Huang,Wen Jen Lin,Yi Cheng Cheng, and Yu Han Yeh “Study of Electrical Characteristics of GaN-Based Photovoltaics With Graded InGaN Absorption Layer” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 23, no. 6,pp.347 (2011) [18] Matioli, Elison,Neufeld, Carl; Iza, Michael; Cruz, Samantha C.,Al-Heji, Ali A.,Chen, Xu, Farrell, Robert M.,Keller, Stacia,DenBaars, Steven, Mishra, Umesh,Nakamura, Shuji,Speck, James; Weisbuch, Claude“ High internal and external quantum efficiency InGaN/GaN solar cells” APPLIED PHYSICS LETTERS,vol. 98,no. 2,pp.021102 (2011). [19] Jain, S. C.,Willander, M., Narayan, J., Overstraeten, R. Van“III–nitrides: Growth, characterization, and properties”.Appl. Phys. Lett. Vol. 87,no. 3,pp.956 (2000). [20] L. Macht, P. R. Hagenan, S. Haffouz nd P. K. Larsen, “Microphotoluminescence mapping of laterally overgrown GaN layers on patterned Si (111) substrates”,Appl. Phys. Lett., vol. 87,no. 13, pp. 131904 (2005). [21] T. Takeuchi, S. Sota, M. Katsuragaw M. Komori, H. Takeuchi, H. Amano and I.Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GalnN Strained Quantum Wells”, Jpn. J. Appl. Phys, vol. 36,no.4A, pp. 382 (1997). [22] Jinn-Kong Sheu, Chih-Ciao Yang, Shang-Ju Tu, Kuo-Hua Chang, Ming-Lun Lee, Wei-Chih Lai, and Li-Chi Peng” Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers” IEEE Electron Device Letter.,vol.30,no. 3,pp.225 (2009). [23] Martin F. Schubert1, E. Fred Schubert” Effect of heterointerface polarization charges and well width upon capture and dwell time for electrons and holes above GaInN/GaN quantum wells” APPLIED PHYSICS LETTERS ,vol. 96,no.13,pp. 1102, (2010). [24] Satoshi Watanabe, Norihide Yamada, Masakazu Nagashima, Yusuke Ueki,Chiharu Sasaki, Yoichi Yamada, sunemasa Taguchi, Kazuyuki Tadatomo,Hiroaki Okagawa, and Hiromitsu Kudo, “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes”, Appl.Phys. Lett., vol. 83, no. 24, (2003). [25] Sang-Heon Han1, Dong-Yul Lee, Hyun-Wook Shim, Gwon-Chul Kim,Young,Sun Kim, Sung-Tae Kim, Sang-Jun Lee, Chu-Young Cho and Seong-Ju Park ”Improvement of efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with trapezoidal wells” J. Phys. D, Appl.hys.,vol., 43,no.35, pp. 4004 (2011). [26] Ya-Ju Lee, Ching-Hua Chiu, Chih Chun Ke, Po Chun Lin, Tien-Chang Lu,Hao-Chung Kuo, Senior Member, IEEE,and Shing-Chung Wang” Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate “IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 15, no. 4, pp. 1137( 2009). [27] K. Y. Lai,G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He1,” Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells” APPLIED PHYSICS LETTERS, vol . 96 ,no. 08 (2010). [28] Yousuke Kuwahara, Takahiro Fujii, Toru Sugiyama, Daisuke Iida, Yasuhiro Isobe, Yasuharu Fujiyama,Yoshiki Morita, Motoaki Iwaya, Tetsuya Takeuchi, Satoshi Kamiyama, Isamu Akasaki, and Hiroshi Amano “GaInN-Based Solar Cells Using Strained-Layer GaInN/GaInN Superlattice Active Layer on a Freestanding GaN Substrate” Applied Physics Express, vol. 4,no. 2 ,pp.021001 (2011) | 摘要: | 本論文實驗以相同構結和尺寸氮化銦鎵光伏元件,探討銦含量不同所造成的發光二極體特性以及光伏特性之分析。 在順向偏壓下照射雷射光激螢光光譜,顯示隨順向偏壓增加波長會有紅移現象,造成較大紅移量,主要是因為較大壓電場造成,隨順向偏壓導致能帶傾斜較嚴重。而在隨電流注入的EL量測中發現較大藍移量以及效率衰退原因,主要來自於較大壓電場使得能帶更加傾斜造成電子電洞波函數重疊機率下降,造成載子輻射複合效率下降。 在隨不同雷射功率激發的光螢光光譜,發現藍光樣品不論在室溫或低溫下都有較高的光激螢光強度。由於綠光樣品較大壓電場造成載子不易侷限在量子井,使得在量子井中有效的輻射再結合載子數下降造成螢光強度下降。 在太陽能量測特性中,由於綠光樣品量子井中銦含量較高造成光譜吸收的範圍變寬。在照射全波段光源觀察到綠光樣品相對藍光樣品有高約89.5%的短路電流,但有略低的開路電壓值,並發現綠光有較佳的太陽能效率。綠光樣品有較高效率的太陽能電池特性是由於較寬的吸收光譜造成較大的短路電流。 在變溫下不同雷射功率照射藍光及綠光試片量測太陽能電池,造成低溫(10k)下太陽能效率較室溫(300k)較率差異較大,主因為在低溫(10K)下藍光及綠光載子的遷移率變低及ITO阻值變大造成串聯阻值變大,使填充因子變低進而造成效率明顯降低。 當氮化銦鎵摻雜銦含量增加時,因晶格不匹配使壓電場增加,造成能帶傾斜程度增加。在發光二極體特性量測,發現其波長偏移量增加、效率衰退也更加嚴重,但在溫室下因其能帶傾較嚴重,使載子的電子電洞波函數較分離不易侷限在量子井內容易因熱激活影響發生載子溢流的情況,形成光電流。在太陽能量測中,銦含量增加也使得短路電流(光電流)增加及開路電壓下降。 In this thesis, the analysis and measurements of the different characteristics of light-emitting diodes and photovoltaic properties with the same structure and size of InGaN photovoltaic devices were performed for the variation of indium content. For the forward bias photoluminescence spectra, the peak emission wavelength was red shifted by increasing of forward bias. The tendency of red-shift phenomenon resulted from the larger piezoelectric field in the InGaN active layer. For EL spectra with the injection currents, the larger of blue-shift and decay of efficiency were caused by the band filling effect in the tilted InGaN well with a larger piezoelectric field and reduce overlapping probability the electron-hole wave functions and decrease the carrier radiative recombination efficiency. According to the PL spectra with different laser power excitation, it is discovered that blue samples both had a higher intensity at room temperature or low temperature. On the other hand, the carriers were hard to confine in the MQW because of the large piezoelectric field in green LED samples. Therefore, it also made the decrease of PL intensity due to the decrease of effective numbers of carriers for recombination. By increasing the Indium content in InGaN active layer, the lattice mismatch induced large piezoelectric field was increased. In the solar measurements, the wide range of absorption spectra resulted from the higher indium content InGaN quantum wells of the green devices. Under the full-band light illuminated, the short-circuit current of the green device had a 89.5% enhancement and the slightly lower open-circuit voltage compared with the blue device. |
URI: | http://hdl.handle.net/11455/10123 | 其他識別: | U0005-0908201116194000 |
Appears in Collections: | 材料科學與工程學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.