Please use this identifier to cite or link to this item:
標題: Interfacial compound formation between silicon germanium alloy and chromium during diffusion bonding
作者: 江晏瑜
Jiang, Yan-Yu
關鍵字: silicon germanium;矽鍺;thermoelectric;chromium electrode;hot pressing;compound;熱電;鉻電極;熱壓法;化合物
出版社: 材料科學與工程學系所
引用: [1] 朱旭山,“熱電材料與元件之原理與應用”,工業材料雜誌 93 (1995) 93-103。 [2] K. Hasezaki, H. Tsukuda, A. Yamada, S. Nakajima, Y. Kang, M. Niino,“Thermoelectric Semiconductor and Electrode-Fabrication and Evaluation of SiGe/Electrode”, International Conference on Thermoelectrics 16 (1997) 599-602 [3] O. Yamashita, H. Odahara, S. Tomiyoshi,“Effect of metal electrode on thermoelectric power in bismuth telluride compounds”, Journal of Materials Science 39 (2004) 5653 – 5658 [4] Z. Wang, D.B. Aldrich, Y.L. Chen, D.E. Sayers, R.J. Nemanich,“Silicide formation and stability of Ti/SiGe and Co/SiGe”, Thin Solid Films 270 (1995) 555-560. [5] C. Williams, H. F.Lopez,“Stability of chromium diffusion barriers during anodic bonding in silicon resistor devices”, Journal of Materials Science 12 (2001) 739-742 [6] D. Callister, Materials Science and Engineering an Introduction , Department of Metallurgical Engineering of Utah University, 2000, pp. 817-822 [7] P. L. Tu, Y. C. Chan, J. K. L. Lai,“Effect of Intermetallic Compounds on the Thermal Fatigue of Surface Mount Solder Joint”, IEEE Transactions on Components, Packaging, and Manufacturing Technology B 20 (1997) 87-93 [8] T. Murotani, T. Yano, H. Hirose, A. Ikenaga,“Applications of X-ray stress measurement for interface area of Ni3Al system intermetallic compound coating”, Advances in X-ray Analysis 47 (2004) 385-389. [9] 李忠明 ,“鋁摻雜鐵矽粉末於氮氫混合氣氛熱處理後之特性分析”,碩士論文,國立中興大學材料科學與工程研究所,台中, 2007, pp. 16-18。 [10] N. Danson, I. Safi, G. W. Hall, R. D. Howson,“Techniques for the sputtering of optimum indium-tin oxide films on to room temperature substrates”, Surf. Coat. Technol. 99 (1998) 147-160 [11] N. Lundberg, M. Ostling, F.M. d’Heurle,“Chromium germanides: formation, structure and properties”, Applied Surface Science 53 (1991) 126-131. [12] S.P. Gupta,“Formation of intermetallic compounds in the Cr–Al–Si”, Materials Characterization 52 (2004) 355– 370
The silicon germanium is well known as one of the best thermoelectric materials under the high-temperature environment. However, whether a thermoelectric device performs well or not is strongly related to the property of its electrode. In this research, chromium metal, used as the electrode, is jointed with silicon germanium alloy. The research goal is to understand the interfacial compound formation during joining silicon germanium and chromium, such as the composition, structure of compound, and activation energy of compound growth. In this study, the bulk of silicon germanium alloy was processed by vacuum arc melting, and then joined with chromium by hot pressing. The microstructure, composition and crystalline structure were determined by means of scanning electron microscopy, electron probe microanalysis and X-ray diffraction, respectively. Finally, the average thickness was measured and activation energy of formation was computed. The results showed that the intermetallic compounds formed are Cr3Ge, Cr(Six Ge1-x)3 and CrSi2, and the activation energy of growth were calculated. The possible reasons for the defect formation and the growing sequence are also conjectured.

矽鍺是高溫環境下表現的最好的熱電材料,然而ㄧ個熱電材料需要電極材料與其搭配才能發揮良好的熱電性質。研究中探討接合矽鍺與鉻時發生的界面化合物生成,了解化合物成分、結構、以及生長活化能等等。本研究以真空熔煉製備矽鍺塊材並以熱壓法接合矽鍺塊材與鉻金屬。性質分析方面分別由場發射掃描式電子顯微鏡觀察金相、電子探測光顯微分析分析成分、X光繞射儀做相鑑定,再由厚度量測得到成長活化能。本研究成果可得知接合後的化合物成長結構,並確認化合物成分分別為Cr3Ge、Cr(Six Ge1-x)3、CrSi2並計算化合物的厚度變化、成長活化能。研究中並推測缺陷成因與化合物成長順序。
其他識別: U0005-0707200616374600
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.