Please use this identifier to cite or link to this item:
標題: Synthesis of Hollow TiO2 Spheres and Applications to Photocatalysis and Dye-Sensitized Solar Cells
作者: Chao, Po-Sung
關鍵字: TiO2 hollow microspheres;二氧化鈦中空微球;photocatalysis;dye-sensitized solar cell;光催化;染料敏化太陽能電池
出版社: 材料科學與工程學系所
引用: 1. A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode.” Nature, 238, 37-38, 1972. 2. R. Abe, K. Sayama, K. Domen, H. Arakawa, “A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator.” Chemical Physics Letters, 344, 339-44, 2001. 3. D. Bahnemann, D. Bockelmann, R. Goslich, “Mechanistic studies of water detoxification in illuminated TiO2 suspensions.” Solar Energy Materials, 24, 564-83, 1991. 4. A. Sclafani, M. N. Mozzanega, P. Pichat, “Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol.” Journal of Photochemistry and Photobiology A: Chemistry, 59, 181-89, 1991. 5. H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, M. Che, “Characterization of titanium−silicon binary oxide catalysts prepared by the sol−gel method and their photocatalytic reactivity for the liquid-phase oxidation of 1-octanol.” The Journal of Physical Chemistry B, 102, 5870-75, 1998. 6. Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying, “Role of particle size in nanocrystalline TiO2-based photocatalysts.” The Journal of Physical Chemistry B, 102, 10871-78, 1998. 7. M. Gratzel, “Photoelectrochemical cells.” Nature, 414, 338-44, 2001. 8. C. Aprile, A. Corma, H. Garcia, “Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control: from subnanometric to submillimetric length scale.” Physical Chemistry Chemical Physics, 10, 769-83, 2008. 9. S. Zhang, Z. Chen, Y. Li, Q. Wang, L. Wan, “Photocatalytic degradation of methylene blue in a sparged tube reactor with TiO2 fibers prepared by a properly two-step method.” Catalysis Communications, 9, 1178-83, 2008. 10. J. Yang, J. Zhang, L. Zhu, S. Chen, Y. Zhang, Y. Tang, Y. Zhu, Y. Li, “Synthesis of nano titania particles embedded in mesoporous SBA-15: characterization and photocatalytic activity.” Journal of Hazardous Materials, 137, 952-8, 2006. 11. C. Song, W. Yu, B. Zhao, H. Zhang, C. Tang, K. Sun, X. Wu, L. Dong, Y. Chen, “Efficient fabrication and photocatalytic properties of TiO2 hollow spheres.” Catalysis Communications, 10, 650-54, 2009. 12. D. G. Shchukin, R. A. Caruso, “Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration.” Chemistry of Materials, 16, 2287-92, 2004. 13. Y. Kondo, H. Yoshikawa, K. Awaga, M. Murayama, T. Mori, K. Sunada, S. Bandow, S. Iijima, “Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres.” Langmuir, 24, 547-50, 2007. 14. F. Caruso, R. A. Caruso, H. Möhwald, “Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating.” Science, 282, 1111-14, 1998. 15. F. Caruso, X. Y. Shi, R. A. Caruso, A. Susha, “Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles.” Advanced Materials, 13, 740-44, 2001. 16. R. A. Caruso, A. Susha, F. Caruso, “Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres.” Chemistry of Materials, 13, 400-09, 2001. 17. A. Imhof, “Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells.” Langmuir, 17, 3579-85, 2001. 18. T. H. Kim, K. H. Lee, Y. K. Kwon, “Monodisperse hollow titania nanospheres prepared using a cationic colloidal template.” Journal of Colloid and Interface Science, 304, 370-7, 2006. 19. X. Cheng, M. Chen, L. Wu, G. Gu, “Novel and facile method for the preparation of monodispersed titania hollow spheres.” Langmuir, 22, 3858-63, 2006. 20. P. Wang, D. Chen, F.-Q. Tang, “Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis.” Langmuir, 22, 4832-35, 2006. 21. S. Eiden, G. Maret, “Preparation and characterization of hollow spheres of rutile.” Journal of Colloid and Interface Science, 250, 281-4, 2002. 22. L. Wang, T. Sasaki, Y. Ebina, K. Kurashima, M. Watanabe, “Fabrication of controllable ultrathin hollow shells by layer-by-layer assembly of exfoliated titania nanosheets on polymer templates.” Chemistry of Materials, 14, 4827-32, 2002. 23. Z. Z. Yang, Z. W. Niu, Y. F. Lu, Z. B. Hu, C. C. Han, “Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles.” Angewandte Chemie, 42, 1943-45, 2003. 24. M. Yang, J. Ma, C. Zhang, Z. Yang, Y. Lu, “General synthetic route toward functional hollow spheres with double-shelled structures.” Angewandte Chemie, 44, 6727-30, 2005. 25. J. Wang, Y. Bai, M. Wu, J. Yin, W. F. Zhang, “Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries.” Journal of Power Sources, 191, 614-18, 2009. 26. G. C. Chen, C. Y. Kuo, S. Y. Lu, “A general process for preparation of core-shell particles of complete and smooth shells.” Journal of the American Ceramic Society, 88, 277-83, 2005. 27. A. Syoufian, Y. Inoue, M. Yada, K. Nakashima, “Preparation of submicrometer-sized titania hollow spheres by templating sulfonated polystyrene latex particles.” Materials Letters, 61, 1572-75, 2007. 28. 王彥文, “以植入前驅物於膠體模板方式合成單一分散中空氧化鋁暨其他無機物微球之研究.”2008. 29. 李維特, “以植入法合成單一分散中空Al2O3暨Pt-Al2O3微球之研究.”2009. 30. 吳信霖, “以植入法合成氧化鐵中空微球與藥物包覆之研究.”2009. 31. 陳國書, “前驅物植入方式合成無機材質空心微球之機構研究 ”.2010. 32. A. M. Collins, C. Spickermann, S. Mann, “Synthesis of titania hollow microspheres using non-aqueous emulsions.” Journal of Materials Chemistry, 13, 1112-14, 2003. 33. T. Nakashima, N. Kimizuka, “Interfacial synthesis of hollow TiO2 microspheres in ionic liquids.” Journal of the American Chemical Society, 125, 6386-87, 2003. 34. T. Z. Ren, Z. Y. Yuan, B. L. Su, “Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2.” Chemical Physics Letters, 374, 170-75, 2003. 35. H. G. Yang, H. C. Zeng, “Preparation of hollow anatase TiO2 nanospheres via ostwald ripening.” The Journal of Physical Chemistry B, 108, 3492-95, 2004. 36. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J. M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water.” Applied Catalysis B: Environmental, 31, 145-57, 2001. 37. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J. M. Herrmann, “Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania.” Applied Catalysis B: Environmental, 39, 75-90, 2002. 38. O. Carp, C. L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide.” Progress in Solid State Chemistry, 32, 33-177, 2004. 39. J. Yu, W. Liu, H. Yu, “A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity.” Crystal Growth & Design, 8, 930-34, 2008. 40. Y. Ao, J. Xu, D. Fu, C. Yuan, “A simple method for the preparation of titania hollow sphere.” Catalysis Communications, 9, 2574-77, 2008. 41. J. Yu, J. Zhang, “A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity.” Dalton Transactions, 39, 5860-7, 2010. 42. A. Syoufian, O. Satriya, K. Nakashima, “Photocatalytic activity of titania hollow spheres: Photodecomposition of methylene blue as a target molecule.” Catalysis Communications, 8, 755-59, 2007. 43. 44. 張正華, 李陵嵐, 葉楚平, 楊平華, “有機與塑膠太陽能電池.”2007. 45. H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, N. G. Park, “Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells.” Advanced Materials, 20, 195-99, 2008. 46. J. H. Park, S. Y. Jung, R. Kim, N. G. Park, J. Kim, S. S. Lee, “Nanostructured photoelectrode consisting of TiO2 hollow spheres for non-volatile electrolyte-based dye-sensitized solar cells.” Journal of Power Sources, 194, 574-79, 2009. 47. 楊家銘,“奈米孔洞材料之物理吸脫附分析.” 科儀新知, 26, 32-38, 2005 48. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, “Reporting physisorption data for gassolid systems with special reference to the determination of surfacearea and porosity.” Pure and Applied Chemistry, 57, 603-19, 1985. 49. J. Yu, S. Liu, H. Yu, “Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation.” Journal of Catalysis, 249, 59-66, 2007. 50. R. A. Spurr, H. Myers, “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer.” Analytical Chemistry, 29, 760-62, 1957. 51. A. P. D''Silva, “Adsorption of antioxidants by carbon blacks.” Carbon, 36, 1317-25, 1998. 52.
本研究以正庚烷為反應溶劑,四氯化鈦為合成二氧化鈦之前驅鹽,有機微球為硬質模板,藉由模板植入方式使鈦離子存在於有機微球模板表面的內部,形成核殼結構微球,再經由高溫煆燒移除有機模板,獲得二氧化鈦中空球。吾人嘗試改變四氯化鈦濃度、反應溫度與煆燒溫度,將獲得之中空微球分別利用X光繞射分析儀(XRD)、場發射掃描式電子顯微鏡(FE-SEM)、穿透式電子顯微鏡(TEM)、動態光散射粒徑分析儀(DLS)、比表面積分析儀(BET)分析結晶相組成、表面微結構與比表面積;此外,本研究將二氧化鈦中空球應用在光催化與染料敏化太陽能電池,並與商用二氧化鈦奈米粉末(Degussa P25)相互比較。
由FE-SEM與TEM觀察,二氧化鈦中空球之粒徑約700微米,XRD分析顯示煆燒溫度650oC以上時,結晶結構完全轉變為金紅石相。煆燒溫度提升(450-750 oC)會使晶粒成長(金紅石相從82nm增加至137nm),金紅石相所佔比例增加(從7%增加至100%),並伴隨比表面積降低(43m2/g降至21m2/g)。反應溫度提升(55~90 oC) 則會造成比表面積降低(從36m2/g降至8m2/g) 、增加金紅石相所佔比例(從15%增加至80%),但是晶粒尺寸不受影響。在亞甲基藍光催化實驗中,反應溫度與煆燒溫度增加皆使比表面積降低與金紅石相比例增加,皆促使光催化速率常數從0.058min-1遞減至0.02min-1。其中反應溫度55 oC所合成之中空球與P25有相近比表面積與結晶相組成,顯示出相同的光催化能力。在染料敏化太陽能電池之應用方面,二氧化鈦中空球光電極單位面積內含中空球約0.001g,P25的光電極單位面積內含P25約0.003g,因此單位面積內能吸附染料之表面積不同,導致中空球光電極轉換效率(0.02~0.8%)比P25的光電極轉換效率(1.6%)差,但若以等重之光電極來比較,中空球光電極可獲得較高之單位重量之光電轉換效率。

This research uses template-implantation method for synthesis of TiO2 hollow microspheres. The TiO2 hollow microspheres were prepared by using heptane as a reactive solvent, TiCl4 as a TiO2 precursor, and organic microspheres as a template. Ti4+ ions were found to implant into the underlying surface of organic template to form a core-shell structure, leading to formation of hollow microspheres after calcination to remove the organic microspheres. The reaction temperature, calcination temperature, and TiCl4 content have been changed to observe surface microstructure, crystalline phase and specific surface area of the microspheres by TEM, FE-SEM, XRD, DLS and BET. In addition, use of the TiO2 hollow microspheres in photocatalysis and dye-sensitized solar cell was compared with that of commercial TiO2 nanopowder (Degussa P25).
From FE-SEM and TEM observation, particle size of the TiO2 hollow microspheres is about 700 micrometre. From XRD results, crystal phase transforms from rutile phase at temperatures above 650oC. When calcination temperature was increased from 450 oC to 750 oC, crystallite size grows from 82nm to 137nm,rutile percentage increased from 7 to 100%, and specific surface area reduced from 43 to 21m2/g. When reaction temperature was increased from 55 oC to 90 oC, rutile size is no change while the rutile fraction increased from 15 to 80% and the specific surface area reduced from 36 to 8m2/g. In the methylene blue photocatalysis experiment, due to the reduction in specific surface area and the increased rutile percent, photocatalysis rate constant is reduced from 0.058min-1 to 0.02min-1. The TiO2 hollow microspheres have the same specific surface area and crystal phase with that of the P25 yields the same photocatalytic efficiency. In dye-sensitized solar cell test, hollow sphere photo electrode has 0.001g unit area, and P25 photo electrode has 0.003g unit area, therefore adsorbed dye amount is different. Hollow sphere photo electrode's photo-electric efficiency is low compared with that of P25. If photo-electric efficiency take photo-electric efficiency per a unit of weight, hollow sphere photo electrode has hight photo-electric efficiency per a unit of weight.
其他識別: U0005-1008201120482300
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.